首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Although the role of introns in eucaryotic nuclear genes has been much debated, it remains underinvestigated in fungi. The AS1 gene of Podospora anserina contains three introns and encodes a ribosomal protein (S12) belonging to the well-conserved bacterial S19 family. We attempted to complement the highly pleiotropic mutation AS1-4 with a cDNA encoding the homologous human (S15) protein (rig gene) under the control of the AS1 promoter. In a control experiment, the AS1 + cDNA was unable to complement fully the AS1-4 mutation. It was assumed that the AS1 cDNA was not well expressed and that the AS1 gene needed intron(s) to be efficiently expressed. Addition of the first intron of the AS1 gene to the AS1 and rig cDNAs did indeed allow complementation of all the phenotypic defects of the AS1-4 mutation. These data lead to two main conclusions. First, the human S15 ribosomal protein is functional in Podospora. Second, full expression of the Podospora AS1 gene requires at least one intron. Received: 26 April 1996 / Accepted: 22 August 1996  相似文献   

3.
Transformation and high efficient regeneration of transgenic plants from embryogenic calluses of Bingtang sweet orange [Citrus sinensis (L.) Osbeck] was reported. Embryogenic calluses were inoculated with Agrobacterium tumefaciens strain EHA105, harboring the binary Ti plasmid pROK II and carrying a neomycin phosphotransferase II (NPTII) gene, an intron β-glucuronidase (GUS) gene and the Arabidopsis APETALA1 (AP1) gene. Transformation treatment was with inoculation time of 30 min, co-culture of 3 d at 23 °C and supplementation of the co-culture medium with 2 mg dm−3 acetosyringone (AS). Kanamycin (50 mg dm−3) was effective to inhibit the growth of non-transformed calluses while it did not affect the transformed ones. The total number of transformed callus lines was 7 with 100 % embryo induction. High efficient regeneration of the transgenic embryos (88 % with 4–5 shoots per embryoid) was realized within 3 months. Integration of the transgene into the citrus genome was confirmed by histochemical GUS staining, polymerase chain reaction (PCR) analysis with AP1-specific primer and Southern blot hybridization with a 712 bp PCR fragment of AP1 as the probe.  相似文献   

4.
5.
A database called eukaryotic intron database (EID) was developed based on the data from GenBank. Studies on the statistical characteristics of EID show that there were 103, 848 genes, 478,484 introns, and 582,332 exons, with an average of 4.61 introns and 5.61 exons per gene. Introns of 40–120 nt in length were abundant in the database. Results of the statistical analysis on the data from nine model species showed that in eukaryotes, higher species do not necessarily have more introns or exons in a gene than lower species. Furthermore, characteristics of EID, such as intron phase, distribution of different splice sites, and the relationship between genome size and intron proportion or intron density, have been studied. __________ Translated from Acta Scientiarum Naturalium Universitatis Sunyatseni, 2005, 44(6): 79–82 [译自: 中山大学学报, 2005, 44(6): 79–82]  相似文献   

6.
The effect of chemical additives (acetosyringone, AS; L-cysteine, CYS; dithiothreitol, DTT; glutathione, GSH; cellulase, CEL; pectinase, PEC) and light regimes (16/8 light/dark photoperiod, 16L/8D; continuous light, 24L; continuous dark, 24D) applied during cocultivation procedure of pea explants with Agrobacterium tumefaciens on transformation efficiency was studied. A hypervirulent strain of A. tumefaciens EHA 105 with two plasmids, namely pGT89 and pBIN19, both carrying reporter gus-int gene, and bar or nptII selectable marker gene, respectively, was used for genetic transformation of cotyledonary node explants of three dry seed pea cultivars Adept, Komet and Menhir. The focus was laid on cocultivation step (48 h) of transformation protocol. After chemical or physical treatments, transient GUS expression was recorded 20 days after cocultivation as a measure of successful transformation, using a four category scale (0 – without GUS expression, 1 – weak, 2 – medium and 3 – strong GUS expression) for calculation of IGE (Intensity of GUS Expression). Of the tested chemical cocultivation additives, 100 μM AS and 50 mg CYS significantly improved GUS expression (IGE value), while DTT, GSH and both macerating enzymes (CEL, PEC used either separately or in combination) either had no positive effect or were even negative. There were no statistically significant differences between the light regimes tested. Nevertheless, cocultivation in 24L, without chemical additives, reproducibly resulted in the highest frequency of explants scored in category 3 of GUS expression (followed by 24D and 16L/8D treatment). However, application of 100 μM AS reverted this trend. Cv. Adept yielded higher transformation frequencies than cvs. Menhir and Komet. Plasmid pGT89 produced a higher IGE value than pBIN19. Based on our results, the improved cocultivation step for pea consists of 48 h cocultivation at 20 ± 2°C, with 50 mg l−1 CYS and 100 μM AS, 16L/8D photoperiod (or without AS in continuous light).  相似文献   

