首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungi were screened for their ability to produce alpha-amylase by a plate culture method. Penicillium chrysogenum showed high enzymatic activity. Alpha-amylase production by P. chrysogenum cultivated in liquid media containing maltose (2%) reached its maximum at 6-8 days, at 30 degrees C, with a level of 155 U ml(-1). Some general properties of the enzyme were investigated. The optimum reaction pH and temperature were 5.0 and 30-40 degrees C, respectively. The enzyme was stable at a pH range from 5.0-6.0 and at 30 degrees C for 20 min and the enzyme's 92.1% activity's was retained at 40 degrees C for 20 min without substrate. Hydrolysis products of the enzyme were maltose, unidefined oligosaccharides, and a trace amount of glucose. Alpha-amylase of P. chrysogenum hydrolysed starches from different sources. The best hydrolysis was determined (98.69%) in soluble starch for 15 minute at 30 degrees C.  相似文献   

2.
Adenosine-5'-phosphosulfate (APS) kinase from Penicillium chrysogenum, loses catalytic activity at temperatures greater than approximately 40 degrees C. When the heat-inactivated enzyme is cooled to 30 degrees C or lower, activity is regained in a time-dependent process. At an intermediary temperature (e.g. 36 degrees C) an equilibrium between active and inactive forms can be demonstrated. APS kinase from P. chrysogenum is a dimer (Mr = 57,000-60,000) composed of two apparently identical subunits. Three lines of evidence suggest that the reversible inactivation is a result of subunit dissociation and reassociation. (a) Inactivation is a first-order process. The half-time for inactivation at a given temperature is independent of the original enzyme concentration. Reactivation follows second-order kinetics. The half-time for reactivation is inversely proportional to the original enzyme concentration. (b) The equilibrium active/inactive ratio at 36 degrees C increases as the total initial enzyme concentration is increased. However, Keq,app at 5 mM MgATP and 36 degrees C calculated as [inactive sites]2/0.5 [active sites] is near-constant at about 1.7 X 10(-8) M over a 10-fold concentration range of enzyme. (c) At 46 degrees C, the inactive P. chrysogenum enzyme (assayed after reactivation) elutes from a calibrated gel filtration column at a position corresponding to Mr = 33,000. Substrates and products of the APS kinase reaction had no detectable effect on the rate of inactivation. However, MgATP and MgADP markedly stimulated the reactivation process (kapp = 3 X 10(5) M-1 X s-1 at 30 degrees C and 10 mM MgATP). The kapp for reactivation was a nearly linear function of MgATP up to about 20 mM suggesting that the monomer has a very low affinity for the nucleotide compared to that of the native dimer. Keq,app at 36 degrees C increases as the MgATP concentration is increased. The inactivation rate constant increased as the pH was decreased but no pK alpha could be determined. The reactivation rate constant increased as the pH was increased. An apparent pK alpha of 6.4 was estimated.  相似文献   

3.
Intracellular beta-galactosidase from Penicillium chrysogenum NCAIM 00237 was purified by procedures including precipitation with ammonium sulfate, ion-exchange chromatography on DEAE-Sephadex, affinity chromatography, and chromatofocusing. These steps resulted a purification of 66-fold, a yield of about 8%, and a specific activity of 5.84 U mg(-1) protein. Some enzyme characteristics were determined using o-nitrophenyl-beta-d-galactopyranoside as substrate. The pH and temperature optimum of the activity were about 4.0 and 30 degrees C respectively. The K(m) and pI values were 1.81 mM and 4.6. beta-Galactosidase of P. chrysogenum is a multimeric enzyme of about 270 kDa composed of monomers with a molecular mass of 66 kDa.  相似文献   

