首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanofiltration (NF) was investigated as an alternative to desalting electrodialysis (ED) and ion exchange for the recovery of ammonium lactate from fermentation broth. Three commercial NF membranes, NF45, NF70, and NTR-729HF, were characterized with 50 mM NaCl, MgSO(4), and glucose solutions. NF45 membrane was selected because it showed the lowest rejection of monovalent ion, the highest rejection of divalent ion, and the highest rejection of nonpolar molecule. Effects of the operating pressure were investigated in a range of 100-400 psig, on the flux, lactate recovery, and glucose and magnesium removal from a real fermentation broth containing about 1.0 M of ammonium lactate. The flux and recovery rate increased linearly with the pressure. However, lactate rejection also increased with the pressure, lowering the recovery yield. More magnesium ions and glucose were rejected as the pressure was increased, and at 400 psig, for example, magnesium ion was almost completely rejected, highlighting the chance of obviating the necessity of ion exchange to remove hardness, by using NF instead of desalting ED. Membrane fouling was not so severe as expected, considering the complex nature and a rather high concentration of the fermentation broth treated.  相似文献   

2.
Equilibrium phase diagrams of the ι-carrageenan/maltodextrin/water system have been established at potassium chloride (KCl) concentrations of 0.1, 0.2, and 0.3 M and 80, 85 and 90°C. All pseudo-binary phase diagrams of ι-carrageenan/maltodextrin mixtures suggested classic segregative phase separation. The binodal was heavily skewed toward the maltodextrin axis. The high asymmetry of the ι-carrageenan/maltodextrin/water phase diagram determined by the phase-volume-ratio method was consistent with the compositional analysis of phase-separated ι-carrageenan/maltodextrin samples and can be explained in terms of the Flory–Huggins interaction parameter, reflecting a higher water-binding ability of the charged ι-carrageenan than neutral maltodextrin. Increasing the concentration of ι-carrageenan-gel-promoting KCl from 0.1 to 0.3 M at 80°C enlarged the two-phase domain, whereas increasing temperature from 80 to 90°C at 0.3 M KCl enhanced biopolymer compatibility. The effects of salt concentration and temperature have been related to the differences in the Flory–Huggins interaction parameters of the two biopolymers with water as well as the helix formation of ι-carrageenan in the presence of KCl through the changes in the slopes of tie lines of phase-separated samples.
Gregory R. Ziegler (Corresponding author)Email:
  相似文献   

3.
Lipase-catalyzed synthesis of isoamyl acetate in hexane at 10–250 MPa at 80°C and 1–100 MPa at 40°C resulted in activation volumes of −12.9 ± 1.7 and −21.6 ± 2.9 cm3 mol−1, respectively. Increasing pressure from 10 to 200 MPa resulted in approximately 10-fold increase in V max at both 40 and 80°C. Pressure increased the K m from 2.4 ± 0.004 to 38 ± 0.78 mM at 40°C. In contrast, at 80°C the pressure did not affect the K m.  相似文献   

4.
People adapt to thermal environments, such as the changing seasons, predominantly by controlling the amount of clothing insulation, usually in the form of the clothing that they wear. The aim of this study was to determine the actual daily clothing insulation on sedentary human subjects across the seasons. Thirteen females and seven males participated in experiments from January to December in a thermal chamber. Adjacent months were grouped in pairs to give six environmental conditions: (1) January/February = 5°C; (2) March/April = 14°C; (3) May/June = 25°C; (4) July/August = 29°C; (5) September/October = 23°C; (6) November/December = 8°C. Humidity(45 ± 5%) and air velocity(0.14 ± 0.01 m/s) were constant across all six experimental conditions. Participants put on their own clothing that allowed them to achieve thermal comfort for each air temperature, and sat for 60 min (1Met). The clothing insulation (clo) required by these participants had a significant relationship with air temperature: insulation was reduced as air temperature increased. The range of clothing insulation for each condition was 1.87–3.14 clo at 5°C(Jan/Feb), 1.62–2.63 clo at 14°C(Mar/Apr), 0.87–1.59 clo at 25°C(May/Jun), 0.4–1.01 clo at 29°C(Jul/Aug), 0.92–1.81 clo at 23°C (Sept/Oct), and 2.12–3.09 clo at 8°C(Nov/Dec) for females, and 1.84–2.90 clo at 5°C, 1.52–1.98 clo at 14°C, 1.04–1.23 clo at 25°C, 0.51–1.30 clo at 29°C, 0.82–1.45 clo at 23°C and 1.96–3.53 clo at 8°C for males. The hypothesis was that thermal insulation of free living clothing worn by sedentary Korean people would vary across seasons. For Korean people, a comfortable air temperature with clothing insulation of 1 clo was approximately 27°C. This is greater than the typical comfort temperature for 1 clo. It was also found that women clearly increased their clothing insulation level of their clothing as winter approached but did not decrease it by the same amount when spring came.  相似文献   

