首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
A colorimetric method for the detection of gamma-carboxyglutamic acid (Gla)-containing proteins after reaction with 4-diazobenzenesulfonic acid is presented. Proteins can be visualized after electroblotting from polyacrylamide gels onto membrane supports, after dot-blotting onto membranes, or in solution as a red colored product with an absorbance maximum at 530 nm. The method is specific since other proteins without gamma-carboxyglutamic acid do not form a red color. The presence of other proteins does not inhibit or affect color production by gamma-carboxyglutamic acid-containing proteins. Application of the method for staining a Western blot of a crude extract of bone resulted in staining of only the gamma-carboxyglutamic acid-containing proteins. The usefulness of the method was verified when a second gamma-carboxyglutamic acid-containing protein, prothrombin, also resulted in red color production. A linear color response is seen up to 17 microM for the gamma-carboxyglutamic acid-containing protein bone Gla protein and up to 27 microM for the amino acid. The detection limit is down to 1 microgram of bone Gla protein or 0.17 nmol of the protein on electroblots or dot blots. The simplicity of the method allows rapid screening for gamma-carboxyglutamic acid-containing proteins or allows monitoring of purifications of these proteins in chromatographic or electrophoretic separations.  相似文献   

2.
To study the specific role of gamma-carboxyglutamic acid (Gla) residues in prothrombin, we have isolated a series of partially carboxylated prothrombin variants from a patient with a hereditary defect in vitamin K-dependent carboxylation (Goldsmith, G. H., Pence, R. E., Ratnoff, O. D., Adelstein, D. A., and Furie, B. (1982) J. Clin. Invest. 69, 1253-1260). The three variant prothrombins, purified by DEAE-Sephacel, immunoaffinity chromatography, and preparative gel electrophoresis, were indistinguishable from prothrombin in molecular weight, amino acid composition, and NH2-terminal amino acid sequence, with the exception of Gla residues. Variant prothrombin 1, with 8 Gla residues, had 66% of the coagulant activity of prothrombin, one high affinity metal-binding site (Kd = 15 nM), and three lower affinity sites (Kd = 2.7 microM); prothrombin contained two high affinity (36 nM) and four lower affinity sites (Kd = 1 microM). Ca(II) induced a 23% decrease in the intrinsic fluorescence of variant prothrombin 1 fragment 1, compared to a 35% decrease in that of prothrombin fragment 1. The phospholipid binding activity of variant prothrombin 1 was 44% that of prothrombin. Variant prothrombin 2 and variant prothrombin 3, with 4 and 6 Gla residues, respectively, had about 5% of prothrombin coagulant activity and a single high affinity and two lower affinity metal-binding sites and exhibited no phospholipid binding activity. Variant prothrombin 3 fragment 1 and variant prothrombin 2 fragment 1 demonstrated 18 and 13% of Ca(II)-induced fluorescence quenching, respectively. Abnormal prothrombin, with 1 Gla residue, had 8% of prothrombin coagulant activity, a single lower affinity (1 microM) metal-binding site, and 13% Ca(II)-induced fluorescence quenching of the fragment 1 species and did not bind to phospholipid. These results indicate that Gla residues define the metal binding properties of prothrombin. Most, if not all, of the Gla residues are required for complete prothrombin function, and the prothrombin coagulant activity correlates to the phospholipid binding activity of the prothrombin species.  相似文献   

3.
The solution structures of the N-terminal domains of protein S, a plasma vitamin K-dependent glycoprotein, and its homolog growth arrest specific protein 6 (Gas6) were predicted by molecular dynamics computer simulations. The initial structures were based on the x-ray crystallographic structure of the corresponding region of bovine prothrombin fragment 1. The subsequent molecular dynamics trajectories were calculated using the second-generation AMBER force field. The long-range electrostatic forces were evaluated by the particle mesh Ewald method. The structures that stabilized over a 400-ps time interval were compared with the corresponding region of the simulated solution structure of bovine prothrombin fragment 1. Structural properties of the gamma-carboxyglutamic acid (Gla) domains obtained from simulations and calcium binding were found to be conserved for all three proteins. Analysis of the predicted solution structure of the Gla domain of Gas6 suggests that this domain should bind with negatively charged phospholipid surfaces analogous to bovine prothrombin fragment 1 and protein S.  相似文献   