4.
The effects of temperature on the initial velocity kinetics of allosteric ATP sulfurylase from Penicillium chrysogenum were measured. The experiments were prompted by the structural similarity between the C-terminal regulatory domain of fungal ATP sulfurylase and fungal APS kinase, a homodimer that undergoes a temperature-dependent, reversible dissociation of subunits over a narrow temperature range. Wild-type ATP sulfurylase yielded hyperbolic velocity curves between 18 and 30 degrees C. Increasing the assay temperature above 30 degrees C at a constant pH of 8.0 increased the cooperativity of the velocity curves. Hill coefficients (n(H)) up to 1.8 were observed at 42 degrees C. The bireactant kinetics at 42 degrees C were the same as those observed at 30 degrees C in the presence of PAPS, the allosteric inhibitor. In contrast, yeast ATP sulfurylase yielded hyperbolic plots at 42 degrees C. The P. chrysogenum mutant enzyme, C509S, which is intrinsically cooperative (n(H) = 1.8) at 30 degrees C, became more cooperative as the temperature was increased yielding n(H) values up to 2.9 at 42 degrees C. As the temperature was decreased, the cooperativity of C509S decreased; n(H) was 1.0 at 18 degrees C. The cumulative results indicate that increasing the temperature increases the allosteric constant, L, i.e., promotes a shift in the base-level distribution of enzyme molecules from the high MgATP affinity R state toward the low MgATP affinity T state. As a result, the enzyme displays a true "temperature optimum" at subsaturating MgATP. The reversible temperature-dependent transitions of fungal ATP sulfurylase and APS kinase may play a role in energy conservation at high temperatures where the organism can survive but not grow optimally.  相似文献   

5.
Previously, three arabinan-degrading enzymes were isolated from Penicillium chrysogenum 31B. Here we describe another arabinan-degrading enzyme, termed Abnc, from the culture filtrate of the same organism. Analysis of the reaction products of debranched arabinan by high-performance anion-exchange chromatography (HPAEC) revealed that Abnc cleaved the substrate in an endo manner and that the final major product was arabinotriose. The molecular mass of Abnc was estimated to be 35 kDa by SDS-PAGE. Enzyme activity of Abnc was highest at pH 6.0 to 7.0. The enzyme was stable up to 30 degrees C and showed optimum activity at 30 to 40 degrees C. Compared with a mesophilic counterpart from Aspergillus niger, Abnc exhibited a lower thermal stability and optimum enzyme activity at lower temperatures. Production of Abnc in P. chrysogenum was found to be strongly induced by arabinose-containing polymers and required a longer culture time than did other arabinanase isozymes in this strain.  相似文献   

