首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrolyte metabolism undergoes significant changes in trained subjects, but it is unknown if it undergoes significant changes in untrained subjects during hypokinesia (decreased movement). The aim of this study was to measure calcium (Ca) changes in trained and untrained subjects during prolonged hypokinesia (HK). Studies were done during 30 d of a pre-HK period and 364 d of a HK period. Forty male trained and untrained volunteers aged 23–26 yr were chosen as subjects. All subjects were equally divided into four groups: trained ambulatory control subjects (TACS), trained hypokinetic subjects (THKS), untrained hypokinetic subjects (UHKS), and untrained ambulatory control subjects (UACS). The THKS and UHKS groups were kept under an average running distance of 0.7 km/d. Fecal Ca excretion, urinary Ca and magnesium (Mg) excretion, serum ionized calcium (CaI), Ca, Mg, intact parathyroid hormone (iPTH) and 1,25 dihydroxyvitamin D [1,25 (OH)2 D] concentration, body weight, and peak oxygen uptake were measured. Fecal Ca loss, urinary Ca and Mg excretion, and serum CaI, Mg, and Ca increased significantly (p ≤ 0.01), whereas serum iPTH and 1,25 (OH)2 D concentration body weight and peak oxygen uptake decreased significantly (p ≤ 0.01) in the THKS and UHKS groups when compared with the TACS and UACS groups. The measured parameters were much greater and much faster in the THKS group than in the UHKS group. By contrast, the corresponding parameters did not change significantly in the TACS and UACS groups when compared with the baseline control values. It was concluded that prolonged HK induces significant fecal, urinary, and serum Ca changes in the hypokinetic subjects when compared with control subjects. However, fecal, urinary, and serum Ca changes were much greater and appeared much faster in the THKS group than the UHKS group.  相似文献   

2.
Hypokinesia (HK) (diminished movement) induces significant electrolyte changes, but little is known about the effect of periodic hypokinesia (PHK) on minerals. The aim of this study was to measure the effect of PHK and continuous hypokinesia (CHK) on urinary and serum electrolytes. Studies were done during a 30-d period of prehypokinesia (HK) and during 364 d of PHK and CHK periods. Thirty male athletes aged 24.6±7.7 yr were chosen as subjects. They were equally divided into three groups: unrestricted ambulatory control subjects (UACS), continuously hypokinetic subjects (CHKS), and periodically hypokinetic subjects (PHKS). The UACS group experienced no changes in the daily activities and regular training and they were maintained under an average running distance of 11.7 km/d. The CHKS group was limited to an average walking distance of 0.7 km/d; and the PHKS group was limited to an average walking distance of 0.7 and running distance of 11.7 km/d for 5 d and 2 d/wk, respectively, for a period of 364 d. Urinary and serum phosphate (P), calcium (Ca), sodium (Na) and potassium (K), serum intact parathyroid hormone (iPTH), calcitonin (CT), plasma renin activity (PRA) and aldosterone (PA) levels, food and water intakes, and physical characteristics were measured. Urinary P, Ca, Na, and K loss, serum Ca, P, Na, and K, and PRA and PA values increased significantly (p≤0.01), whereas serum iPTH and CT levels decreased significantly (p≤0.01) in the PHKS and CHKS groups when compared with the UACS group. However, significant (p≤0.01) differences were observed between PHKS and CHKS groups regarding urinary and serum electrolytes, serum and plasma hormones. Food and water intakes, body weight, body fat, and peak oxygen uptake decreased significantly (p ≤ 0.01) in the CHKS group when compared with PHKS and UACS groups. Food and fluid intakes, body fat, and body weight increased significantly (p≤0.01), whereas peak oxygen uptake remained significantly (p≤0.01) higher in the PHKS group when compared with the CHKS group. Serum and urinary minerals, serum hormones, food and fluid intakes, and physical characteristics did not change significantly (p>0.01) in the UACS group when compared with their baseline control values. It was shown that both PHK and CHK induce significant serum and urinary electrolyte changes. However, urinary and serum electrolyte changes were significantly (p≤0.01) greater during PHK than CHK. It was concluded that the greater the stability of muscular activity, the smaller the serum and urinary electrolyte changes during prolonged HK.  相似文献   

