首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because of its essential role in HIV replication and lack of human counterpart, HIV integrase is an attractive target for the development of novel anti-AIDS agents. Among the recently developed integrase inhibitors, only the alpha,gamma-diketo acid (DKA) compounds were biologically validated as potent and selective integrase inhibitors. The general structure of DKAs contains a diketo acid moiety as the Mg(2+) chelating pharmacophore, and an adjacent aryl group to provide selectivity. Numerous structure-activity relationship (SAR) studies on DKAs have been conducted, which generally involved substituting the carboxylate group or the aryl group. Our objective was to investigate the SARs of the DKA molecule by incorporating a purine ring in the aryl moiety and replacing the labile diketo acid moiety with other divalent metal (Me(2+)) chelating ligands. A series of amide substituted purine derivatives were synthesized via palladium-catalyzed amidation reactions, and their biological activities against HIV integrase were evaluated. These purine derivatives showed anti-integrase activity at low micromolar range. The biological results indicated that the type of Me(2+) ligands, two-point ligand picolinamide or three-point ligand 8-hydroxy-quinoline-7-carboxamide, affected inhibitory potency depending on the substitution position of the para-fluorobenzyl group. The C(6)-,C(8)-dipicolinamide substituted purine (32) exhibited the best potency among this series.  相似文献   

2.
A new series of phenanthridinone derivatives, and diketo acid analogs, as well as related phenanthrene and anthracene diketo acids have been synthesized and evaluated as HIV integrase (IN) inhibitors. Several new beta-diketo acid analogs with the phenanthridinone scaffold replaced by phenanthrene, anthracene or pyrene exhibited the highest IN inhibitory potency. There is a general selectivity against the integrase strand transfer step. The most potent IN was 2,4-dioxo-4-phenanthren-9-yl-butyric acid (27f) with an IC(50) of 0.38microM against integrase strand transfer. The phenanthrene diketo acids 27d-f were more potent (IC(50)=2.7-0.38microM) than the corresponding phenanthridinone diketo acid 16 (IC(50)=65microM), suggesting that the polar amide bridge in the phenanthridinone system decreases inhibitory activity relative to the more lipophilic phenanthrene system. This might have to do with the possible binding of the aryl group of the compounds binding to a lipophilic pocket at the integrase active site as suggested by the docking simulations. Molecular modeling also suggested that effectiveness of chelation of the active site Mg(2+) contributes to IN inhibitory potency. Finally, some of the potent compounds inhibited HIV-1 replication in human peripheral blood mononuclear cells (PBMC) with EC(50) down to 8microM for phenanthrene-3-(2,4-dioxo)butyric acid (27d), with a selectivity index of 10 against PBMCs.  相似文献   

3.
4.
The diketo acid (DKA) class of HIV-1 integrase inhibitors are thought to function by chelating divalent metal ions within the enzyme catalytic center. However, differences in mutations conferring resistance among sub-families of DKA inhibitors suggest that multiple binding orientations may exist. In order to facilitate identification of DKA-binding sites, biotin-tagged biphenyl ketone-containing 2,4-dioxobutanoic acids were prepared as DKA photoaffinity probes. Introduction of biotin was obtained by means of Huisgen [3+2] cycloaddition 'click chemistry.' Two photoprobes, 5a and 5b, were prepared bearing short and long linker segments, respectively, between the biotin and DKA nucleus. The greatest inhibitory potency was shown by 5b, which inhibited 3'-processing and strand transfer reactions with IC50 values of > 333 microM and 12.4 microM, respectively. In cross-linking assays designed to measure disruption of substrate DNA binding, the photoprobes behaved similarly to a reference DKA inhibitor. Analogues 5a and 5b represent novel photoaffinity ligands, which may be useful in clarifying the HIV-1 binding interactions of DKA inhibitors.  相似文献   

