首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summer flounder, like most marine fishes studied to date, are stomachless at first feeding, and subsequently acquire gastric function during the process of metamorphosis. Stomach formation is controlled largely by thyroxine (T4). In the present work we sought to understand gastric organogenesis in terms of cell proliferation and its relationship to histological differentiation. The objectives of the study were (1) to obtain a developmental pattern of cell proliferation in the gastric mucosa and to relate that pattern to the progress of gastric differentiation; and (2) to understand the regulatory role of T4 on cell proliferation and histological differentiation by altering the thyroidal status of the developing larvae. We observed that (1) in normally developing larvae, cell proliferation increased by early metamorphic climax (MC), remained high until mid-MC, and decreased to basal levels by late MC; concomitantly, the gastric glands appeared and differentiated in the fundic mucosa, and were complete by late MC; (2) T4 accelerated the differentiation of gastric glands and mucus neck cells, while inhibiting the concomitant increase in cell proliferation observed in controls; and (3) the goitrogen thiourea inhibited both cell proliferation and gastric differentiation compared to controls. These results indicate that T(4) is necessary for the three-fold increase in cell proliferation that occurs in early metamorphic climax, but that high T4 levels promote differentiation at the expense of proliferation. The observed effects would be consistent with the normal, metamorphosis-related increase in whole body T4.  相似文献   

2.
At the end of premetamorphosis, summer flounder Paralichthys dentatus larvae had 84·1% whole-body water content (WBW), which decreased to the lowest levels (8·5%) at the start of metamorphic climax (MC). During mid- and late MC, %WBW was slightly higher (82·1%) then returned to the lowest levels at the juvenile stage. In fish treated with thyroxine (T4-Na salt, 100 ng ml−1) beginning at premetamophosis, %WBW never differed from controls of the same age throughout metamorphosis, despite an earlier start of metamorphic climax and transitional settling behaviour. This suggests that thyroid hormones do not mediate the drop in %WBW which accompanies natural metamorphosis. Thiourea (TU, 30 μg ml−1) treatment of fish over the same period induced a developmental stasis in early MC which was accompanied by initially higher %WBW than controls at 33 days post-hatch, followed by a progressive decrease to abnormally low %WBW by 42 and 45 days post-hatch. Since concurrent treatment with TU+T4 rescued the fish from both the TU-induced developmental stasis and abnormally low %WBW, these findings suggest that thyroid hormones, or thyroid hormone-mediated developmental progression, are necessary for regulating %WBW.  相似文献   

3.
Acute salinity tolerance limits for the estuarine spawning spotted seatrout, Cynoscion nebulosus (Cuvier). were evaluated by examining 18 h survival of larvae in an extensive range of salinity treatments (0 to 56 ppt). Larvae from eggs spawned in two different salinities (24 and 32 ppt) as well as larvae acclimated in hypersaline and brackish waters were compared. Both upper and lower salinity tolerance limits showed an age-linked pattern, decreasing to a minimum tolerance range (6.4 to 42.5 ppt) at age 3 days after hatching (at 28 o C) and increasing to the widest range tolerated (1.9 to 49.8 ppt) on the last day tested (age 9 days). Acclimation to hyposaline conditions was demonstrated by larvae spawned at 32 ppt although significant hypersaline acclimation could not be demonstrated. Altered upper limits to the range tolerated by larvae from different spawning salinities indicated parental and/or early acclimation effects are important. Consistently greater vulnerability to both hyper- and hyposaline conditions at age 3 days after hatching was observed in all tests conducted. Exposures related to the onset of feeding at this time are likely explanations for this reduced tolerance.  相似文献   