3.
Calcium (Ca) supplements may be used to normalize Ca-balance changes but little is known about the effect of Ca supplements on Ca balance during hypokinesia (decreased kilometers per day). The aim of this study was to evaluate the effect of daily intakes of Ca supplements on Ca balance during hypokinesia (HK). Studies were done during 30 d of a pre-HK period and during 364 d of a HK period. Forty male athletes aged 23–26 yr were chosen as subjects. They were divided equally into four groups: unsupplemented ambulatory control subjects (UACS), unsupplemented hypokinetic subjects (UHKS), supplemented hypokinetic subjects (SHKS), and supplemented ambulatory control subjects (SACS). The SHKS and UHKS groups were kept under an average running distance of 0.7 km/d. In the SHKS and SACS groups supplemented with 35.0 mg Ca lactate/kg body weight. Fecal Ca loss, urinary excretion of Ca and phosphate (P), serum concentrations of ionized calcium (CaI) total Ca, P, and Ca balance, intact parathyroid hormone (iPTH) and 1,25 dihydroxyvitamin D (1,25(OH)2D), anthropometric characteristics and peak oxygen uptake were measured. Fecal Ca excretion, urinary Ca and P excretion, serum CaI, total Ca, and P concentration, and negative Ca balanced increased significantly (p ≤ 0.01) in the SHKS and UHKS groups when compared with the SACS and UACS groups. Serum, urinary, and fecal Ca changes were much greater and appeared much faster in the SHKS group than in the UHKS group. Serum iPTH and 1,25 (OH)2 D, body weight, and peak oxygen uptake decreased significantly (p ≤ 0.01) in the SHKS and UHKS groups when compared with the SACS and UACS groups. In contrast, the corresponding parameters remained stable in the SACS and UACS groups when compared with the baseline control values. It was concluded that during prolonged HK, urinary and fecal Ca excretion and serum Ca concentration increased significantly despite the presence of a negative Ca balance; thus, Ca supplements cannot be used to normalize negative Ca balance during prolonged HK.  相似文献   

4.
Hypokinesia (diminished movement) induces significant potassium (K) changes; however, little is known about K deposition and deficiency during hypokinesia (HK). Using K supplements during and after HK, the aim was to establish body K deposition and K deficiency during HK. Studies were done during the pre-HK period of 30 d, HK period of 364 d, and post-HK period of 30 d. Forty male trained athletes aged 24.9 ± 8.0 y were chosen as subjects. They were equally divided into four groups: unsupplemented active control subjects (UACS), unsupplemented hypokinetic subjects (UHKS), supplemented active control subjects (SACS), and supplemented hypokinetic subjects (SHKS). Hypokinetic subjects were limited to an average walking distance of 0.7 km/d. Control subjects ran an average distance of 11.6 km/d. The SHKS and SACS groups took 95.0 mg elemental K/kg body weight daily. Fecal K excretion, urinary sodium (Na) and K excretion, plasma K and Na levels, plasma renin activity (PRA), plasma aldosterone (PA), food and fluid intake, and physical characteristics were measured. During HK, fecal K loss, urinary K and Na loss, and plasma K, Na, PRA, and PA levels increased significantly (p ≤ 0.05), whereas during the initial days of post-HK, the levels of the measured parameters decreased significantly (p ≤ 0.05) in the SHKS and UHKS groups as compared with the SACS and UACS groups, respectively. During HK, body weight, body fat, peak oxygen uptake, food and fluid intake decreased significantly (p ≤ 0.05), whereas during the initial days of post-HK period remained significantly (p ≤ 0.05) depressed and fluid intake increased in SHKS and UHKS groups when compared with the SACS and UACS groups, respectively. However, during HK and post-HK plasma, urinary, and fecal K changed significantly (p ≤ 0.05) more in the SHKS group than in the UHKS group. The deposition of K was significantly (p ≤ 0.05) lower and K deficiency much higher in the SHKS group than in the UHKS group. Fecal K loss, urinary K and Na loss, plasma K, Na, PRA, and PA levels, body weight, body fat, peak oxygen uptake, and food and fluid intake did not change significantly in the SACS and UACS when compared with their baseline control values. It was shown that plasma K concentration and urinary and fecal K excretion increased during HK and decreased significantly (p ≤ 0.05) during post-HK. post-HK. Oral K supplements did not influence plasma or fecal and urinary K either during HK or post-HK. It was concluded that the low plasma K level and fecal and urinary K loss during post-HK may indicate the presence of K deficiency, and increased K in plasma, urine, and feces during HK and in the presence of K deficiency may suggest the body’s inability to retain K during HK.  相似文献   