7.
In Arabidopsis, pre‐mRNAs of serine/arginine‐rich (SR) proteins undergo extensive alternative splicing (AS). However, little is known about the cis‐elements and trans‐acting proteins involved in regulating AS. Using a splicing reporter (GFP–intron–GFP), consisting of the GFP coding sequence interrupted by an alternatively spliced intron of SCL33, we investigated whether cis‐elements within this intron are sufficient for AS, and which SR proteins are necessary for regulated AS. Expression of the splicing reporter in protoplasts faithfully produced all splice variants from the intron, suggesting that cis‐elements required for AS reside within the intron. To determine which SR proteins are responsible for AS, the splicing pattern of the GFP–intron–GFP reporter was investigated in protoplasts of three single and three double mutants of SR genes. These analyses revealed that SCL33 and a closely related paralog, SCL30a, are functionally redundant in generating specific splice variants from this intron. Furthermore, SCL33 protein bound to a conserved sequence in this intron, indicating auto‐regulation of AS. Mutations in four GAAG repeats within the conserved region impaired generation of the same splice variants that are affected in the scl33 scl30a double mutant. In conclusion, we have identified the first intronic cis‐element involved in AS of a plant SR gene, and elucidated a mechanism for auto‐regulation of AS of this intron.  相似文献   

8.
Sulfur is the oldest and most widely used fungicide in the vineyards of California, where it is used for control of powdery mildew (Uncinula necator [Schw.] Burr). For decades, sulfur use has been associated with outbreaks of Tetranychus pacificus McGregor (Acari: Tetranychidae) on cultivated grapes in the San Joaquin Valley. I undertook large-scale field studies to test this association, to evaluate the impact of sulfur on Galendromus occidentalis (Nesbit) (Acari: Phytoseiidae), a major predator of T. pacificus, and to determine if timing of sulfur applications with respect to grape bloom has an impact on T. pacificus density. The studies took place in a 32 ha vineyard in Fresno County, and all fungicide applications were made with commercial-scale equipment. In 1998 a ‘high sulfur’ treatment, a combination of wettable sulfur and sulfur dust, was compared to ‘low sulfur,’ in which demethylation inhibitor (DMI) fungicides partially substituted for sulfur. In 1999 treatments were ‘sulfur,’ ‘DMI,’ ‘sulfur pre-bloom’ (here sulfur was applied prior to grape bloom, in late May, and then DMIs were applied until mid-season) and ‘sulfur post-bloom’ (the reverse of ‘sulfur pre-bloom’). In each year, the T. pacificus population increase came after the end of fungicide applications, and results clearly show a relationship between sulfur use and T. pacificus density. In 1998, mean T. pacificus density was 2.7 times higher and mean G. occidentalis density 2.5 times higher in ‘high sulfur’ compared to ‘low sulfur.’ In 1999, the highest T. pacificus counts were in the ‘sulfur’ and ‘sulfur pre-bloom’ treatments, 4.8 times higher than ‘sulfur post-bloom’ and 2 times higher than ‘DMIs.’ Density of G. occidentalis was 2.3 times as high in ‘sulfur’ or ‘sulfur pre-bloom’ than ‘DMIs.’ The predator/prey ratio was not significantly different among treatments in 1998, but in 1999 it was highest in the ‘sulfur pre-bloom’ treatment. In 1999, density of Homeopronematus anconai (Baker) (Acari: Tydeidae) was 2.7 times higher in ‘sulfur pre-bloom’ compared to ‘sulfur,’ and higher by 2.7 times in ‘DMI’ compared to ‘sulfur post-bloom,’ suggesting a negative effect of sulfur on this tydeid. These results do not support the hypotheses that the cause of the increase in T. pacificus density is due to negative effects of sulfur on phytoseiids or tydeids. Rather, it appears that a plant-based explanation is likely, first, because of the differences in pre-bloom versus post-bloom sulfuring, and second, because of the long lag time between the end of the sulfur applications and the corresponding increase in spider mite density.  相似文献   