4.
Abstract. We studied the effects of brackish water on larval attachment, events of metamorphosis, and juvenile mortality in three colonial ascidian species that live in a Florida coastal lagoon. Eudistoma olivaceum and Eudistoma hepaticum are restricted in their adult distribution to areas of relatively high and constant salinity near inlets, whereas Ecteinascidia turbinata extends more than 20 km into the Indian River, where salinity can be much more variable. In all three species, metamorphosis proceeded more quickly at 33 ppt than at lower salinities. The thresholds for successful metamorphosis differed among species in a manner that corresponded to the adult distributions, with E. turbinata being capable of completing metamorphosis at salinities as low as 22 ppt, E. hepaticum as low as 24 ppt, and E. olivaceum as low as 26 ppt. Larvae of both Eudistoma species delayed settlement in very low salinity water, whereas those of E. turbinata settled very quickly, then failed to complete metamorphosis. Juvenile mortality at salinities lower than 22 ppt was 100% for all three species. Survival in salinities higher than 22 ppt was strongly correlated with salinity in E. olivaceum and E. hepaticum , but not E. turbinata.  相似文献   

5.
Low-salinity adaptability was investigated in a flatfish spotted halibut Verasper variegatus during the period from late metamorphic larvae to early juveniles by a 20-day rearing experiment under different salinity regimes (1, 4, 8, 16 and 32 ppt). Effects of low-salinity on growth and development were examined and the changes in the prolactin (PRL) production level in the pituitary and the gill chloride cell morphology were examined as physiological backgrounds for low salinity adaptation. PRL cells and chloride cells were identified by immunocytochemistry with a specific antiserum for PRL188 and Na+,K+-ATPase. Most of the fish exposed to over 4 ppt survived for 20 days, but all the fish exposed to 1 ppt died within 5 days. Fish kept in intermediate salinities (8, 16 ppt) grew significantly better than those in the control group (32 ppt). Fish exposed to 4 ppt attained almost the same body length as the control group at 20 days after transfer, although these fish showed an abnormally dark body color as well as delayed development. These results suggested that spotted halibut has a high-adaptability to low-salinity environments and prefers an intermediate salinity near iso-osmolality (about 12 ppt) from the late metamorphic larval stage, but does not completely adapt to a hypoosmotic of 4 ppt salinity or less than half of the osmolality. The percentage of PRL-cell volume to pituitary volume was significantly higher at 4 ppt than in the control group. The chloride cells in gill filaments were significantly larger at 4 ppt than in the control group. These results suggest that juveniles could adapt to a low-salinity environment due to the activation of PRL production and enlargement of chloride cells. These laboratory findings suggest that late metamorphic larvae and early juveniles of spotted halibut may utilize a low salinity environment such as estuarine tidal flats or very shallow coastal areas as their nursery grounds in the sea.  相似文献   

6.
MiR-1, miR-133a, and miR-206a have been identified as muscle-specific miRNAs. They play multiple crucial roles in the regulation of muscle development. Here, we show that these miRNAs were differentially expressed during the larval development of flounder, and specifically expressed in skeletal muscle and heart in adult tissues/organs. The expression levels of these miRNAs were significantly changed by thyroid hormone (TH) or thiourea (TU) treatment during metamorphosis from 17 dph (days post hatching) to 42 dph. In addition, the expression levels of MyoD and Myf5 mRNAs markedly increased at 14 dph (pre-metamorphosis) compared to metamorphic stages, and their expression levels are far above the myogenin during larval development. Moreover, these MRFs (myogenic regulatory factors) expression were directly or indirectly regulated by thyroid hormone or thiourea during metamorphosis. All the results suggest that miRNAs and MRFs might be involved in signaling pathway of TH or TU-mediated flounder metamorphosis.  相似文献   