5.
The objective of this investigation was to determine fluid electrolyte changes after water-loading tests and during hypokinesia (decreased number of km taken per day) and daily intake of fluid and salt supplementation (FSS). The studies during hypokinesia (HK) were performed for 364 d on 30 endurance-trained male volunteers in the age range of 23–26 yr, with an average peak oxygen uptake, POU, of 64 mL/kg/min. All volunteers were divided into three equal groups: 10 volunteers were placed on a continuous regime of exercise of 14.4 km/d and served as control subjects (CS); 10 volunteers were submitted to continuous HK without FSS and were considered as the unsupplemented hypokinetic subjects (UHS); and 10 volunteers were under continuous HK and FSS and were considered as the supplemented hypokinetic subjects (SHS). For the simulation of the hypokinetic effect, the UHS and SHS groups were kept continuously under an average of 2.7 km/d for the duration of the study. Prior to exposure to HK, the two groups of volunteers were on the same exercise regime as the control group. During a 60-d preexperimental period and during the remainder of the study, water-loading tests with a water load of 20 mL/kg body wt/min were performed, and urinary and plasma electrolytes (sodium, potassium, calcium, and magnesium) were measured. In the SHS group, urinary excretion of electrolytes and plasma electrolyte content decreased, while in the UHS these values increased after water loading tests and during HK. Based on the obtained data, it is concluded that chronic hyperhydration may be used to prevent or minimize urinary and plasma electrolyte changes in endurance-trained volunteers after water-loading tests and during prolonged restriction of muscular activity.  相似文献   

6.
Rigorous bed rest (RBR) induces significant electrolyte changes, but little it is not known about the effect of acute bed rest (ABR) (i.e., abrupt confinement to a RBR). The aim of this study was to measure urinary and plasma electrolyte changes during ABR and RBR conditions. The studies were done during 3 d of a pre-bed-rest (BR) period and during 7 d of an ABR and RBR period. Thirty male trained athletes aged, 24.4 ± 6.6 yr were chosen as subjects. They were divided equally into three groups: unrestricted ambulatory control subjects (UACS), acute-bed-rested subjects (ABRS), and rigorous-bed-rested subjects (RBRS). The UACS group experienced no changes in professional training and daily activities. The ABRS were submitted abruptly to a RBR regimen and without having any prior knowledge of the exact date and time when they would be subjected to an RBR regimen. The RBRS were subjected to an RBR regime on a predetermined date and time known to them from the beginning of the study. Sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), and phosphate (P) in plasma and urine, plasma renin activity (PRA) and plasma aldosterone (PA), physical characteristics, peak oxygen uptake, and food and water intakes were measured. Urinary Na, K, Ca, Mg, and P excretion and plasma Na, K, Mg, Ca, and P concentration, PRA, and PA concentration increased significantly (p ≤ 0.01), whereas body weight, peak oxygen uptake, and food and water intakes decreased significantly in the ABRS and RBRS groups when compared with the UACS group. However, urinary and plasma Na, K, Mg, P, and Ca, PRA, and PA values increased much faster and were much greater in the ABRS group than in the RBRS group. Plasma and urinary Na, K, Ca, Mg, and P, PRA and PA levels, food and water intakes, body weight, and peak oxygen uptake did not change significantly in the UACS group when compared with its baseline control values. It was shown that RBR and ABR conditions induce significant increases in urinary and plasma electrolytes; however, urinary and plasma electrolyte changes appeared much faster and were much greater in the ABRS group than the RBRS group. It was concluded that the more abruptly motor activity is ended, the faster and the greater the urinary and plasma electrolyte change.  相似文献   