5.
Ion channels selective for chloride ions are present in all biological membranes, where they regulate the cell volume or membrane potential. Various chloride channels from mitochondrial membranes have been described in recent years. The aim of our study was to characterize the effect of stilbene derivatives on single-chloride channel activity in the inner mitochondrial membrane. The measurements were performed after the reconstitution into a planar lipid bilayer of the inner mitochondrial membranes from rat skeletal muscle (SMM), rat brain (BM) and heart (HM) mitochondria. After incorporation in a symmetric 450/450 mM KCl solution (cis/trans), the chloride channels were recorded with a mean conductance of 155 ± 5 pS (rat skeletal muscle) and 120 ± 16 pS (rat brain). The conductances of the chloride channels from the rat heart mitochondria in 250/50 mM KCl (cis/trans) gradient solutions were within the 70–130 pS range. The chloride channels were inhibited by these two stilbene derivatives: 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS). The skeletal muscle mitochondrial chloride channel was blocked after the addition of 1 mM DIDS or SITS, whereas the brain mitochondrial channel was blocked by 300 μM DIDS or SITS. The chloride channel from the rat heart mitochondria was inhibited by 50–100 μM DIDS. The inhibitory effect of DIDS was irreversible. Our results confirm the presence of chloride channels sensitive to stilbene derivatives in the inner mitochondrial membrane from rat skeletal muscle, brain and heart cells.  相似文献   

6.
The snow mold fungus, Sclerotinia borealis, shows optimal growth at 4°C on potato dextrose agar (PDA) and can grow even at subzero temperature. Its mycelial growth was improved on frozen PDA at −1°C and on PDA containing potassium chloride (KCl) (water potential, −4.27 to −0.85 MPa) or d(−) sorbitol (−3.48 to −0.92 MPa). Its optimal growth temperature shifted from 4 to 10°C on PDA amended with KCl or sorbitol, indicating that inherent optimal growth occurs at high temperatures. These results suggest that S. borealis uses concentrated nutrients in the frozen environment and that such physiologic characteristics are critical for the fungus to prevail at subzero temperatures.  相似文献   

7.
Microviscosity of the highly purified plasma membranes isolated from the maturing goat caput, corpus and cauda epididymal sperm, was measured using l,6-diphenyl-l,3,5-hexatriene as the lipophilic probe at varying temperatures (12–42°C). As shown by the Arrhenius plot of the data each of the maturing sperm membranes had two distinct lipid phase transitions in the temperature zones 19–25°C and 34–37°C. The low-temperature transitions for the immature caput- and mature cauda-sperm membranes were noted at 19–20°C, and 24–25°C, respectively, whereas both these membranes showed high temperature transition at 36–37°C. The maturing corpus-sperm membrane had phase transitions at 21–22°C and 35–36°C that were significantly different from those of the immature/mature sperm membranes. The data implicate significant alteration of the sperm membrane structure during epididymal maturation. The phase transition of the mature male gametes at 36–37°C may have a great impact on the subsequent events of the sperm life cycle since the mature spermatozoa that are stored in the epididymis a few degrees below the body temperature, experience higher temperature when ejaculated into the female reproductive tract.  相似文献   