7.
Tolerance limits, at which 50% of larvae could survive high temperature and low salinity for 24 h, were determined for the yolk-sac larvae of Clyde and North Sea herring (Clupea harengus L.), cod (Gadus morhua L.) and flounder (Platichthys flesus L.) during early development and starvation. Clyde and North Sea herring, cod and flounder from hatching to the end of the yolk-sac stage, could withstand 21–23.5 °C, 20.5–23 °C, 15.5–18 °C and 21.5–24°C, respectively. The temperature tolerance was reduced by about 3.5–4 °C for Clyde herring and cod, 4–4.5 °C for North Sea herring and 8–8.5 °C for flounder when the larvae reached the point-of-no-return (PNR, when 50% of larvae, although still alive, are no longer strong enough to feed). The lowest salinity tolerance between hatching and the end of yolk-sac stage was 1–1.5‰ for Clyde and North Sea herring, 2–3‰ for cod and 0–1‰ for flounder. In no instance was there a loss of tolerance to low salinity during starvation. In fact, tolerance improved somewhat until the larvae became moribund. At hatching Clyde and North Sea herring larvae were negatively buoyant with a sinking rate of 0.35–0.4cm · s−1 which steadily decreased until the larvae became moribund. Cod and flounder larvae, however, were positively buoyant at hatching but became progressively less buoyant and, by the end of the yolk-sac stage they were negatively buoyant with a sinking rate of 0.06–0.07 cm · s−1. This sinking rate then decreased slightly until the PNR stage. The low salinity tolerance of all three species varied in a similar fashion to buoyancy.  相似文献   

8.
Summary Histological changes in the pituitary TSH cells and in the thyroid gland of flounder (Paralichthys olivaceus) larvae during spontaneous or artificially induced metamorphosis were studied. Activity of the immunoreactive TSH cells (IrTSH cells) gradually increased during premetamorphosis, reaching the highest level in prometamorphic larvae, and the cells were degranulated in metamorphic climax. The IrTSH cells were most inactive at the post-climax stage. The thyroid gland was morphologically the most active in metamorphic climax when the degranulation occurred in the pituitary IrTSH cells, and appeared inactive at post-climax. A few weeks after metamorphosis, both the IrTSH cells and the thyroid gland appeared to be activated again in the benthic, juvenile flounder. Administration of thyroxine or thiourea revealed negative feedback regulation of the pituitary-thyroid axis in flounder larvae. These results indicate that activation of the pituitary-thyroid axis induces metamorphosis in the flounder.  相似文献   

9.
Behavioural development was compared between two flatfish species (Japanese flounder and spotted halibut) from hatching to settlement (juvenile stage) in order to speculate on the ecology of their early life stages and to provide fundamental knowledge for improving seedling production techniques for stock enhancement. Fish were cultured under identical rearing conditions (500‐L tank maintained at 17.8 ± 0.4°C, 34 ppt, 10L : 14D light regime and an initial stocking density of 20 larvae L?1). Behavioural observations were conducted at about 4‐day intervals from hatching to the juvenile stage. Fish were sampled randomly from the rearing tank, and one fish was transferred into a 250‐ml observation container. Behaviour was video‐recorded for 5 min without food and for an additional 5 min with live feed (rotifer or Artemia). All behavioural data were sorted according to eight developmental stages and compared among developmental stages and between species. The average standard length of the spotted halibut was significantly greater than that of the Japanese flounder in all developmental stages, while the development of Japanese flounder was faster than that of the spotted halibut. For Japanese flounder, feeding, swimming and Ohm‐posture (typical shivering behaviour observed during early life stages in flatfishes) frequency were highest before metamorphosis (mean ± SD; 1.0 ± 2.0 attacks min?1, 24.0 ± 9.6 actions min?1, 1.1 ± 1.1 counts min?1, respectively). Spotted halibut expressed feeding behaviour frequently from the beginning of metamorphosis (3.6 ± 5.2 attacks min?1), had relatively low swimming activity during all developmental stages, and showed a peak of Ohm‐posture frequency during the flexion stage (2.6 ± 1.0 counts min?1).  相似文献   