7.
The effects of acute porcine calcitonin (pCT) administration were studied in 11 healthy volunteers with no metabolic disease. Each subject was given, intramuscularly, 1 MRC unit of pCT in glycine vehicle, 160 units of pCT in gelatine vehicle, and placebo, according to a crossover design. The following parameters were studied: blood calcium, phosphorus and immunoreactive parathyroid hormone (iPTH); urine calcium, phosphorus, cyclic AMP and GMP. Both the pCT preparations produced, at the same time after administration, a hypocalcemic effect (P less than 0.01) which was not dose related, without any modification of urinary calcium excretion, implying that both doses are able to inhibit completely bone destruction. Despite the blood calcium decrease, no significant modifications in plasma iPTH levels were observed. pCT administration did not modify the urinary excretion of cyclic AMP, while it increased the urinary levels of cyclic GMP, particularly at the higher dose employed. Blood phosphorus decrease and urinary phosphate excretion increase were observed only after the administration of 160 MRC units of pCT. These observations suggest that the effects on urinary cyclic GMP and on blood and urine phosphorus are not mediated by PTH but could be the result of a direct action of calcitonin seen only when high doses are employed. In conclusion, one MRC unit of pCT is sufficient to inhibit bone resorption.  相似文献   

8.
It has been demonstrated that in healthy subjects during oral glucose tolerance test, serum calcium declines, while urinary calcium excretion increases, even if there is not a general agreement in this regard. The study was carried out in order to evaluate the effects of glucose oral load on calcium homeostasis in eight healthy adult women, also considering ionized calcium, plasma insulin and parathyroid hormone changes. The results showed a decline of total and ionized serum calcium (p < 0.05 and p < 0.01, respectively; maximum of the decrease at time 120'), in parallel with the increase of urinary calcium/ creatinine ratio (p < 0.05). Serum glucose and insulin increase (p < 0.0001 and p < 0.0005 respectively; maximum value at time 60'), while the parathyroid hormone level decreases (maximum decline at time 120', p < 0.01). No changes were observed in fasting control subjects for all parameters considered. The changes of these parameters with time suggest that the effects of glucose oral load on calcium metabolism in healthy adult women may be the consequence of parathyroid hormone suppression induced by acute hyperglycemia/hyperinsulinemia. The results confirm in vivo the PTH behaviour in vitro, on cultured bovine parathyroid cells, with high glucose concentration.  相似文献   

9.
We report data from three patients with severe Paget''s disease of bone who were treated with mithramycin.Mithramycin infusion resulted in a fall in plasma calcium, phosphate, alkaline phosphatase, and urinary hydroxyproline excretion. There was an improvement in calcium and phosphorus balance in two of the three subjects studied. A pronounced or complete relief of bone pain occurred in all three.We suggest that mithramycin exerts its beneficial effect in Paget''s disease of bone by stimulating parathyroid hormone release. The parathyroid hormone released has a predominantly anabolic action on bone since its catabolic action is blocked by mithramycin, which inhibits bone resorption.  相似文献   

10.
Four families with familial hypocalciuric hypercalcaemia were studied. The probands presented with abdominal pain, which in three was due to acute pancreatitis; in two the condition was life threatening. Serum concentrations of calcium, magnesium, phosphate, and immunoassayable parathyroid hormone, urinary calcium excretion, and the rate of renal tubular reabsorption of phosphate were measured; the findings were compared with results in 10 patients with primary hyperparathyroidism matched for serum calcium concentration to establish differences between the diseases. Familial hypocalciuric hypercalcaemia should be suspected in patients with hypercalcaemia in whom daily urinary calcium excretion is below 5 mmol (200 mg) provided renal insufficiency, vitamin D deficiency, and ingestion of drugs that reduce calcium excretion have been excluded. Most cases appear to run a benign course, but some may suffer considerable morbidity. Surgical treatment should be reserved for patients with severe complications, when all parathyroid tissue should be removed.  相似文献   