6.
Adenosine 5'-phosphosulfate (APS) kinase, the second enzyme in the pathway of inorganic sulfate assimilation, was purified to near homogeneity from mycelium of the filamentous fungus, Penicillium chrysogenum. The enzyme has a native molecular weight of 59,000-60,000 and is composed of two 30,000-dalton subunits. At 30 degrees C, pH 8.0 (0.1 M Tris-chloride buffer), 5.5 microM APS, 5 mM MgATP, 5 mM excess MgCl2, and "high" salt (70-150 mM (NH4)2SO4), the most highly purified preparation has a specific activity of 24.7 units X mg of protein-1 in the physiological direction of adenosine 3'-phosphate 5'-phosphosulfate (PAPS) formation. This activity is nearly 100-fold higher than that of any previously purified preparation of APS kinase. APS kinase is subject to potent substrate inhibition by APS. In the absence of added salt, the initial velocity at 5 mM MgATP plus 5 mM Mg2+ is maximal at about 1 microM APS and half-maximal at 0.2 and 4.4 microM APS. In the presence of 200 mM NaCl or 70-150 mM (NH4)2SO4, the optimum APS concentration shifts to 4-6 microM APS; the half-maximal values shift to 1-1.3 and 21-27 microM APS. The steady state kinetics of the reaction were investigated using a continuous spectrophotometric assay. The families of reciprocal plots in the range 0.25-5 mM MgATP and 0.8-5.1 microM APS are linear and intersect on the horizontal axis. Appropriate replots yield KmMgATP = 1.5 mM, KmAPS = 1.4 microM, and Vmax, = 38.7 units X mg of protein-1. Excess APS is an uncompetitive inhibitor with respect to MgATP (K1APS = 23 microM). PAPS, the product of the forward reaction, is also uncompetitive with MgATP. PAPS is not competitive with APS. In the reverse direction, the plots have the characteristics of a rapid equilibrium ordered sequence with MgADP adding before PAPS. The kinetic constants are KmPAPS = 8 microM, KiMgADP = 560 microM, and Vmaxr = 0.16 units X mg of protein-1. Iso-PAPS (the 2'-phosphate isomer of PAPS) is competitive with PAPS and uncompetitive with respect to MgADP (Ki = 6 microM). APS kinase is inactivated by phenylglyoxal, suggesting the involvement of an essential argininyl residue. MgATP or MgADP at 10 Ki protect against inactivation. APS or PAPS at 600 and 80 Km, respectively, are ineffective alone, but provide nearly complete protection in the presence of 0.1 Ki of MgADP or MgATP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
1. Glucose 6-phosphate dehydrogenase was isolated and partially purified from a thermophilic fungus, Penicillium duponti, and a mesophilic fungus, Penicillium notatum. 2. The molecular weight of the P. duponti enzyme was found to be 120000+/-10000 by gelfiltration and sucrose-density-gradient-centrifugation techniques. No NADP(+)- or glucose 6-phosphate-induced change in molecular weight could be demonstrated. 3. Glucose 6-phosphate dehydrogenase from the thermophilic fungus was more heat-stable than that from the mesophile. Glucose 6-phosphate, but not NADP(+), protected the enzyme from both the thermophile and the mesophile from thermal inactivation. 4. The K(m) values determined for glucose 6-phosphate dehydrogenase from the thermophile P. duponti were 4.3x10(-5)m-NADP(+) and 1.6x10(-4)m-glucose 6-phosphate; for the enzyme from the mesophile P. notatum the values were 6.2x10(-5)m-NADP(+) and 2.5x10(-4)m-glucose 6-phosphate. 5. Inhibition by NADPH was competitive with respect to both NADP(+) and glucose 6-phosphate for both the P. duponti and P. notatum enzymes. The inhibition pattern indicated a rapid-equilibrium random mechanism, which may or may not involve a dead-end enzyme-NADP(+)-6-phosphogluconolactone complex; however, a compulsory-order mechanism that is consistent with all the results is proposed. 6. The activation energies for the P. duponti and P. notatum glucose 6-phosphate dehydrogenases were 40.2 and 41.4kJ.mol(-1) (9.6 and 9.9kcal.mol(-1)) respectively. 7. Palmitoyl-CoA inhibited P. duponti glucose 6-phosphate dehydrogenase and gave an inhibition constant of 5x10(-6)m. 8. Penicillium glucose 6-phosphate dehydrogenase had a high degree of substrate and coenzyme specificity.  相似文献   

8.
A novel glucose oxidase (GOX), a flavoenzyme, from Penicillium sp. was isolated, purified and partially characterised. Maximum activities of 1.08U mg(-1)dry weight intracellular and 6.9U ml(-1) extracellular GOX were obtained. Isoelectric focussing revealed two isoenzymes present in both intra- and extracellular fractions, having pI's of 4.30 and 4.67. GOX from Penicillium sp. was shown to be dimeric with a molecular weight of 148kDa, consisting of two equal subunits with molecular weight of 70k Da. The enzyme displayed a temperature optimum between 25 and 30 degrees C, and an optimum pH range of 6-8 for the oxidation of beta-d-glucose. The enzyme was stable at 25 degrees C for a minimum of 10h, with a half-life of approximately 30 min at 37 degrees C without any prior stabilisation. The lyophilized enzyme was stable at -20 degrees C for a minimum of 6 months. GOX from Penicillium sp. Tt42 displayed the following kinetic characteristics: Vmax, 240.5U mg(-1); Km, 18.4mM; kcat, 741 s(-1) and kcat/Km, 40 s(-1)mM(-1). Stability at room temperature, good shelf-life without stabilisation and the neutral range for the pH optimum of this GOX contribute to its usefulness in current GOX-based biosensor applications.  相似文献   

9.
The coupling of the thermostable acid protease (EC 3.4.23.-) of Penicillium duponti K 1014 to ethylene-maleic acid (1 : 1) linear copolymer in the presence of 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide at pH 3.0, afforded a soluble enzyme derivative with a protein incorporation yield of 67% under optimal conditions. The protein content of the enzyme-polymer complex, the molecular weights of the reactants, and the mean value of 2.2 lysine residues per mol of enzyme found in amide linkage to the matrix, support a structure consisting of two polymer chains per mol of protease, each chain acylating a single lysine residue of the enzyme. The isoelectric point of the coupled enzyme was found to be 3,47, a value lower than that measured on the free protease (3.81). The specific activity of the bound protease against casein, at pH 3.7 and 30 degrees C, was 34% of that of the free enzyme, and at 75 degrees C increased to 70%. The increased size of the coupled enzyme resulted in an improved retention of activity by ultrafiltration membranes over that observed with free protease, alone or in admixture with ethylene-maleic acid copolymer. A water-soluble, coupled pepsin was prepared in 43% yield on protein basis by using the aminoethylmonoamide of ethylene-maleic acid copolymer and the same water-soluble carbodiimide.  相似文献   