5.
Crayfish glutamic acid decarboxylase (GAD) is inhibited by some aliphatic carboxylic acid analogs of glutamate and gamma-amino-n-butyric acid (GABA). Variations in the length of the carbon skeleton, substitution of a keto for a methylene group, replacement of the carboxyl group or attachment of a bulky basic moiety to the amino terminus of GABA all lead to a drastic reduction in its inhibitory activity. Substitution of a methyl group for the amino group of GABA is a permissible alteration which does not reduce the inhibitory potency. Some structural analogs of glutamate are inhibitory also, particularly if they possess a comparable carbon skeleton and a keto group in the alpha position or a sulfhydryl group. Most of the sulfhydryl analogs are significantly more potent as inhibitors than the corresponding compounds in which the SH group is replaced by an H atom.  相似文献   

6.
Four new analogs of 28-homocastasterone have been synthesized and completely characterized for the first time from stigmasterol. (22R, 23R,24S)-3beta-acetoxy-22,23-dihydroxy-5alpha-stigmastan+ ++-6-one (17), (22R,23R,24S)-3beta-bromo-22,23-dihydroxy-5alpha-stigmast an-6-one (18), (22R,23R,24S)-3beta-acetoxy-5,22, 23-trihydroxy-5alpha-stigmastan-6-one (20), and (22R,23R, 24S)-3beta-bromo-5,22,23-trihydroxy-5alpha-stigmastan-6-one (21), were obtained through a synthetic route based on regioselective Delta(5) epoxidation. Compounds 17 and 18, bearing a 5alphaH moiety, were prepared through a reductive opening of the 5beta,6beta epoxy precursor, and compounds 20 and 21, analogs with a 5alphaOH moiety were obtained by hydrolytic opening of a mixture of 5alpha,6alpha and 5beta,6beta epoxy precursors. Known compounds 19 and 22 were also obtained following the described synthetic routes, respectively. The new compounds were tested with the traditional auxin-like bioassay for brassinosteroids with 19 and 22 as standards. All compounds were comparatively evaluated for their inhibitory effect on the replication of DNA (HSV-1) virus.  相似文献   

7.
We have identified dihydroxythiophenes (DHT) as a novel series of human immunodeficiency virus type 1 (HIV-1) integrase inhibitors with broad antiviral activities against different HIV isolates in vitro. DHT were discovered in a biochemical integrase high-throughput screen searching for inhibitors of the strand transfer reaction of HIV-1 integrase. DHT are selective inhibitors of integrase that do not interfere with virus entry, as shown by the inhibition of a vesicular stomatitis virus G-pseudotyped retroviral system. Moreover, in quantitative real-time PCR experiments, no effect on the synthesis of viral cDNA could be detected but rather an increase in the accumulation of 2-long-terminal-repeat cycles was detected. This suggests that the integration of viral cDNA is blocked. Molecular modeling and the structure activity relationship of DHT demonstrate that our compound fits into a two-metal-binding motif that has been suggested as the essential pharmacophore for diketo acid (DKA)-like strand transfer inhibitors (Grobler et al., Proc. Natl. Acad. Sci. USA 99:6661-6666, 2002.). This notion is supported by the profiling of DHT on retroviral vectors carrying published resistance mutations for DKA-like inhibitors where DHT showed partial cross-resistance. This suggests that DHT bind to a common site in the catalytic center of integrase, albeit with an altered binding mode. Taken together, our findings indicate that DHT are novel selective strand transfer inhibitors of integrase with a pharmacophore homologous to DKA-like inhibitors.  相似文献   

8.
A number of cytokinin analogs containing modifications in the heterocyclic moiety were prepared. These compounds were tested for activity as cytokinins and anticytokinins in the tabacco bioassay and the results were used to determine whether any position(s) of the heterocyclic nucleus of cytokinins may require derivatization as part of an over-all "activation" process. 3-substituted 4-alkylaminopyrazolo [3,4-d]pyrimidines and 4-alkylaminopyrrolo[2,3-d]pyrimidines, for example, have (substituted) carbon rather than nitrogen atoms at positions 3 and 5, respectively (analogous to position 7 in purines) and would be predicted to be metabolically stable at these positions. The finding that these compounds had cytokinin activity suggested that modification at the metabolically stable positions. The finding that these compounds had cytokinin activity suggested that modification at the metabolically stable position, and by extension at position 7 in cytokinin analogues which are purines, is not a prerequisite for the expression of cytokinin activity. Similar consideration of other heterocyclic analogs which have cytokinin activity suggests that the active form of a cytokinin can be the exogenous compound itself. Certain structural analogs of cytokinins were found to inhibit the growth of tobacco callus promoted by 6-(3-methyl-2-butenylamino)purine. These compounds were studied as potential cytokinin antagonists, i.e. having activity analogous to the 7-alkylamino-3-methylpyrazolo[4,3-d]pyrimidines (Hecht, S. M., 2068-2610; Skoog, F., Schmitz, R.Y., Hecht, S.M., and Bock, R. M. (1973) Phytochemistry 12, 25-37). The activity of these compounds is discussed and criteria are proposed to distinguish between those species which are specific anticytokinins and those which otherwise inhibit growth.  相似文献   