11.
The objective of this investigation was to determine whether urinary and plasma potassium changes developed during prolonged hypokinesia (HK) (decreased number of km/d) in endurance-trained subjects could be minimized or reversed with a daily intake of fluid and salt supplementation (FSS). The studies were performed on 30 endurance-trained male volunteers aged 23–26 yr with an average peak oxygen uptake of 65 mL/kg min during 364 d of HK. All volunteers were on an average of 13.8 km/d prior to their exposure to HK. All volunteers were randomly divided into three groups: 10 volunteers were placed continuously under an average of 14.0 km/d (control subjects), 10 volunteers were subjected continuously to an average of 2.7 km/d (unsupplemented hypokinetic subjects), and 10 volunteers were submitted continuously to an average of 2.7 km/d, and consumed daily an additional amount of 0.1 g sodium chloride (NaCl)/kg body wt and 30 mL water/kg body wt (supplemented hypokinetic subjects). During the prehypokinetic period of 60 d and during the hypokinetic period of 364 d, potassium loading tests were performed with 1.5–1.7 mEq potassium chloride/kg body wt, and potassium, sodium, and chloride excretion in urine and potassium, sodium, and chloride in plasma were determined. In the unsupplemented hypokinetic volunteers, urinary excretion of electrolytes and concentrations of electrolytes in plasma increased significantly as compared to the control and supplemented hypokinetic groups of volunteers. It was concluded that daily intake of fluid and salt supplementation had a favorable effect on regulation of urinary and plasma potassium changes in trained subjects during prolonged HK.  相似文献   

12.
The aim of this study was to evaluate the effect of a daily intake of fluid and salt supplementation (FSS) on the deficiency of electrolytes, which is characterized by higher rather than lower plasma concentration of electrolytes during prolonged hypokinesia (HK) (decreased number of km taken per day). Forty long distance runners aged 22–25 yr with a peak V02 65.4 mL min-1 kg-1 with an average 14.2 km d running distance were selected as subjects. They were equally divided into four groups: 1) unsupplemented control subjects (UCS); 2) unsupplemented hypokinetic subjects (UHS); 3) supplemented hypokinetic subjects (SHS), and 4) supplemented control subjects (SCS). During the investigation of 364 d, groups 2 and 3 maintained an average running distance of less than 4.7 km per day, groups 1 and 4 did not experience any modification in their normal training routines and diets. During the preexperimental period of 60 d and during the experimental period of 364 d urinary excretion of electrolytes and concentrations of sodium, potassium, calcium, and magnesium in plasma were determined. Whole blood hemoglobin, hematocrit index, plasma osmolality, and plasma protein concentration were measured. In the UHS plasma concentration of electrolytes and urinary excretion thereof, fluid elimination, hematocrit, whole blood hemoglobin, plasma osmolality, and plasma protein concentration increased significantly (p < 0.05) when compared with the UCS, SCS, and SHS groups. In the SHS plasma concentration of electrolytes and urinary excretion thereof, fluid excretion, whole blood hemoglobin, hematocrit, plasma osmolality, and plasma protein concentration decreased when compared with the UHS and increased insignificantly when compared with the UCS and SCS groups. It was concluded that FSS may be used to prevent or minimize electrolyte deficiency in endurance-trained volunteers during prolonged restriction of muscular activity.  相似文献   