9.
A monoclonal antibody, JIM 20, derived against an extensin type of hydroxyproline-rich glycoprotein (HRGP) from pea, showed high affinity for HRGP in pearl millet [Pennisetum glaucum (L.) R. Br.]. Electrophoretic separation of Tris–SDS extracted proteins from suspension cells of pearl millet revealed a range of PM-HRGP polypeptides having a glycan epitope, which reacted with JIM 20. A high molecular mass band, probably an HRGP aggregate or polymer, and a few low molecular mass polypeptides were recognized by JIM 20 during Western blot analysis. Treatment of pearl millet suspension cells with hydrogen peroxide in the presence of an endogenous peroxidase resulted in insolubilization of HRGP polypeptides with molecular weights between 45 and 33 kDa. To investigate the gene coding for an extensin type of HRGP, a fosmid-based genomic library of pearl millet having a fourfold genome coverage was constructed. A partial sequence of 378 bp of an HRGP gene was obtained by PCR amplification of pearl millet DNA with a primer pair designed from the conserved regions of monocotyledon extensin type of HRGPs. Screening the genomic library using the homologous probe developed from the 378-bp PCR product resulted in the isolation of five fosmid clones. Restriction mapping of these fosmids resulted in an 11.8-kb region around an HRGP gene in pearl millet. The newly characterized gene, PM-HRGP, had all the characteristic features of a monocotyledon extensin type of HRGP. An intron at the 3′ untranslated region of the gene was identified by cDNA cloning. Differential expression of the PM-HRGP gene was observed during compatible and incompatible interactions of pearl millet with the downy mildew pathogen Sclerospora graminicola (Sacc) Schroet. Induced expression of the gene was observed only in case of an incompatible interaction.  相似文献   

10.
The gene encoding squalene synthase (GfSQS) was cloned from Fusarium fujikuroi (Gibberella fujikuroi MP-C) and characterized. The cloned genomic DNA is 3,267 bp in length, including the 5′-untranslated region (UTR), 3′-UTR, four exons, and three introns. A noncanonical splice-site (CA-GG, or GC-AG) was found at the first intron. The open reading frame of the gene is 1,389 bp in length, corresponding to a predicted polypeptide of 462 amino acid residues with a MW 53.4 kDa. The predicted GfSQS shares at least four conserved regions involved in the enzymatic activity with the SQSs of varied species. The recombinant protein was expressed in E. coli and detected by SDS–PAGE and western blot. GC–MS analysis showed that the wild-type GfSQS could catalyze the reaction from farnesyl diphosphate (FPP) to squalene, while the mutant mGfSQS (D82G) lost total activity, supporting the prediction that the aspartate-rich motif (DTXED) in the region I of SQS is essential for binding of the diphosphate substrate.  相似文献   

11.
Korean ginseng (Panax ginseng) has been developed as a horticultural crop due to the increasing demand in the world market. “Chunpoong” is an economically important cultivar with superior quality and high yield among nine cultivars of Korean ginseng. The aim of this work was to develop a simple technique for specific authentication of Chunpoong using DNA method. Molecular authentication of Chunpoong was investigated using DNA sequences of mitochondrial cytochrome oxidase subunit 2 (cox2) intron I and intron II regions. A single nucleotide polymorphism (SNP) specific to Chunpoong was detected and amplification refractory mutation system (ARMS)-PCR method was applied to specific identification of Chunpoong based on the SNP site. Ginseng samples collected from other locations were used to validate the SNP marker and the established method was determined to be effective. Thus, this work provides a rapid and reliable method for the specific identification of Chunpoong cultivar.  相似文献   