4.
The inhibitory influence of divalent cations on the ability of bovine alpha-thrombin to hydrolyze prothrombin showed the trend Mn2+ much greater than Ca2+ greater than or equal to Mg2+ greater than Sr2+ much greater than Ba2+. This effect was not due to an inhibition of thrombin's catalytic activity as measured by hydrolysis of a specific synthetic substrate, H-D-Phe-pipecolyl-Arg-p-nitroanilide (D-PhePipArgNA). The presence of divalent cations did not inhibit thrombic proteolysis of gamma-carboxyglutamic acid (Gla)-domainless prothrombin. Prothrombin and Gla-domainless prothrombin were used as competitive inhibitors in the thrombic hydrolysis of D-PhePipArgNA. The apparent Ki value calculated for prothrombin was 18 microM. When either Ca2+ or Mn2+ were present, there was no inhibition. The apparent Ki value determined for Gla-domainless prothrombin was 28 microM in either the absence or presence of Ca2+. Addition of divalent cations to prothrombin, but not to Gla-domainless prothrombin, resulted in an altered protein conformation as measured by high-performance size-exclusion chromatography and ultraviolet difference spectroscopy. These results suggest that a conformational change secondary to the interaction of divalent cations with the Gla-containing domain of prothrombin is required for cation-dependent inhibition of thrombin hydrolysis.  相似文献   

5.
Prothrombin possesses two high affinity and four low affinity gamma-carboxyglutamic acid (Gla)-dependent gadolinium binding sites. Earlier work (Price, P. A., Williamson, M. K., and Epstein, D. J. (1981) J. Biol. Chem. 256, 1172-1176) has shown that tritium can be specifically incorporated at the gamma-carbon of Gla in proteins at pH 5. In the present work we show that inclusion of saturating concentrations of Ca2+ in nondenaturing buffer systems ranging from pH 5.5 to 8.5 prevents the exchange of tritium into all 10 Gla residues of prothrombin. Similarly, saturating concentrations of Gd3+ prevent tritium incorporation into Gla at pH 5.5. Positive cooperativity was observed for the binding of Gd3+ to human prothrombin (at pH 5.5) for the two high affinity sites (Kd congruent to 35 nM). The four low affinity sites bind Gd3+ with a Kd congruent to 5 microM. Incubation of prothrombin ranging in concentrations from 10 to 40 microM with 2 eq of Gd3+ at pH 5.5 prevents 5.7 (average of seven determinations) Gla residues from tritium incorporation. Sedimentation velocity experiments conducted at pH 5.5 indicate that prothrombin in the presence of saturating concentrations of Gd3+ polymerizes, most likely, to a trimer. Further, in the presence of 2 eq of Gd3+, calculated percent weight average concentration of monomer prothrombin is congruent to 100% at 10 microM, approximately equal to 95% at 20 microM, and congruento to 80% at 40 microM protein concentration. Thus, it appears that under conditions in which prothrombin primarily exists as a monomer, occupancy of the initial two metal binding sites by Gd3+ involves six Gla residues.  相似文献   