13.
Negative potassium balance during hypokinesia (decreased number of kilometers taken/day) is not based on the potassium shortage in the diet, but on the impossibility of the body to retain potassium. To assess this hypothesis, we study the effect of potassium loading on athletes during prolonged hypokinesia (HK). Studies were done during 30 d of a pre-HK period and during 364 d of an HK period. Forty male athletes aged 23–26 yr were chosen as subjects. They were divided equally into four groups: unloaded ambulatory control subjects (UACS), unloaded hypokinetic subjects (UHKS), loaded hypokinetic subjects (LHKS), and loaded ambulatory control subjects (LACS). For the simulation of the hypokinetic effect, the LHKS and UHKS groups were kept under an average running distance of 1.7 km/d. In the LACS and LHKS groups, potassium loading tests were done by administering 95.35 mg KC1 per kg body weight. During the pre-HK and HK periods and after KC1 loading tests, fecal and urinary potassium excretion, sodium and chloride excretion, plasma potassium, sodium and chloride concentration, and potassium balance were measured. Plasma renin activity (PRA) and plasma aldosterone concentration was also measured. Negative potassium balance increased significantly (p < -0.01) in the UHKS and LHKS groups when compared with the UACS and LACS groups. Plasma electrolyte concentration, urinary electrolyte excretion, fecal potassium excretion, PRA, and PA concentration increased significantly (p ≤ 0.01) in the LHKS and UHKS groups when compared with LACS and UACS groups. Urinary and fecal potassium excretion increased much more and much faster in the LHKS group than in the UHKS group. By contrast, the corresponding parameters change insignificantly in the UACS and LACS groups when compared with the base line control values. It was concluded that urinary and fecal potassium excretion increased significantly despite the presence of negative potassium balance; thus, negative potassium balance may not be based on potassium shortage in the diet because of the impossibility of the body to retain potassium during HK.  相似文献   

14.
It was suggested that negative calcium balance is not based on the shortage of calcium in the diet, but on the decreased tissular capacity of the body to retain calcium during hypokinesia (decreased muscular activity), and that chronic hyperhydration may be used to normalize calcium balance. To evaluate this hypothesis studies were performed on 30 long distance runners aged 23–26 yr, with an average maximum oxygen uptake 65 mL/kg/min during 364 d of hypokinesia (HK). All volunteers were divided into three equal groups: Ten volunteers were placed continuously under an average of 14.9 km/d (control subjects), ten volunteers were subjected continuously to HK (hypokinetic subjects), and ten volunteers were submitted continuously to HK with daily consumption of an additional amount of 26 mL water/kg body wt and 0.16 g sodium chloride (NaCl)/kg body wt (hyperhydrated subjects). For the simulation of the hypokinetic effect, the hypokinetic and hyperhydrated volunteers were kept under an average of 2.7 km/day for 364 d. During the prehypokinetic period and hypokinetic period calcium lactate loading tests (0.55 mEq/kg body wt) were performed. Urinary and blood electrolytes (sodium, ionized calcium, total calcium, magnesium, and phosphate) and blood parathyroid hormone (PTH) were determined. Urinary electrolytes and concentrations in blood thereof decreased in the hyperhydrated and increased significantly in the hypokinetic volunteers. Blood parathyroid hormone content increased in the hyperhydrated and decreased in the hypokinetic volunteers. After calcium lactate loading tests, the hypokinetic volunteers displayed a faster excretion of calcium and a decreased blood PTH content as compared to the control and hyperhydrated groups of volunteers. It was concluded that calcium deficiency during HK is associated with decreased tissular capacity of the body to retain calcium, whereas chronic hyperhydration may be used to prevent calcium deficiency in endurance trained volunteers during prolonged restriction of muscular activity.  相似文献   

15.
To evaluate the role of parathyroids in calculus disease, the parathyroid hormone levels were determined in 22 control subjects and 42 stone (14 with bladder stone and 28 with kidney stone) patients. Serum calcium, inorganic phosphate, alkaline phosphatase and parathyroid hormone and urinary excretion of calcium and inorganic phosphate were determined. It was found that normocalcemic and normocalciuric stone patients had slightly higher levelsss of parathyroid hormone (irrespective of the site of the stone) and the difference was not statistically significant as compared with control subjects although some of the patients with calculus disease were hyperparathyroid. Serum alkaline phosphatase was increased while there was an increase in urinary calcium excretion in kidney stone patients and oxalate in all patients as compared with control subjects. The increase in inorganic phosphate was, however, not different from the control subjects. The subclinical hyperparathyroidism and stone formation in these patients are not correlated.  相似文献   