9.
The insertion of viral DNA into the host chromosome is an essential step in the replication of HIV-1, and is carried out by an enzyme, HIV-1 integrase (IN). Since the latter has no human cellular counterpart, it is an attractive target for antiviral drug design. Several IN inhibitors having activities in the micromolar range have been reported to date. However, no clinically useful inhibitors have yet been developed. Recently reported diketo acids represent a novel and selective class of IN inhibitors. These are the only class which appear to selectively target integrase and two of the inhibitors, L-708,906 and L-731,988, are the most potent inhibitors of preintegration complexes described to date.The X-ray crystal structure of the IN catalytic domain complexed with a diketo acid derivative inhibitor, 5CITEP, has recently been determined. Although the structure is of great value as a platform for drug design, experimental data suggest that crystal packing effects influence the observed inhibitor position. This has been confirmed by computational docking studies using the latest version (3.0) of the AutoDock program, which has been shown to give results largely consistent with available experimental data. Using AutoDock 3.0 and SYBYL6.6 we have modeled the complexes of IN with the diketo acid inhibitors so as to identify the enzyme binding site. In the quest for novel, potent and selective small molecule inhibitors, we present here a new approach to peptide inhibitor design using a, b- unsaturated (dehydro) residues, which confer a unique conformation on a peptide sequence. Based on the above models, we selected a tetrapeptide sequence containing a dehydro-Phe residue, which was found to have an open conformation as ascertained from its X-ray crystal structure. Docking results on this peptide led us to propose a modification at the C-terminal end. The modified peptide was found to dock in a similar position as the diketo acid inhibitors and was predicted to have a comparable potency.  相似文献   

10.
Three new types of aryl diketo acid (ADK) isosteres were designed by conversion of the biologically labile 1,3-diketo unit into heteroaromatic motif such as isoxazole, isothiazole, or 1H-pyrazole to improve the physicochemical property of ADK-based HIV-1 integrase (IN) inhibitors. The synthesis of the heteroaromatic carboxylic acids was established by employing phenyl beta-diketoester or benzaldehyde as the starting material and 1,3-dipolar cycloaddition as the key reaction. Of the compounds tested, the 3-benzyloxyphenyl-substituted isoxazole carboxylic acid displayed the best IN inhibitory and antiviral activities, with N-hydroxylamidation enhancing the in vitro and in vivo potency. These findings are important for further optimization of ADK-based IN inhibitors.  相似文献   

11.
A series of heterocyclic pyrimidinedione-based HIV-1 integrase inhibitors was prepared and screened for activity against purified integrase enzyme and/or viruses modified with the following mutations within integrase: Q148R, Q148H/G140S and N155H. These are mutations that result in resistance to the first generation integrase inhibitors raltegravir and elvitegravir. Based on consideration of drug-target interactions, an approach was undertaken to replace the amide moiety of the first generation pyrimidinedione inhibitor with azole heterocycles that could retain potency against these key resistance mutations. An imidazole moiety was found to be the optimal amide substitute and the observed activity was rationalized with the use of calculated properties and modeling. Rat pharmacokinetic (PK) studies of the lead imidazole compounds demonstrated moderate clearance and moderate exposure.  相似文献   