6.
Novel monoclonal antibodies that specifically recognize gamma-carboxyglutamyl (Gla) residues in proteins and peptides have been produced. As demonstrated by Western blot and time-resolved immunofluorescence assays the antibodies are pan-specific for most or all of the Gla-containing proteins tested (factors VII, IX, and X, prothrombin, protein C, protein S, growth arrest-specific protein 6, bone Gla protein, conantokin G from a cone snail, and factor Xa-like proteins from snake venom). Only the Gla-containing light chain of the two-chain proteins was bound. Decarboxylation destroyed the epitope(s) on prothrombin fragment 1, and Ca(2+) strongly inhibited binding to prothrombin. In Western blot, immunofluorescence, and surface plasmon resonance assays the antibodies bound peptides conjugated to bovine serum albumin that contained either a single Gla or a tandem pair of Gla residues. Binding was maintained when the sequence surrounding the Gla residue(s) was altered. Replacement of Gla with glutamic acid resulted in a complete loss of the epitope. The utility of the antibodies was demonstrated in immunochemical methods for detecting Gla-containing proteins and in the immunopurification of a factor Xa-like protein from tiger snake venom. The amino acid sequences of the Gla domain and portions of the heavy chain of the snake protein were determined.  相似文献   

7.
A method for the chemical modification of gamma-carboxyglutamic acid (Gla) residues in proteins is introduced that has the combined advantages of mildness, a high degree of specificity, and the ability to introduce a radiolabel at modification sites for ease in quantitation. Unlike other Gla modification procedures which are performed in the lyophilized state at 110 degrees C, this procedure is carried out in solution at 37 degrees C. The addition of morpholine and formaldehyde to a slightly acidic solution of bovine prothrombin fragment 1 (residues 1-156) results in the conversion of Gla residues to gamma- methyleneglutamic acid (gamma- MGlu ). The extent of modification is controlled by the relative amounts of modification reagents to protein. A 100-fold molar excess of reagents to fragment 1 produced a protein molecule containing two gamma- MGlu residues, while a modification run at 10,000-fold molar excess of reagents to protein yielded fragment 1 containing eight gamma- MGlu residues per molecule. The specificity of this modification is illustrated by the interaction of native and modified protein with antibody populations directed against fragment 1. Native fragment 1, 8 gamma- MGlu fragment 1, and 2 gamma- MGlu fragment 1 show fairly similar behavior toward whole anti-fragment 1 serum. Differential behavior was exhibited by the native and modified proteins toward a subpopulation of antibodies specific to the calcium ion conformation of fragment 1. Unmodified fragment 1 displayed a strong affinity for these antibodies; however, the 2 gamma- MGlu fragment 1 exhibited a moderate affinity and the 8 gamma- MGlu fragment 1 did not bind to these antibodies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Lahaye DH  Camps MG  Van Zoelen EJ 《FEBS letters》1999,445(2-3):256-260
The gamma-carboxyglutamic acid (Gla) content of several variants of human prothrombin has been measured by using capillary electrophoresis and laser-induced fluorescence (CE-LIF). Both plasma-derived prothrombin and recombinant prothrombin contain ten residues of Gla per molecule of protein. In contrast, a variant of human prothrombin (containing the second kringle domain of bovine prothrombin) was separated into two populations that differed in their Gla content. Direct measurement of the Gla content showed an association with the presence or absence of the calcium-dependent conformational change that is required for prothombinase function. Thus, the CE-LIF assay is useful in determining the carboxylation status of recombinant proteins.  相似文献   

9.
Protein C, like the other vitamin K-dependent plasma proteins that participate in blood coagulation, except prothrombin, has at least one high affinity calcium-binding site that is independent of gamma-carboxyglutamic acid. Calcium binding to this site is required for activation of protein C by the thrombin-thrombomodulin complex. In an attempt to localize this calcium-binding site, we subjected protein C to limited tryptic digestion. A monoclonal antibody that recognizes a calcium-dependent epitope both in intact protein C, in gamma-carboxyglutamic acid-domainless protein C, and in activated protein C, was used to isolate a fragment from the tryptic digest. The fragment was derived from the light chain of protein C and consisted of the two domains that are homologous to the epidermal growth factor precursor. Half-maximal binding of the intact protein and of the isolated fragment by the antibody occurred at 100-200 microM Ca2+. The results suggest the presence of a Ca2+-binding site in the epidermal growth factor homology region of protein C.  相似文献   