8.
Nitrogen fixation (NF) by alfalfa and nitrogen transfer (NT) from alfalfa to associated timothy was studied under different environmental conditions in controlled growth chambers, using the15N dilution technique. Evidence was obtained of NT from alfalfa to the associated timothy. Conditions that favored NF by alfalfa resulted in an increase in its NT. Of 3 different temperature regimes (25/20, 16/14, and 12/9°C day/night), 16–25/14–20°C was the best range for NF by alfalfa and resulted in the greatest NT. High light intensity (550 uE.m−2.sec−1) and long days (16–20 h) also caused increased NF by alfalfa and benefitting timothy more than in a regime of low light intensity (by shading 50% or 75%) or short days (12/12 or 16/8 h day/night). When the inoculated (Rhizobium meliloti) root systems of plants were kept free from other microorganisms (axenic condition) to minimize possible decomposition of dead tissues, lower NT from alfalfa was observed, especially at later cuts, compared to non-axenic plants. This suggests that both direct excretion and decomposition of dead alfalfa tissues are sources of N benefit from alfalfa to associated timothy. Contribution no 1065 of the Plant Research Centre.  相似文献   

9.
Two experiments were performed to determine how application of the cytokinin benzyladenine (BA) influenced flowering in Doritaenopsis and Phalaenopsis orchid clones. In the first experiment, two vegetative orchid clones growing in 15-cm pots were transferred from a 28°C greenhouse that inhibited flowering to a 23°C greenhouse for flower induction (day 0). A foliar spray (0.2 L m−2) containing BA at 100, 200, or 400 mg L−1 or 25, 50, or 100 mg L−1 each of BA and gibberellins A4 + A7 (BA+GA) was applied on days 0, 7, and 14. Plants treated with BA alone at 200 or 400 mg L−1 had a visible inflorescence 3–9 days earlier and had a mean of 0.7–3.5 more inflorescences and 3–8 more flowers per plant than nontreated plants. The application of BA+GA had no effect on inflorescence number and total flower number at the rates tested. In the second experiment, three orchid clones received a single foliar spray of BA at 200 mg L−1 at six time points relative to time of transfer from 29°C to 23°C (−1, 0, +1, +2, +4, or +6 weeks). A separate group of plants received a BA application at week 0 but was maintained at 29°C. Inflorescence number was greatest in all three orchid clones when plants were treated with BA 1 week after the temperature transfer. Plants that were sprayed with BA and maintained at 29°C did not initiate inflorescences. The promotion of flowering by the application of BA suggests that cytokinins at least partially regulate inflorescence initiation of Doritaenopsis and Phalaenopsis, but its promotion is conditional and BA application cannot completely substitute for an inductive low temperature.  相似文献   

10.
The treatment of acidic (pH 6.5–3), sulfate- (2–3 g/L), Zn- and Cu- (total metal 0–500 mg/L) containing wastewater was studied in a four-stage anaerobic baffled reactor (ABR) at 35 °C for 250 days. Ethanol was supplemented (COD/SO4 2− = 0.67) as carbon and electron source for sulfate reducing bacteria. Sulfate reduction, COD oxidation and metal precipitation efficiencies were 70–92, 80–94 and >99%, respectively. The alkalinity produced from sulfidogenic ethanol oxidation increased the wastewater pH from 3.0 to 7.0–8.0. The electron flow from organic oxidation to sulfate averaged 87%. Decreasing feed pH to 3 and increasing total metal concentrations to 500 mg/L did not adversely affect the performance of ABR and sufficient alkalinity was produced to increase the effluent pH to neutral values. More than 99% of metals were precipitated in the form of metal-sulfides. Accumulation of precipitated metals in the first compartment allowed metal recovery without disturbing reactor performance seriously.  相似文献   