12.
Aryl diketo acids (ADKs) represent an important new class of HIV-1 integrase (IN) inhibitors. In order to facilitate examination of the structural basis underlying IN?ADK interaction, biphenyl ketone and phenyl azide photophores were incorporated into ADK structures. Of particular note is the novel dual utilization of azide and phenyketone moieties for both enzyme recognition and for crosslinking. The resulting analogues maintained low micromolar inhibitory potency against IN in recombinant in vitro assays. These potential HIV-1 integrase photoaffinity labels may provide useful tools for studying enzyme interactions of the ADK inhibitor class.  相似文献   

13.
Dissecting Tn5 transposition using HIV-1 integrase diketoacid inhibitors   总被引:1,自引:0,他引:1  
Czyz A  Stillmock KA  Hazuda DJ  Reznikoff WS 《Biochemistry》2007,46(38):10776-10789
Diketoacid (DKA) compounds have been shown to inhibit HIV-1 integrase by a mechanism that involves sequestration of the active site metals. Because HIV-1 integrase and Tn5 transposase have similar active site architectures and catalytic mechanisms, we investigated whether DKA analogues would inhibit Tn5 transposase activity and provide a model system to explore the mechanisms of action of these inhibitors. A screen of several hundred DKA analogues identified several with activity against Tn5 Tnp. Six DKA inhibitors used in this study manifested a variety of effects on different transposition steps suggesting that different analogues may have different binding contacts with transposase. All DKA compounds inhibited paired end complex (PEC) formation in which the nucleoprotein complex required for catalysis is assembled. Dissociation of PECs by some DKA compounds indicates that these inhibitors can decrease PEC stability. Four DKA compounds inhibited the two cleavage steps releasing transposon DNA from flanking DNA, and one of these four compounds preferentially inhibited the second cleavage step. The differential effect of this inhibitor on the second cleavage event indicates that cleavage of the two transposon-donor DNA boundaries is a sequential process requiring a conformational change. The requirement for a conformational change between cleavage events was also demonstrated by the inability of transposase to perform second cleavage at 25 degrees C. Finally, all six compounds inhibit strand transfer, the final step of Tn5 transposition. Two of the compounds that inhibited strand transfer have no effect on DNA cleavage. The strand transfer inhibition properties of various DKA compounds was sensitive to the structure of the 5'-non-transferred strand, suggesting that these compounds bind in or near the transposase active site. Other results that probe compound binding sites include the effects of active site mutations and donor DNA on DKA compound inhibition activities. Thus, DKA inhibitors will provide an important set of tools to investigate the mechanism of action of transposases and integrases.  相似文献   

14.
HIV-1 integrase (IN) is an important target in the development of drugs against the AIDS virus. Drug design based on the structure of IN was markedly hampered due to the lack of three-dimensional structure information of HIV-1 IN-viral DNA complex. The prototype foamy virus (PFV) IN has a highly functional and structural homology with HIV-1 IN. Recently, the X-ray crystal complex structure of PFV IN with its cognate viral DNA has been obtained. In this study, both Gaussian network model (GNM) and anisotropy network model (ANM) have been applied to comparatively investigate the motion modes of PFV DNA-free and DNA-bound IN. The results show that the motion mode of PFV IN has only a slight change after binding with DNA. The motion of this enzyme is in favor of association with DNA, and the binding ability is determined by its intrinsic structural topology. Molecular docking experiments were performed to gain the binding modes of a series of diketo acid (DKA) inhibitors with PFV IN obtained from ANM, from which the dependability of PFV IN-DNA used in the drug screen for strand transfer (ST) inhibitors was confirmed. It is also found that the functional groups of keto-enol, bis-diketo, tetrazole and azido play a key role in aiding the recognition of viral DNA, and thus finally increase the inhibition capability for the corresponding DKA inhibitor. Our study provides some theoretical information and helps to design anti-AIDS drug based on the structure of IN.  相似文献   