10.
We report the first direct method for the identification of the vitamin K-dependent Ca2+ binding amino acid, gamma-carboxyglutamic acid (Gla), in the sequencing of proteins. The carboxyl groups on the protein are first converted to methyl esters with methanolic HCl, a procedure that reduces the polarity of the resulting ATZ derivative of dimethyl-Gla and so greatly improves its extraction from the polybrene-treated glass fiber filter. After conversion to the PTH derivative in methanolic HCl, the resulting dimethyl ester of PTH Gla can be identified directly by a simple modification of the standard HPLC program for the separation of PTH derivatives. This methylation procedure can be used to identify Gla residues in proteins bound to PVDF membranes, as we demonstrate for matrix Gla protein and prothrombin, and to evaluate directly the degree of partial gamma-carboxylation at given glutamic acid residues, as we demonstrate for the 50% gamma-carboxylation of residue 17 in human bone Gla protein.  相似文献   

11.
Thrombin cleaves protein S at arginine residues 52 and 70 resulting in loss of cofactor activity and reduced Ca2+ ion binding. After thrombin cleavage the NH2-terminal region containing gamma-carboxyglutamic acid (Gla) is linked to the large COOH-terminal fragment by a disulfide bond. Measurements of the rate of disulfide bond reduction by thioredoxin in intact protein S showed that the disulfide bonds are largely inaccessible to thioredoxin in the presence of Ca2+ ions, whereas in the presence of EDTA apparently all of the disulfide bonds are rapidly reduced. Probing the reactivity of the disulfide bonds in thrombin-modified proteins indicated that the thrombin cleavage induces a conformational change in the protein. After thrombin cleavage of protein S, the domain containing gamma-carboxyglutamic acid could be removed by selective reduction with thioredoxin followed by alkylation of the sulfhydryl groups. Ca2+ ion binding was compared in intact protein S, thrombin-modified protein S, and Gla domainless protein S. The intact protein S bound several Ca2+ ions, and the binding was not saturable. Thrombin-modified protein S, whether intact or with the Gla domain removed by selective reduction, bound two to three Ca2+ ions with a KD of 15-20 microM. The Gla domain in thrombin-modified protein S thus does not contribute significantly to the high affinity Ca2+ ion binding. Thrombin cleavage of protein S may be of physiological importance in the regulation of blood coagulation.  相似文献   

12.
A high affinity calcium binding site that is independent of the gamma-carboxyglutamic acid-rich amino-terminal region, has been demonstrated in bovine protein C, as well as in the other vitamin K-dependent proteins (except prothrombin) involved in blood coagulation. gamma-Carboxyglutamic acid-independent calcium binding in protein C is required for its rapid activation by the thrombin-thrombomodulin complex. We have now isolated a Ca2+-binding fragment from a tryptic digest of bovine protein C. The isolated fragment contains the two domains that are homologous to the epidermal growth factor precursor from the light chain of protein C, and a small disulfide bound peptide derived from the heavy chain. The isolated fragment bound 1 mol of Ca2+/mol of protein with a dissociation constant (Kd) of approximately 1 x 10(-4) M. This is similar to the Kd previously determined for binding of a single Ca2+ ion to protein C lacking the gamma-carboxyglutamic acid region. Immunochemical evidence indicated that Ca2+ binding induced a conformational change both in protein C lacking the gamma-carboxyglutamic acid region and in the isolated fragment.  相似文献   