16.
C. P. Shah  G. C. Robinson 《CMAJ》1977,116(9):1031-1032
Twenty-eight patients with symptomatic Paget''s disease of bone were treated with synthetic salmon calcitonin for periods of 9 to 42 months (average, 23 months). Serum alkaline phosphatase concentration and urinary hydroxyproline excretion, which had been elevated before treatment, were decreased by calcitonin treatment in all patients, and some decrease was sustained in 23 in association with variable decreases in pain, heat and stiffness of major joints. Improvement was sustained further in approximately half of these patients; the other half had partial return of symptoms. Calcium absorption was increased in 9 of 10 patients studied; the increase did not correlate with plasma concentrations of parathyroid hormone. The mean endogenous fecal calcium excretion was decreased significantly but there was no significant change in mean urinary calcium excretion. Mean accretion rate of calcium to bone, studied in 10 patients, was decreased by 35% after 6 months of treatment and by a further 23% 1 year later. There was no consistent effect of calcitonin treatment on bone mineral mass. No serious adverse effects of treatment such as allergic reactions were observed. Calcitonin appears to be effective initially in most patients with Paget''s disease of bone, but with long-term treatment resistance may be acquired.  相似文献   

17.
Hypokinesia (diminished movement) induces phosphate (P) changes; however, it is not known if P change is greater in trained than untrained subjects. Measuring P balance and P retention during hypokinesia (HK) and P load, we studied if changes in P retention and P depletion were significantly (p<0.05) greater in trained than untrained subjects. Studies were done during a 30-d pre-HK period and a 364-d HK period. Forty male trained and untrained healthy individuals aged 24.5±5.4 yr were chosen as subjects. All volunteers were equally divided into four groups: trained ambulatory control subjects (TACS), trained hypokinetic subjects (THKS), untrained ambulatory control subjects (UACS), and untrained hypokinetic subjects (UHKS). All THKS and UHKS were limited to an average walking distance of 0.3 km/d, and TACS and UACS were on an average running distance of 9.8 and 1.8 km/d, respectively. Subjects took daily 12.7-mmol dicalcium-phosphate/kg body weight in the form of supplementation. Negative P balance, fecal P loss, urinary P and calcium (Ca) excretion, serum P, and total Ca (Cat) levels increased significantly (p<0.05), whereas P retention, serum 1,25-dihydroxyvitamin D [1,25 (OH)2D3] and intact parathyroid hormone (iPTH) level decreased significantly (p<0.05) in THKS and UHKS when compared with their pre-HK values and their respective ambulatory controls (TACS and UACS). However, P retention, P balance, serum, urinary, and fecal P, and serum hormone level changed significantly (p<0.05) more in THKS than UHKS. Retention of P, fecal P, urinary P and Ca loss, serum P and Cat level, P balance, 1,25(OH)2D3, and iPTH level change insignificantly (p>0.05) in TACS and UACS when compared with their pre-HK control values. It was concluded that significant negative P balance may indicate P depletion, whereas significant P loss in spite of negative P balance and P load may suggest P retention incapacity; however, P depletion was greater in THKS than UHKS. Clearly, P is wasted much more in THKS than UHKS.  相似文献   

18.
Hypokinesia (diminished movement) induces significant calcium (Ca) changes, but little is known about the effect of hypokinesia (HK) on Ca deficiency. Measuring Ca changes during and after HK the aim of this study was to determine Ca deficiency during prolonged HK. Studies were done on 12 male Macaca mulatta (rhesus monkeys) aged 3–5 yr (5.58–6.42 kg) during a 90-d pre-HK period, a 90-d HK period, and a 15-d post-HK period. Monkeys were equally divided into two groups: vivarium control monkeys (VCM) and hypokinetic monkeys (HKM). Hypokinetic monkeys were kept in small individual cages that restricted their movements in all directions without hindering food and water intakes. Urinary, fecal, and serum Ca, urinary and serum magnesium (Mg) and phosphate (P), serum intact parathyroid hormone (iPTH), and calcitonin (CT) concentration, body weight, food intake, fluid consumed and eliminated in urine were measured. During the HK period, fecal Ca loss, urinary Ca, P, and Mg excretion, fluid elimination, and serum P, Ca, and Mg concentration increased significantly (p≤0.01), whereas serum iPTH and CT concentration, food and fluid intakes, and body weight decreased significantly (p≤0.01) in the HKM group when compared with the VCM group. During the initial days of the post-HK period, serum Ca, Mg, and P concentration, fecal Ca loss, urinary Ca, Mg, and P excretion, and fluid elimination decreased significantly (p≤0.01), whereas fluid intake increased significantly (p≤0.01) in the HKM group when compared with the VCM group. Food intake, body weight, and serum iPTH and CT concentrations remained significantly (p≤0.01) depressed in the HKP group when compared with the VCM; however, they increased as the duration of the post-HK period increased. By contrast, the corresponding parameters remained stable in the VCM group when compared with the baseline control values. It was shown that fecal and urinary Ca loss and serum Ca concentration increases significantly during HK, whereas during post-HK fecal, urinary, and serum Ca decreases significantly. It was concluded that significant decrease of serum, urinary, and fecal Ca during post-HK may suggest the presence of Ca deficiency during prolonged HK.  相似文献   