10.
A novel cold-adaptive xylanolytic Penicillium strain FS010 was isolated from Yellow Sea sediments. The marine fungus grew well from 4 to 20 ℃; a lower (0 ℃) or higher (37 ℃) temperature limits its growth. The strain was identified as Penicillium chrysogenum. Compared with mesophilic P. chrysogenum, the cold-adaptive fungus secreted the cold-active xylanase (XYL) showing high hydrolytic activities at low temperature (2-15 ℃) and high sensitivity to high temperature (〉50 ℃). The XYL gene was isolated from the cold-adaptive P. chrysogenum FS010 and designated as xyl. The deduced amino acid sequence of the protein encoded by xyl showed high homology with the sequence of glycoside hydrolase family 10. The gene was subcloned into an expression vector pGEX-4T- 1 and the encoded protein was overexpressed as a fusion protein with glutathione-S-transferase in Escherichia coli BL21. The expression product was purified and subjected to enzymatic characterization. The optimal temperature and pH for recombinant XYL was 25 ℃ and 5.5, respectively. Recombinant XYL showed nearly 80% of its maximal activity at 4 ℃ and was active in the pH range 3.0-9.5.  相似文献   

11.
Penicillin acyltransferase in Penicillium chrysogenum   总被引:9,自引:1,他引:8       下载免费PDF全文
Isotopic exchange of (35)S between penicillins and 6-amino-penicillanic acid (6-APA) was observed in cell-free extracts of Penicillium chrysogenum. Sulfhydryl-containing compounds were required for activity. Dithiothreitol, dithioerythritol, mercaptoethanol, and glutathione served as activators. The acyltransferase was purified threefold by adsorption on calcium phosphate gel at pH 6 and elution at pH 8. The partially purified enzyme showed maximal activity at pH 8. The enzyme was stable at 25 C for at least 30 min at pH 8. Dissociable inhibitors or activators, other than the sulfhydryl-containing compounds, could not be demonstrated in the enzyme preparation. An apparent Michaelis constant of 1.5 +/- 0.5 mm was determined for penicillin G at a 6-APA concentration of 5 mm. The enzyme did not appear to possess penicillin amidase activity. The exchange mechanism probably involves an acyl-enzyme intermediate. Penicillins V, G, K, X, and dihydro F showed isotopic exchange with (35)S-6-APA. Penicillin N, methylpenicillin, and phenyl-penicillin did not show exchange. The level of acyltransferase in P. chrysogenum 51-20F3 was measured at times during the fermentation. The level of activity increased threefold between 40 and 55 hr, remaining high until about 90 hr.  相似文献   

12.
Extracts containing penicillin acylase were obtained by shaking the mycelium of Fusarium avenaceum and of Penicillium chrysogenum in 0.2 M sodium acetate or sodium chloride solution. The optimum pH for conversion of penicillin V into 6-aminopenicillanic acid (6-APA) by the enzyme of Fusarium was about 7.5, and the reaction velocity was increased by a rise in temperature from 27 to 37 C. Penicillin G and penicillins with an aliphatic side chain were cleaved much less readily than was penicillin V. With the enzyme preparation obtained from a nonpenicillin-producing strain of P. chrysogenum, the reaction rate was higher at pH 8.5 than at pH 7.5 and pH 6.5. The acylase of P. chrysogenum hydrolyzes penicillin V more readily than penicillin G. In a series of aliphatic penicillins, the amount of 6-APA formed through the action of this enzyme increased with the number of carbon atoms of the side chain. Penicillins with a glutaryl or an adipyl group as side chain were unaffected by the enzyme of Fusarium and of Penicillium. No reaction was observed upon incubation of penicillin N (with a D-aminoadipyl side chain) or isopenicillin N (with an L-aminoadipyl side chain) with Fusarium and Penicillium extract. When the carboxy group of the side chain of these penicillins was esterified, formation of 6-APA was observed upon incubation with Penicillium extract, whereas no 6-APA or only very small amounts were obtained by acylase of Fusarium.  相似文献   