13.
The role of gamma-carboxyglutamic acid in prothrombin has been examined using partially carboxylated variant prothrombins isolated from a person with a hereditary defect in vitamin K-dependent carboxylation. These species differ in gamma-carboxyglutamic acid content, distribution, and function, as monitored by metal binding properties, conformational transitions, phospholipid binding, and calcium-dependent coagulant activity (Borowski, M., Furie, B. C., Goldsmith, G. H., and Furie, B. (1985) J. Biol. Chem. 260, 9258-9264). The distribution of gamma-carboxyglutamic acids in the variant prothrombin species was determined by specific tritium incorporation into gamma-carboxyglutamic acid residues, thermal decarboxylation, and automated Edman degradation. gamma-Carboxyglutamic acid residues in the partially carboxylated prothrombins were identified by the assay of tritium in the resultant glutamic acid residues in the acarboxyprothrombins. The results indicate that variant prothrombins 1-3 are nearly homogeneous populations of partially carboxylated prothrombins. The ability of prothrombin to undergo a metal-induced conformational change and to bind to phospholipid vesicles correlated closely to the presence of a gamma-carboxyglutamic acid at residue 16. This residue is likely involved in the formation of a critical high affinity metal-binding site, possibly formed by Gla 16 and Gla 25 and/or Gla 26. A second high affinity metal-binding site, present in all of the variant prothrombin species, is defined, as an upper limit, by Gla 6, Gla 14, Gla 19, and Gla 20. This region is likely responsible for the interaction of certain of the conformation-specific antibodies to the metal-stabilized conformer of prothrombin.  相似文献   

14.
The crystallographic structure of bovine prothrombin fragment 1 bound with calcium ions was used to construct the corresponding human prothrombin structure (hf1/Ca). The model structure was refined by molecular dynamics to estimate the average solution structure. Accommodation of long-range ionic forces was essential to reach a stable solution structure. The gamma-carboxyglutamic acid (Gla) domain and the kringle domain of hf1/Ca independently equilibrated. Likewise, the hydrogen bond network and the calcium ion coordinations were well preserved. A discussion of the phospholipid binding of the vitamin K-dependent coagulation proteins in the context of the structure and mutational data of the Gla domain is presented.  相似文献   

15.
The staphylococcal superantigen-like protein (SSL) family is composed of 14 exoproteins sharing structural similarity with superantigens but no superantigenic activity. Target proteins of four SSLs have been identified to be involved in host immune responses. However, the counterparts of other SSLs have been functionally uncharacterized. In this study, we have identified porcine plasma prothrombin as SSL10-binding protein by affinity purification using SSL10-conjugated Sepharose. The resin recovered the prodomain of prothrombin (fragment 1 + 2) as well as factor Xa in pull-down analysis. The equilibrium dissociation constant between SSL10 and prothrombin was 1.36 × 10−7 m in surface plasmon resonance analysis. On the other hand, the resin failed to recover γ-carboxyglutamic acid (Gla) domain-less coagulation factors and prothrombin from warfarin-treated mice, suggesting that the Gla domain of the coagulation factors is essential for the interaction. SSL10 prolonged plasma clotting induced by the addition of Ca2+ and factor Xa. SSL10 did not affect the protease activity of thrombin but inhibited the generation of thrombin activity in recalcified plasma. S. aureus produces coagulase that non-enzymatically activates prothrombin. SSL10 attenuated clotting induced by coagulase, but the inhibitory effect was weaker than that on physiological clotting, and SSL10 did not inhibit protease activity of staphylothrombin, the complex of prothrombin with coagulase. These results indicate that SSL10 inhibits blood coagulation by interfering with activation of coagulation cascade via binding to the Gla domain of coagulation factor but not by directly inhibiting thrombin activity. This is the first finding that the bacterial protein inhibits blood coagulation via targeting the Gla domain of coagulation factors.  相似文献   

16.
The vitamin K-dependent gamma-glutamyl carboxylase catalyzes the modification of specific glutamates in a number of proteins required for blood coagulation and associated with bone and calcium homeostasis. All known vitamin K-dependent proteins possess a conserved eighteen-amino acid propeptide sequence that is the primary binding site for the carboxylase. We compared the relative affinities of synthetic propeptides of nine human vitamin K-dependent proteins by determining the inhibition constants (Ki) toward a factor IX propeptide/gamma-carboxyglutamic acid domain substrate. The Ki values for six of the propeptides (factor X, matrix Gla protein, factor VII, factor IX, PRGP1, and protein S) were between 2-35 nM, with the factor X propeptide having the tightest affinity. In contrast, the inhibition constants for the propeptides of prothrombin and protein C are approximately 100-fold weaker than the factor X propeptide. The propeptide of bone Gla protein demonstrates severely impaired carboxylase binding with an inhibition constant of at least 200,000-fold weaker than the factor X propeptide. This study demonstrates that the affinities of the propeptides of the vitamin K-dependent proteins vary over a considerable range; this may have important physiological consequences in the levels of vitamin K-dependent proteins and the biochemical mechanism by which these substrates are modified by the carboxylase.  相似文献   