11.
Huang R  Chen G  Sun M  Gao C 《Carbohydrate research》2006,341(17):2777-2784
A novel composite nanofiltration (NF) membrane was prepared by over-coating the PAN ultrafiltration (UF) membrane with a GCTACC thin layer. The effects of membrane preparation techniques and operating conditions on the performance of the composite membrane were studied. The results indicate that a composite NF membrane from 1.0wt% GCTACC casting solution, vaporized for 2h at 50 degrees C, cross-linked for 20h at 50 degrees C and pH approximately 12 with ethanol/epichlorohydrin (50/0.45 wt/wt) had optimum performance. The resultant GCTACC/PAN composite membrane was positively charged. Scanning electron microscopy showed its asymmetric and composite features. At 25 degrees C and 30L/h of cycling flow, the permeability of pure water through this membrane is 6.3L/hm(2)MPa. At 25 degrees C, 1.2MPa and 30L/h of cycling flow, the rejection of 1000mg/L MgCl(2), CaCl(2), MgSO(4), Na(2)SO(4), and NaCl solutions is 0.976, 0.972, 0.897, 0.65, and 0.407, respectively, with fluxes of 6.8, 6.12, 6.12, 5.57, and 5.51L/hm(2), respectively. The order of rejection of different salts follows the decreasing order of MgCl(2), CaCl(2), MgSO(4), NaCl, KCl, Na(2)SO(4), and K(2)SO(4), which reveals the characteristics of the positively charged NF membrane. In addition, the curve for the streaming potential also illustrates the positively charged characteristics of this membrane, with a pressure osmotic coefficient of 11.7mVMPa(-1).  相似文献   

12.
The consortium of Bacillus cereus (DQ002384), Serratia marcescens (AY927692) and Serratia marcescens (DQ002385) were used for pentachlorophenol (PCP) degradation. The consortia showed better overall removal efficiencies than single strains by utilization of PCP as a carbon and energy source confirmed by pH dependent dye indicator bromocresol purple (BCP) in mineral salt media (MSM). Mixed culture was found to degrade up to 93% of PCP (300 mg/l) as compared to single strains (62.75–90.33%), at optimized conditions (30 ± 1°C, pH 7 ± 0.2, 120 rpm) at 168 h incubation. PCP degradation was also recorded at 20°C (62.75%) and 37°C (83.33%); pH 6 (70%) and pH 9 (75.16%); 50 rpm (73.33%) and 200 rpm (91.63%). The simultaneous release of chloride ion up to 90.8 mg/l emphasized the bacterial dechlorination in the medium. GC–MS analysis revealed the formation of low molecular weight compound, i.e., 6-chlorohydroxyquinol, 2,3,4,6-tetrachlorophenol and tetrachlorohydroquinone, from degraded sample as compared to control.  相似文献   

13.
Psychrotrophic strains of Acidithiobacillus ferrooxidans have an important role in metal leaching and acid mine drainage (AMD) production in colder mining environments. We investigated cytoplasmic membrane fluidity and fatty acid alterations in response to low temperatures (5 and 15°C). Significant differences in membrane fluidity, measured by polarization (P) of 1,6-diphenyl-1,3,5-hexatriene (DPH), were found where the psychrotrophic strains had a significantly more rigid membrane (P range = 0.41–0.45) and lower transition temperature midpoints (T m = 2.0°C) and broader transition range than the mesophilic strains (P range = 0.38–0.39; T m = 2.0–18°C) at cold temperatures. Membrane remodeling was evident in all strains with a common trend of increased unsaturated fatty acid component in response to lower growth temperatures. In psychrotrophic strains, decreases in 12:0 fatty acids distinguished the 5°C fatty acid profiles from those of the mesophilic strains that showed decreases in 16:0, 17:0, and cyclo-19:0 fatty acids. These changes were also correlated with the observed changes in membrane fluidity (R 2 = 63–97%). Psychrotrophic strains employ distinctive modulation of cytoplasmic membrane fluidity with uncommon membrane phase changes as part of their adaptation to the extreme AMD environment in colder climates.  相似文献   

14.
Filled hydrogel particles can be used to encapsulate, protect, and deliver lipophilic components. In this study, we investigated the influence of preparation conditions on the size of filled hydrogel particles created using biopolymer phase separation and enzymatic cross-linking. We then investigated the stability of these particles to external stresses: pH (pH 2–8); heat (40°–90 °C, 20 min); sodium chloride (0–500 mM); and calcium chloride (0–8 mM). Filled hydrogel particles were fabricated as follows: (i) high methoxy pectin, sodium caseinate, and caseinate-coated lipid droplets were mixed at pH 7 under conditions where phase separation due to thermodynamic incompatibility occurred; (ii) this mixture was acidified (pH 5) to induce adsorption of anionic pectin molecules around lipid-filled caseinate-rich particles; (iii) the caseinate within the particles was enzymatically cross-linked using transglutaminase. Three mixing conditions (0, 100, and 1,000 rpm) were tested during particle acidification. Particle size measurements indicated that larger particles were formed at 0 and 100 rpm than at 1,000 rpm. Under high pH conditions (pH 6–8), particles cross-linked with transglutaminase remained intact while control particles (not cross-linked) disintegrated. The addition of calcium to both control and cross-linked particles resulted in system gelation above 4 mM calcium chloride. Control and cross-linked particles remained stable to heating and to the addition of sodium chloride. Results from this study demonstrate the versatility and robustness of this delivery system for lipophilic bioactives.  相似文献   