10.
Flatfish metamorphosis is the most dramatic post-natal developmental event in teleosts. Thyroid hormones (TH), thyroxine (T4) and 3,3??-5??-triiodothyronine (T3) are the necessary and sufficient factors that induce and regulate flatfish metamorphosis. Most of the cellular and molecular action of TH is directed through the binding of T3 to thyroid nuclear receptors bound to promoters with consequent changes in the expression of target genes. The conversion of T4 to T3 and nuclear availability of T3 depends on the expression and activity of a family of 3 selenocysteine deiodinases that activate T4 into T3 or degrade T4 and T3. We have investigated the role of deiodinases in skin and muscle metamorphic changes in halibut. We show that, both at the whole body level and at the cellular level in muscle and skin of the Atlantic halibut (Hippoglossus hippoglossus) during metamorphosis, the coordination between activating (D2) and deactivating (D3) deiodinases expression is strongly correlated with the developmental TH-driven changes. The expression pattern of D2 and D3 in cells of both skin and muscle indicate that TH are necessary for the maintenance of larval metamorphic development and juvenile cell types in these tissues. No break in symmetry occurs in the expression of deiodinases and in metamorphic developmental changes occurring both in trunk skin and muscle. The findings that two of the major tissues in both larvae and juveniles maintain their symmetry throughout metamorphosis suggest that the asymmetric changes occurring during flatfish metamorphosis are restricted to the eye and head region.  相似文献   

11.
12.
The lack of quantitative data on the environmental tolerances of the early life-history stages of invading species hinders estimation of their dispersal rates and establishment ranges in receptor environments. We present data on salinity tolerance for all stages of the ontogenetic larval development of the invading predatory gastropod Rapana venosa, and we propose that salinity tolerance is the dominant response controlling the potential dispersal (=invasion) range of the species into the estuaries of the Atlantic coast of the United States from the current invading epicenter in the southern Chesapeake Bay. All larval stages exhibit 48-h tolerance to salinities as low as 15 ppt with minimal mortality. Below this salinity, survival grades to lower values. Percentage survival of R. venosa veligers was significantly less at 7 ppt than at any other salinity. There were no differences in percentage survival at salinities greater than 16 ppt. We predict that the counterclockwise, gyre-like circulation within the Chesapeake Bay will initially distribute larvae northward along the western side of the DelMarVa peninsula, and eventually to the lower sections of all major subestuaries of the western shore of the Bay. Given the observed salinity tolerances and the potential for dispersal of planktonic larvae by coastal currents, establishment of this animal over a period of decades from Cape Cod to Cape Hatteras is a high probability.  相似文献   

13.
Recent work on a diverse array of echinoderm species has demonstrated, as is true in amphibians, that thyroid hormone (TH) accelerates development to metamorphosis. Interestingly, the feeding larvae of several species of sea urchins seem to obtain TH through their diet of planktonic algae (exogenous source), whereas nonfeeding larvae of the sand dollar Peronella japonica produce TH themselves (endogenous source). Here we examine the effects of TH (thyroxine) and a TH synthesis inhibitor (thiourea) on the development of Dendraster excentricus, a sand dollar with a feeding larva. We report reduced larval skeleton lengths and more rapid development of the juvenile rudiment in the exogenous TH treatments when compared to controls. Also, larvae treated with exogenous TH reached metamorphic competence faster at a significantly reduced juvenile size, representing the greatest reduction in juvenile size ever reported for an echinoid species with feeding larvae. These effects of TH on D. excentricus larval development are strikingly similar to the phenotypically plastic response of D. excentricus larvae reared under high food conditions. We hypothesize that exogenous (algae-derived) TH is the plasticity cue in echinoid larvae, and that the larvae use ingested TH levels as an indicator for larval nutrition, ultimately signaling the attainment of metamorphic competence. Furthermore, our experiments with the TH synthesis inhibitor thiourea indicate that D. excentricus larvae can produce some TH endogenously. Endogenous TH production might, therefore, be a shared feature among sand dollars, facilitating the evolution of nonfeeding larval development in that group. Mounting evidence on the effects of thyroid hormones in echinoderm development suggests life-history models need to incorporate metamorphic hormone effects and the evolution of metamorphic hormone production.  相似文献   