17.
Decarboxylation of bovine prothrombin fragment 1 and prothrombin   总被引:2,自引:0,他引:2  
P M Tuhy  J W Bloom  K G Mann 《Biochemistry》1979,18(26):5842-5848
Bovine prothrombin fragment 1 and prothrombin undergo decarboxylation of their gamma-carboxyglutamic acid residues when the lyophilized proteins are heated in vacuo at 110 degrees C for several hours. The fully decarboxylated fragment 1 product has lost its barium-binding ability as well as the calcium-binding function which causes fluorescence quenching in the presence of 2 mM Ca2+. There is no sign of secondary structure alteration in solution upon analysis by fluorescence emission and circular dichroic spectroscopy. A family of partially decarboxylated fragment 1 species generated by heating for shorter periods shows that the initial decrease in calcium-binding ability occurs almost twice as rapidly as the loss of gamma-carboxyglutamic acid. This is consistent with the idea that differential functions can be ascribed to the 10 gamma-carboxyglutamic acid residues in fragment 1, including both high- and low-affinity metal ion binding sites. Prothrombin itself also undergoes total decarboxylation without any apparent alteration in secondary structure. However, in this case the latent thrombin activity is progressively diminished during the heating process in terms of both clotting activity and hydrolysis of the amide substrate H-D-Phe-Pip-Arg-pNA. The present results indicate that in vitro decarboxylation of gamma-carboxyglutamic acid in dried proteins is useful for analyzing the detailed calcium-binding proteins of vitamin K dependent coagulation factors.  相似文献   

18.
Reconstitution of rabbit thrombomodulin into phospholipid vesicles   总被引:9,自引:0,他引:9  
The influence of phospholipid on thrombin-thrombomodulin-catalyzed activation of protein C has been studied by incorporating thrombomodulin into vesicles by dialysis from octyl glucoside-phospholipid mixtures. Thrombomodulin was incorporated into vesicles ranging from neutral (100% phosphatidylcholine) to highly charged (30% phosphatidylserine and 70% phosphatidylcholine). Thrombomodulin is randomly oriented in vesicles of different phospholipid composition. Incorporation of thrombomodulin into phosphatidylcholine, with or without phosphatidylserine, alters the Ca2+ concentration dependence of protein C activation. Soluble thrombomodulin showed a half-maximal rate of activation at 580 microM Ca2+, whereas half-maximal rates of activation of liposome-reconstituted thrombomodulin were obtained between 500 microM Ca2+ and 2 mM Ca2+, depending on the composition (protein:phospholipid) of the liposomes. The Ca2+ dependence of protein C activation fits a simple hyperbola for the soluble activator, while the Ca2+ dependence of the membrane-associated complex is distinctly sigmoidal with a Hill coefficient greater than 2.4. In contrast, the Ca2+ dependence of gamma-carboxyglutamic acid (Gla) domainless protein C activation is unchanged by membrane reconstitution (1/2 max = 53 +/- 10 microM) and fits a simple rectangular hyperbola. Incorporation of thrombomodulin into pure phosphatidylcholine vesicles reduces the Km for protein C from 7.6 +/- 2 to 0.7 +/- 0.2 microM. Increasing phosphatidylserine to 20% decreased the Km for protein C further to 0.1 +/- 0.02 microM. Membrane incorporation has no influence on the activation of protein C from which the Gla residues are removed proteolytically (Km = 6.4 +/- 0.5 microM). The Km for protein C observed on endothelial cells is more similar to the Km observed when thrombomodulin (TM) is incorporated into pure phosphatidylcholine vesicles than into negatively charged vesicles, suggesting that the protein C-binding site on endothelial cells does not involve negatively charged phospholipids. In support of this concept, we observed that prothrombin and fragment 1, which bind to negatively charged phospholipids, do not inhibit protein C activation on endothelial cells or TM incorporated into phosphatidylcholine vesicles, but do inhibit when TM is incorporated into phosphatidylcholine:phosphatidylserine vesicles. These studies suggest that neutral phospholipids lead to exposure of a site, probably on thrombomodulin, capable of recognizing the Gla domain of protein C.  相似文献   