15.
The purpose of this research is to study the thermal unfolding of high concentration bovine Immunoglobulin G (IgG) under 26 different experimental conditions by Fourier Transform Infrared spectroscopy with improved purge conditions and software calculations. When bovine IgG (25–200 mg/mL) was thermally denatured between pH 4.0 and 8.0, it was observed that at 25 mg/mL concentration, the protein exhibited maximum thermal stability at pH 6.0 and 7.0 as evident from the apparent Tm values. Increasing the concentration from 25 to 100 mg/mL at those pH values increased the thermal resistance of the protein by 2–3 °C. But, at 200 mg/mL, IgG showed a small decrease in its transition temperature. Presence of 100 mM Trehalose enhanced the Tm values at all conditions and possibly prevented the complete loss of IgG as insoluble aggregates at higher temperatures. Second derivative plots were constructed to explain the conformational changes of IgG during thermal unfolding.  相似文献   

16.
Three pigmented strains of halophilic archaea, RS94-RS96, were isolated from acidic foamy products of flotation enrichment of potassium minerals (Silvinit Co., Solikamsk, Russia). The cells were gram-negative, nonmotile, pleomorphic ovoids, 1.0−1.5 × 1.5−2.5 μm. The isolates were chemoorganotrophic, obligately aerobic, and catalase-positive. A range of carbohydrates and organic acids was used, as well as amino acids and peptides. The strains were halophiles and thermotolerant neutrophiles. They grew in the media with 15 to 30% NaCl (optimum at 20–22%) and 0.005–0.7 M Mg2+ (0.1–0.2 M), at pH 5.0–8.2 (optimum 7.0–7.2) and 25–55°C (optimum at 35–50°C). The major fatty acids were C16:0, C18:1, C18:0, and C16:1. The membranes contained carotenoid pigments of the bacterioruberin series and polar lipids, mostly as C20,C20 isoprenoid derivates: phosphatidylglyceromethylphosphate, phosphatidylglycerol, and three unidentified sulfated glycolipids of the S-DGD type. The DNA G+C content was 65.1–66.4 mol %. Phylogenetic analysis based on the 16S rRNA gene sequencing revealed that the thermotolerant neutrophilic isolate RS94 (DNA G+C content of 66.4 mol %) was most closely related to the nonpigmented moderate acidophile Halarchaeum acidiphilum MH1-52-1T (97.3%). Based on its phenotypic and genotypic characteristics, the organism was classified as a new species of the genus Halarchaeum with the proposed name Halarchaeum solikamskense sp. nov. The type strain is RS94T (= VKPM B-11282T).  相似文献   

17.
Twenty days’ exposure to 50 or 100 mM NaCl in the rooting medium substantially increased fresh and dry weights of seedling shoots of the recretohalophyte Limonium sinense while 200 or 300 mM were increasingly inhibitory. KCl treatment was only slightly stimulating (50 mM) or strongly inhibitory (100–300 mM). Lesser effects on leaf area were also seen. Diameter of foliar salt glands was significantly larger than that of controls in 100 and 200 mM NaCl with the effect being reversed at higher concentrations. Gland enlargement was also observed in the presence of 100 mM KCl, while larger concentrations reduced gland size. Generally, gland diameter was larger in the presence of NaCl than in KCl. NaCl and KCl also increased gland number per leaf and secretion rate per gland. At 100 and 200 mM NaCl or KCl, Na+ secretion per leaf from NaCl-treated plants exceeded K+ secretion rate from KCl-treated plants while at 200 mM, Na+ secretion per gland was significantly higher for Na+ than for K+. Evidence of cell death in leaves of salt-treated plants using Evans blue staining indicates that release of cell contents through loss of membrane integrity contributed to the secretion values. We conclude that the greater tolerance of L. sinenseto to NaCl compared to KCl is linked to the more effective secretion of Na+ than of K+ and, in turn, to a greater stimulation of salt gland formation and activity and larger gland diameter.  相似文献   