14.
Thyroid hormones (THs), and more precisely the 3,3',5-triiodo-l-thyronine (T(3)) acetic derivative 3,3',5-triiodothyroacetic acid (TRIAC), have been shown to activate metamorphosis in amphioxus. However, it remains unknown whether TRIAC is endogenously synthesized in amphioxus and more generally whether an active TH metabolism is regulating metamorphosis. Here we show that amphioxus naturally produces TRIAC from its precursors T(3) and l-thyroxine (T(4)), supporting its possible role as the active TH in amphioxus larvae. In addition, we show that blocking TH production inhibits metamorphosis and that this effect is compensated by exogenous T(3), suggesting that a peak of TH production is important for advancement of proper metamorphosis. Moreover, several amphioxus genes encoding proteins previously proposed to be involved in the TH signaling pathway display expression profiles correlated with metamorphosis. In particular, thyroid hormone receptor (TR) and deiodinases gene expressions are either up- or down-regulated during metamorphosis and by TH treatments. Overall, these results suggest that an active TH metabolism controls metamorphosis in amphioxus, and that endogenous TH production and metabolism as well as TH-regulated metamorphosis are ancestral in the chordate lineage.  相似文献   

15.
We investigated roles of catecholamines in metamorphosis of the prosobranch gastropod, Crepidula fornicata. Levels of DOPA, norepinephrine (NE) and dopamine (DA) were measured by high-pressure liquid chromatography (HPLC) in competent larvae and juvenile siblings that metamorphosed in response to the natural adult-derived cue or to elevated K+. Competent larvae contained 1.58 +/- 0.26 (S.E.M.) x 10(-2) pmol DOPA, 0.91 +/- 0.45 x 10(-2) pmol NE, and 0.290 +/- 0.087 pmol DA (mean values per microg total protein, n = 4 batches of larvae). Levels of DA per individual were not different between larvae and juvenile siblings; levels of NE were higher in juveniles. The tyrosine hydroxylase (TH) inhibitor alpha-methyl-DL-m-tyrosine (alpha-MMT) depleted DOPA and DA to approximately half of control values without affecting levels of NE. Depletion of DOPA and DA was accompanied by inhibition of metamorphosis in response to the natural cue but not to elevated K+. The dopamine-beta-hydroxylase inhibitor diethyldithiocarbamate (DDTC) induced high frequencies of metamorphosis at concentrations of 0.1-10 microM. In juveniles induced by 10 microM DDTC, levels of both NE and DA averaged approximately 80% of those in control larvae. Catecholamines may function as endogenous regulators of metamorphosis in C. fornicata.  相似文献   

16.
Berried females of Macrobrachium rosenbergii (De Man) from Anuenue stock were allowed to incubate their eggs at three different temperatures (25,29, and 31°C). The newborn larvae were reared in the laboratory from hatch through completion of the metamorphosis to postlarva in 30 combinations of temperature (22–34° C) and salinity (0–34 ppt). Survival and stage attainment rates were observed. Multiple linear regression analysis and response surface methodology were used to estimate the response of larvae to these different temperature and salinity combinations. Dissimilarities in the response of zoeae from the three egg incubation temperatures were found. Larvae from eggs incubated at 25° C during embryonic development showed tolerance to a broader range of temperature and salinity conditions than those incubated at 29 or 31 °C. The response also changed with the ontogeny of the larvae. The zoeae are considered to have undergone acclimation during embryonic development, thus eliciting a different response.  相似文献   