19.
Hypokinesia (diminished movement) induces significant phosphate (P) excretion; however, little is known about the P deposition ability of the body during hypokinesia (HK). Using P loads, the aim of this study was to establish the deposition ability of the body to retain P during prolonged HK. Studies were done during a 30-d period of pre-HK and a 364-d period of HK. Forty male trained athletes aged 24.7 ± 8.0 yr were chosen as subjects. They were equally divided into four groups: unloaded ambulatory control subjects (UACS), unloaded hypokinetic subjects (UHKS), loaded ambulatory control subjects (LACS), and loaded hypokinetic subjects (LHKS). All hypokinetic subjects were limited to an average walking distance of 0.7 km/d. Loading tests with 85.0 mg of calcium phosphate/kg body weight were performed on the LACS and LHKS. Fecal P loss, urinary calcium (Ca) and P loss, serum P, Ca, and the ionized calcium (CaI) levels increased significantly (p≤0.05) in the LHKS and UHKS groups when compared with the LACS and UACS groups, respectively. Serum intact parathyroid hormone (iPTH) and the 1,25-dihydroxyvitamin D3 [1,25-(OH)2 D3] levels decreased significantly (p≤0.05) in the LHKS and UHKS groups when compared with the LACS and UACS groups, respectively. After the P load, significant (p≤0.05) differences were observed between LHKS and UHKS groups regarding serum, urinary, and fecal P changes. Thus, the deposition capacity of P decreased significantly (p≤0.05) more in the LHKS group than in the UHKS group. The deposition of P, fecal P, urinary P and Ca, serum CaI, P, Ca, 1,25-(OH)2 D3, and iPTH changed insignificantly (p>0.05) in control groups when compared with their baseline values. It was shown that after the P load, significant differences were observed between the loaded and unloaded hypokinetic subjects regarding serum, urinary, and fecal P values and P retention. The oral P load intensified P loss from the body. It was concluded that the higher the P intake increased the greater P loss and the lower P deposition and thus the less likely it is for the P load to benefit hypokinetic subjects.  相似文献   

20.
The relation between plasma prolactin and plasma calcium was investogated in normoprolactinemic and hyperprolactinemic adult male rats. Hyperprolactinemia was induced by implantation of a pituitary underneath the kidney capsule in intact males. Hyperprolactinemia did not affect the concentration of calcium in the plasma. It did neither affect food and water consumption, nor urine production and urinary sodium excretion, indicating that prolactin is not important for osmoregulation. However, in hyperprolactinemic rats urinary calcium excretion was markedly increased. 90 Min of intravenous infusion of CaCl2 induced a similar rise of plasma calcium in normoprolactinemic and hyperprolactinemic rats. Infusiion of EGTA during 60 min induced no change in total plasma calcium in normo- and hyperprolactinemic rats. although probably ionized plasma calcium was considerably decreased. Plasma prolactin, however, was not changed during these infusions. It is concluded that in the adult male rat prolactin has no function in the short term regulation of calcium homeostasis. However, when plasma prolactin is considerably increased duing prolonged periods, the hormone may affect calcium metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号