12.
13.
Antagonistic Bacillus spp. displaying in vitro production of siderophore, chitinase, and β-1,3-glucanase were identified from dual culture assays. In independent greenhouse studies, seed bacterization and soil application of Bacillus atrophaeus S2BC-2 challenge inoculated with Fusarium oxysporum f.sp. lycopersici (FOL) and Alternaria solani (AS) recorded low percent disease index of 25.3 and 28.7, respectively, over nonbacterised pathogen control (44.3 and 56.4). The low disease incidence corroborated with tomato growth promotion with high vigor index (8,041.2) and fresh plant weight (82.5 g) on challenge inoculation with FOL. Analysis of root and leaf samples in rhizobacterial treatment challenged with FOL and AS revealed maximum induction of chitinase (1.9 and 1.7 U/mg of protein, respectively) and β-1,3-glucanase (23.5 and 19.2 U/mg of protein, respectively). In native gel activity assays, the rhizobacterial treatment on challenge inoculation strongly expressed three high intensity PO isoforms along with one low intensity isoform. In studies on genetic diversity of the Bacillus strains by repetitive extragenomic palindromic-polymerase chain reaction (REP-PCR) and amplified rDNA restriction analysis (ARDRA) patterns, ARDRA was more highly discriminant than REP-PCR and allowed grouping of the strains and differentiation of the antagonistic strains from other isolates.  相似文献   

14.
Genetic variation of nuclear ribosomal ITS (nrITS) and chloroplast DNA (cpDNA) regions was investigated in Brasenia schreberi (Cabombaceae) to assess the population structure and to infer the evolutionary relationship among 12 populations distributed in South Korea. The combined sequence of the two regions was aligned to 2,069 bp, of which 28 sites were variable. In total, 20 genotypes were identified from 240 individuals of B. schreberi. Genotype diversity (Gd) and nucleotide diversity (Pi) on Jeju Island (Gd = 0.2511, Pi = 0.00012) were higher than those of the mainland of South Korea (Gd = 0.1358, Pi = 0.00005). The relatively low level of genetic variation of the mainland populations is associated with its higher genetic differentiation (G ST = 0.095 on mainland and 0.039 on Jeju Island) and human activities. Minimum spanning network analysis demonstrated that the investigated populations of B. schreberi were subdivided into two geographical groups: the mainland of South Korea and Jeju Island. In addition, analysis of molecular variation showed that a large proportion (73.55%) of genetic differentiation existed between the two regions. These results strongly suggest the presence of significant barriers to gene flow between regions. Thus, the management unit for B. schreberi should be carefully designed to avoid the potential risk that can results from the admixture of individuals from the mainland and Jeju Island regions.  相似文献   

15.
During the course of a survey of fungi in loblolly pine (Pinus taeda) roots in Georgia, USA, a species of Ophiostoma morphologically similar to O. pluriannulatum, was isolated. Morphological characteristics and DNA sequence comparisons were used to identify the fungus. The isolates produced perithecia with unusually long necks similar to those of O. pluriannulatum but they had few or no annuli. DNA sequences for the ribosomal internal transcribed spacer regions 1 and 2 were identical to those of O. pluriannulatum. Sequence data of the β-tubulin gene region revealed the absence of intron 4 and presence of intron 5, distinguishing the isolates from O. pluriannulatum, which has intron 4 but not intron 5. Phylogenetic analyses of the β-tubulin sequences showed that the isolates from loblolly pine roots grouped together in a lineage distinct from O. multiannulatum and O. subannulatum, both of which lack intron 4 and have intron 5. The fungus is consequently described as O. sparsiannulatum sp. nov., a novel taxon in the O. pluriannulatum complex.  相似文献   

16.
The first intron (EPI) of rice 5-enolpyruvylshikimate 3-phosphate synthase gene was isolated by PCR from one clone with genomic EPSP synthase gene. Sequence analysis showed that the first intron is 704 bp in length with 36.2% G+C content. To investigate its effect on expression of foreign gene, we inserted the first intron between CaMV35S promoter and β-glucuronidase (GUS) gene. The transient expression results showed that GUS could be expressed effectively with EPI. The GUS activity in transgenic tobacco shows that the EPI can greatly enhance the expression level of β-glucuronidase (P < 0.01) compared with transgenic tobacco without the first intron, and 3-to 6-fold increase in GUS activity in some transgenic tobaccos. Northern blot indicated the first intron was spliced from GUS pre-mRNA, and the steady-state mRNA levels of GUS with EPI in transgenic tobaccos were higher than that in transgenic tobacco without EPI, which suggested that the first intron of EPSP was a non-translated intron.  相似文献   