17.
1. The 96-hr lc50 values for juvenile hard clams, Meretrix lusoria, were 328, 392 and 194 μg/l Hg in 10, 20 and 30 ppt salinities at 25 ± 1°C, respectively; for adult hard clams 341 and 140 μg/l Hg in 20 and 30 ppt salinities, respectively.2. Acclimatizing the adult clams to low salinity of 10 ppt lessened the toxicity of mercury. However, juvenile animals appeared to be more sensitive to mercury poisoning after 96 hr exposure in 10 ppt salinity.3. All embryos exposed to 40 μg/l Hg and above died within 30 hr. In the control, 44% of hatched embryos had developed into D-stage larvae, while those exposed to 20 μg/l Hg were still in the trochophore stage. Most of the retarded larvae developed into abnormal forms within 30 hr at 28°C in 15 ppt salinity.4. In order to maintain water quality and protect natural resources, the recommended safe level of mercury is 0.046 (0.039–0.053) μg/l Hg, based on the estimated 30-hr EC50 for the clam embryos, with an application factor of 0.01.  相似文献   

18.
In order to evaluate the early tolerance of Mactra chinensis to salinity, the treatments of salinity gradients and salinity gradual changes were set in this study, and the post growth and development of juveniles were analyzed in recovery experiment, respectively. The result showed that the optimum hatching of zygotes was found at a salinity from 24 to 32, which is narrower than that of larvae (20–32); a slight of low salinity (16–32) will benefit the early growth and development of M. chinensis; at planktonic and creeping stages, low salinity stress (20) was conducive to promoting the growth of juvenile M. chinensis philippi; 4, 48 was the ultimate salinity of M. chinensis; The range of early tolerance of larvae M. chinensis philippi to salinity can be widened through a short period of salinity acclimation.  相似文献   

19.
The effect of constant and fluctuating salinity on larval development and metamorphosis of the sand dollar Dendraster excentricus was investigated in the laboratory. Sand dollar larvae at different stages of development were kept either at 32‰ (controls), exposed to constant low salinity (22‰) throughout development, or exposed to fluctuating salinity (i.e. transferring larvae from 32‰ to 22‰ for 7 days then back to 32‰ for the rest of their development). Larvae exposed to constant low salinity were significantly smaller but developed all larval arms at a slower rate than larvae in all other treatments. Larvae exposed to fluctuating salinity recovered and developed significantly longer larval arms and bigger rudiments than larvae kept at constant low salinity. Larvae exposed to fluctuating salinity produced more juveniles than larvae at constant high salinity (32‰), while those at constant low salinity produced few or no juveniles. Four-arm larvae exposed to fluctuating salinity produced significantly more juveniles than six-arm larvae exposed to the same treatment. Transferring competent 8-arm larvae from 31‰ to 15‰ for 2 days then back to 31‰, induced metamorphosis with juvenile production being significantly higher than for those kept at a constant salinity of 20, 25 and 31‰. This study indicates that a short-term decrease in salinity might induce metamorphosis for this species.  相似文献   

20.
Effects of salinity on the survival, growth, and development of stable fly, Stomoxys calcitrans (L.), were investigated in the laboratory. Larvae failed to develop to pupation when reared in media containing a salinity of 40 parts per thousand (ppt) sodium chloride (NaCl). Maximum salinity supporting larval development equaled the salinity of seawater (34 ppt); the larval LC90 was 24.2 ppt. Deleterious effects of high salinity decreased as larvae matured. Six-day-old larvae reared at a salinity of 34 ppt weighed 79% less than controls, compared with a 36% difference in 9-d-old larvae; by pupation, the difference was only 24%. Salinity did not influence the duration of larval, pupal, or adult stages. Survival of pupae was unimpaired despite a slight increase in number of pupal deformities, and normal adults emerged. Eggs were highly tolerant to saline. They hatched at salinity concentrations lethal to larvae; greater than 50% hatch occurred even when eggs were maintained at 80 ppt NaCl. Sensitivity of larvae to salinities close to that of seawater might be important for control of stable flies inhabiting marine areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号