18.
A protocol was developed for short-term preservation and distribution of the plantation eucalypt, Corymbia torelliana × C. citriodora, using alginate-encapsulated shoot tips and nodes as synthetic seeds. Effects of sowing medium, auxin concentration, storage temperature and planting substrate on shoot regrowth or conversion into plantlets were assessed for four different clones. High frequencies of shoot regrowth (76–100%) from encapsulated explants were consistently obtained in hormone-free half- and full-strength Murashige and Skoog (MS) sowing media. Conversion into plantlets from synthetic seeds was achieved on half-strength MS medium by treating shoot tips or nodes with 4.9–78.4 μM IBA prior to encapsulation. Pre-treatment with 19.6 μM IBA provided 62–100% conversion, and 95–100% of plantlets survived after acclimatisation under nursery conditions. Synthetic seeds containing explants pre-treated with IBA were stored for 8 weeks much more effectively at 25°C than at 4°C, with regrowth frequencies of 50–84% at 25°C compared with 0–4% at 4°C. To eliminate the in vitro culture step after encapsulation, synthetic seeds were allowed to pre-convert before sowing directly onto a range of ex vitro non-sterile planting substrates. Highest frequencies (46–90%) of plantlet formation from pre-converted synthetic seeds were obtained by transferring shoot tip-derived synthetic seeds onto an organic compost substrate. These plantlets exhibited almost 100% survival in the nursery without mist irrigation. Pre-conversion of non-embryonic synthetic seeds is a novel technique that provides a convenient alternative to somatic embryo-derived artificial seeds.  相似文献   

19.
A novel moderately halophilic, alkaliphilic, non-motile, non-sporulating, catalase-positive, oxidase-negative, aerobic, coccus-shaped, Gram-positive bacterium, designated strain JSM 071043T, was isolated from a subterranean brine sample collected from a salt mine in Hunan Province, China. Growth occurred with 0.5–20% (w/v) NaCl (optimum 5–10%) at pH 6.5–10.5 (optimum pH 8.5) and at 10–40°C (optimum 25–30°C). Good growth also occurred in the presence of 0.5–20% (w/v) KCl (optimum 5–8%) or 0.5–25% (w/v) MgCl2·6H2O (optimum 5–10%). The peptidoglycan type was A4α (l-Lys–l-Ala–l-Glu) and major cell-wall sugars were tyvelose and mannose. The major cellular fatty acids were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. Strain JSM 071043T contained MK-9 and MK-8 as the predominant menaquinones and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol as the major polar lipids. The DNA G + C content was 67.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain JSM 071043T was a member of the suborder Micrococcineae, and was most closely related to Zhihengliuella halotolerans YIM 70185T (sequence similarity 98.9%) and Zhihengliuella alba YIM 90734T (98.2%), and the three strains formed a distinct branch in the phylogenetic tree. The combination of phylogenetic analysis, DNA–DNA relatedness values, phenotypic characteristics and chemotaxonomic data supports the proposal that strain JSM 071043T represents a novel species of the genus Zhihengliuella, for which the name Z. salsuginis sp. nov. is proposed. The type strain is JSM 071043T (= DSM 21149T = KCTC 19466T).  相似文献   

20.
During long-term monitoring (more than 20 years) of the hydrologic regime at 20 mountainous sites in the Czech Republic (altitude 600–1400 m a.s.l.; vegetation season April-September; mean air temperature 8–10°C; mean total precipitation 400–700 mm; mean duration of sunshine 1100–1300 hours; mean potential transpiration 200–250 mm) it was found that plant temperature does not rise above about 25°C when plants transpire. According to the ecological optimality theory, the phytocenosis that is able to survive unfavourable conditions and produce the biggest amount of phytomass will prevail at sites occurring in long-term stable natural conditions. Simulation of phytomass productivity based on the optimum temperature for plant growth showed that plants with an optimum leaf temperature of about 25°C can survive the unfavourable conditions and produce the largest amount of phytomass at the site studied in the long-term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号