17.
Genetic variability among 122 Rhynchosporium secalis isolates collected from barley in three regions of Tunisia was investigated using host differentials, amplified fragment length polymorphism (AFLP), and microsatellite markers. The isolates were collected from a widely grown scald-susceptible barley cultivar Rihane and a range of local landrace cultivars in geographically distinct regions with different agroclimatic conditions. Pathotypic diversity (the proportion of unique pathotypes) was high in R. secalis populations from the high (100% diversity), moderate (95%), and low (100%) rainfall areas of Tunisia, and from both Rihane (which is the sole variety grown in the high rainfall region) and local landraces (which predominate in the low rainfall area). This may reflect a general adaptability for aggressiveness and suggests that the widely grown cultivar Rihane has exerted little or no selection pressure on the pathogen population since its release in 1983. Genotypic diversity (GD), defined as the probability that two individuals taken at random had different genotypes, was high for populations from Rihane, local landraces, and different agro-ecological zones (GD = 0.96–0.99). There was low genetic differentiation among pathogen populations from different host populations (G ST ≤ 0.08, θ ≤ 0.12) and agro-ecological zones (G ST ≤ 0.05, θ ≤ 0.04), which may be partly explained by gene flow due to the movement of infected stubble around the country. There was no correlation (r = 0.06, P = 0.39) between virulence phenotype and AFLP haplotype. A phenetic tree revealed groups with low bootstrap values that did not reflect the grouping of isolates based on host, pathotype, or agro-ecological region. The implications of these findings for R. secalis evolutionary potential and scald-resistance breeding in Tunisia are discussed.  相似文献   

18.
By using a β-glucanase from Bacillus as a model protein, we investigated whether the secretion competence based on the action of the kil gene can be improved using stronger promoters for the expression of the kil gene. Since the production of extracellular target proteins also depends on the promoter strengths of the target gene, we constructed four expression vectors with all possible combinations of a weak and a strong stationary-phase promoter for the kil gene, and a weak and a strong constitutive promoter, respectively, for the β-glucanase gene. The results of batch fermentations showed that the use of stronger promoters generally decreased the cell density. However, a drastic increase of productivity of the cells to produce and secrete β-glucanase resulted in a significantly higher activity of extracellular β-glucanase. The yield of extracellular β-glucanase can be increased (to 168 %) by using a strong promoter for the β-glucanase alone. However, the increase was much higher when the weak promoter of the kil gene was replaced by a strong stationary-phase promoter (to 221 %). An even higher yield of extracellular β-glucanase was reached when β-glucanase was expressed by a strong promoter in addition indicating a combinatorial effect. This shows that the extracellular production of a recombinant target gene can be optimized by tuning the promoter strengths of components, the kil gene and the target gene.  相似文献   

19.
Expression Enhancement of a Rice Polyubiquitin Gene Promoter   总被引:11,自引:0,他引:11  
An 808 bp promoter from a rice polyubiquitin gene, rubi3, has been isolated. The rubi3 gene contained an open reading frame of 1140 bp encoding a pentameric polyubiquitin arranged as five tandem, head-to-tail repeats of 76 aa. The 1140 bp 5′ UTR intron of the gene enhanced its promoter activity in transient expression assays by 20-fold. Translational fusion of the GUS reporter gene to the coding sequence of the ubiquitin monomer enhanced GUS enzyme activity in transient expression assays by 4.3-fold over the construct containing the original rubi3 promoter (including the 5′ UTR intron) construct. The enhancing effect residing in the ubiquitin monomer coding sequence has been narrowed down to the first 9 nt coding for the first three amino acid residues of the ubiquitin protein. Mutagenesis at the third nucleotide of this 9 nt sequence still maintains the enhancing effect, but leads to translation of the native GUS protein rather than a fusion protein. The resultant 5′ regulatory sequence, consisting of the rubi3 promoter, 5′ UTR exon and intron, and the mutated first 9 nt coding sequence, has an activity nearly 90-fold greater than the rubi3 promoter only (without the 5′ UTR intron), and 2.2-fold greater than the maize Ubi1 gene promoter (including its 5′ UTR intron). The newly created expression vector is expected to enhance transgene expression in monocot plants. Considering the high conservation of the polyubiquitin gene structure in higher plants, the observed enhancement in gene expression may apply to 5′ regulatory sequences of other plant polyubiquitin genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号