15.
The integrin alpha(v)beta(3) is expressed in a number of cell types and is thought to play a major role in several pathological conditions. Various small molecules that inhibit the integrin have been shown to suppress tumor growth and retinal angiogenesis. The tripeptide Arg-Gly-Asp (RGD), a common binding motif in several ligands that bind to alpha(v)beta(3), has been depeptidized and optimized in our efforts toward discovering a small molecule inhibitor. We recently disclosed the synthesis and biological activity of several small molecules that did not contain any peptide bond and mimic the tripeptide RGD. The phenethyl group in one of the lead compounds was successfully replaced with a cyclopropyl moiety. The new lead compound was optimized for potency, selectivity, and for its ADME properties. We describe herein the discovery, synthesis, and optimization of cyclopropyl containing analogs that are potent and selective inhibitors of alpha(v)beta(3).  相似文献   

16.
26-Oxygenated derivatives of delta 8(14)-15-ketosterols have been synthesized from (25R)-3 beta,26-diacetoxy-5 alpha-cholest-8(14)-en-15-one (IX) as part of a program to prepare potential metabolites and analogs of 3 beta-hydroxy-5 alpha-cholest-8(14)-en-15-one (I), a potent regulator of cholesterol metabolism. Partial hydrolysis of IX gave a mixture, from which the 3 beta,26-diol II and the 26-acetate (XI) and 3 beta-acetate (X) monoesters were isolated. Mitsunobu reaction of XI followed by hydrolysis gave (25R)-3 alpha,26-dihydroxy-5 alpha-cholest-8(14)-en-15-one (VI). Oxidation of XI with pyridinium chlorochromate followed by hydrolysis of the acetate gave (25R)-26-hydroxy-5 alpha-cholest-8(14)-ene-3,15-dione (VII). Oxidation of X with Jones reagent followed by hydrolysis of the acetate gave (25R)-3 beta-hydroxy-15-keto-5 alpha-cholest-8(14)-en-26-oic acid (IVa). Jones oxidation of II gave (25R)-3,15-diketo-5 alpha-cholest-8(14)-en-26-oic acid (VII). 1H and 13C nuclear magnetic resonance assignments and analyses of mass spectral fragmentation data are presented for each of the new compounds and their derivatives. The 3,15-diketone VII was found to be highly active in lowering the levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in CHO-K1 cells, with a potency comparable to that of I. In contrast, 3 alpha,26-diol VI was less potent than I or VII. The two carboxylic acid analogs IVa and VIII were considerably less potent than VI in lowering the levels of HMG-CoA reductase activity.  相似文献   

17.
Through chelation of the metal ions at the enzyme active site, 1,3-diketoacids (DKAs) show potent inhibition of viral enzymes such as HIV integrase and HCV NS5B. In order to optimize the antiviral activity of the DKAs, structural modification of their metal-binding units, keto-enol acids or monoketo acids, have been actively performed. In this study, we proposed 3-O-arylmethylgalangin 3 as an alternative to ortho-substituted aromatic DKA, a potent inhibitor of HCV NS5B. As a proof-of-concept study, a series of 3-O-arylmethylgalangin derivatives (3a-3r) were prepared and their inhibitory activity against HCV NS5B was estimated. Structure-activity relationship of the 3-O-arylmethylgalangin derivatives was in good accordance with that of the ortho-substituted aromatic DKA series. In particular, two galangin ethers (3g and 3i) completely superimposable with the most potent ortho-substituted aromatic DKA analogue (2) in atom-by-atom fashion showed equipotent inhibitory activity to that of 2. Taken together, this result provides convincing evidence that the 3-O-arylmethylgalangin can successfully mimic the chelating function of the DKA pharmacophore to show potent inhibitory activity against the target enzyme, HCV NS5B.  相似文献   

18.
The two-metal binding model we previously reported as an inhibition mechanism of HIV integrase (HIV IN) produced a new direction in modification of 2-hydroxy-3-heteroaryl acrylic acid inhibitors (HHAAs). Here we present a novel series of HIV IN inhibitors having a 3-hydroxy-1,5-dihydro-pyrrol-2-one moiety (HDPO) as an advanced analog of HHAAs. This cyclic modification of the chelating region of HHAA produces a favorable configuration to coordinate two-metal ions in HIV IN, which consequently gave improvements in not only enzymatic assay but also antiviral cell based assay in many cases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号