19.
The present study investigates the unique contribution of the NH2-terminal 33 residues of prothrombin, the gamma-carboxyglutamic acid (Gla) domain, to the Ca(II) and phospholipid-binding properties of prothrombin. Two Gla domain peptides, 1-42 and 1-45, produced by chymotryptic cleavage of prothrombin fragment 1 (residues 1-156 of the amino terminus of bovine prothrombin) and isolated by anion-exchange chromatography were utilized to characterize the Gla domain of prothrombin. This investigation utilized several experimental approaches to examine the properties of the Gla domain peptides. These studies were somewhat hampered by the metal ion-induced insolubility of the peptides. However, the 1-45 peptide was specifically radioiodinated, which facilitated the study of this peptide at low concentrations. In contrast to prothrombin fragment 1, the intrinsic fluorescence of both 1-42 and 1-45 was not quenched upon the addition of 1 mM Ca(II) or any concentration of Mg(II). Equilibrium dialysis studies revealed that the 1-42 peptide bound three Ca(II) ions noncooperatively, whereas fragment 1 binds seven Ca(II) ions in a positive cooperative manner. Ca(II)-promoted conformational changes are observed by comparison of electrophoretic mobility changes in the presence of increasing Ca(II) concentrations. Prothrombin, fragment 1, and the Gla domain peptides 1-42 and 1-45 exhibited similar electrophoretic mobility behavior in the presence of Ca(II) ions. The radiolabeled 1-45 peptide was found to comigrate with phospholipid vesicles on gel permeation chromatography in the presence of Ca(II). Fragment 1 was shown to inhibit this Ca(II)-dependent phospholipid binding of 1-45, demonstrating that the 1-45 peptide does possess the necessary phospholipid-binding structure. Furthermore, a metal ion-dependent conformational monoclonal antibody, F9.29, was inhibited from binding fragment 1 by the 1-42 peptide.  相似文献   

20.
Vitamin K-dependent protein S is an anticoagulant plasma protein functioning as a cofactor to activated protein C in the degradation of coagulation factors Va and VIIIa. To determine which regions in protein S are important for its cofactor activity, we have raised and characterized a large panel of monoclonal antibodies against human protein S. Several of the antibodies were directed against Ca2(+)-dependent epitopes, and they were found to be located either in the domain containing gamma-carboxyglutamic acid (Gla), the thrombin-sensitive region, or in the first epidermal growth factor (EGF)-like domain. The first two types of epitopes were exposed at approximately 1 mM Ca2+, whereas the epitope(s) in the EGF-like domains required less than 1 microM Ca2+, suggesting the presence of one or more high affinity Ca2(+)-binding site(s). The antibodies, as well as their Fab' fragments, against all three types of Ca2(+)-dependent epitopes efficiently inhibited the activated protein C cofactor function of protein S, but through different mechanisms. The antibodies against the Gla domain exerted their effects through inhibition of protein S binding to negatively charged phospholipid. Fab'-fragments of antibodies against the thrombin-sensitive region and the first EGF-like domain were the most potent inhibitors of the activated protein C cofactor function but did not inhibit phospholipid binding of protein S. In conclusion, we have identified the domains in protein S that are important for the activated protein C cofactor activity. The Gla domain is instrumental in the binding of protein S to phospholipid, whereas the thrombin-sensitive region and the first EGF-like domain may be directly involved in protein-protein interactions on the phospholipid surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号