13.
AIMS: Purification and characterization of the high molecular mass Candida albicans-killing protein secreted by Penicillium chrysogenum. METHODS AND RESULTS: The protein was purified by a combination of ultrafiltration, chromatofocusing and gel filtration. Enzymological characteristics [relative molecular mass (M(r)) = 155 000, subunit structure alpha(2) with M(r,alpha) = 76 000, isoelectric point (pI) = 5.4] were determined using SDS-PAGE and 2D-electrophoresis. N-terminal amino acid sequencing and homology search demonstrated that the antifungal protein was the glucose oxidase (GOX) of the fungus. The enzyme was cytotoxic for a series of bacteria, yeasts and filamentous fungi. Vitamin C (1.0 mg ml(-1)) prevented oxidative cell injuries triggered by 0.004 U GOX in Emericella nidulans cultures but bovine liver catalase was ineffective even at a GOX : catalase activity ratio of 0.004 : 200 U. A secondary inhibition of growth in E. nidulans cultures by the oxygen-depleting GOX-catalase system was likely to replace the primary inhibition exerted by H(2)O(2). CONCLUSIONS: Penicillium chrysogenum GOX possesses similar enzymological features to those described earlier for other Penicillium GOXs. Its cytotoxicity was dependent on the inherent antioxidant potential of the test micro-organisms. SIGNIFICANCE AND IMPACT OF THE STUDY: Penicillium chrysogenum GOX may find future applications in glucose biosensor production, the disinfection of medical implants or in the food industry as an antimicrobial and/or preservative agent.  相似文献   

14.
An extracellular acid phosphatase (EC 3.1.3.2) from crude culture filtrate of Penicillium chrysogenum was purified to homogeneity using high-performance ion-exchange chromatography and size-exclusion chromatography. SDS-PAGE of the purified enzyme exhibited a single stained band at an Mr of approx. 57,000. The mobility of the native enzyme indicated the Mr to be 50,000, implying that the active form is a monomer. The isoelectric point of the enzyme was estimated to be 6.2 by isoelectric focusing. Like acid phosphatases from several yeasts and fungi the Penicillium enzyme was a glycoprotein. Removal of carbohydrate resulted in a protein band with an Mr of 50,000 as estimated by SDS-PAGE, suggesting that 12% of the mass of the enzyme was carbohydrate. The enzyme was catalytically active at temperatures ranging from 20 degrees C to 65 degrees C with a maximum activity at 60 degrees C and the pH optimum was at 5.5. The Michaelis constant of the enzyme for p-nitrophenyl phosphate was 0.11 mM and it was inhibited competitively by inorganic phosphate (ki = 0.42 mM).  相似文献   

15.
A method for isolating extracellular glucose oxidase from the fungus Penicillium funiculosum 46.1, using ultrafiltration membranes, was developed. Two samples of the enzyme with a specific activity of 914-956 IU were obtained. The enzyme exhibited a high catalytic activity at pH above 6.0. The effective rate constant of glucose oxidase inactivation at pH 2.6 and 16 degrees C was 2.74 x 10(-6) s-1. This constant decreased significantly as pH of the medium increased (4.0-10.0). The temperature optimum for glucose oxidase-catalyzed beta-D-glucose oxidation was in the range 30-65 degrees C. At temperatures below 30 degrees C, the activation energy for beta-D-glucose oxidation was 6.42 kcal/mol; at higher temperatures, this parameter was equal to 0.61 kcal/mol. Kinetic parameters of glucose oxidase-catalyzed delta-D-glucose oxidation depended on the initial concentration of the enzyme in the solution. Glucose oxidase also catalyzed the oxidation of 2-deoxy-D-glucose, maltose, and galactose.  相似文献   

16.
A purified acid protease from a true thermophilic fungus, Penicillium duponti K1014, was most active at pH 2.5 for milk casein and at pH 3.0 for hemoglobin. The enzyme was stable at a pH range of 2.5 to 6.0 at 30 C for 20 h. The acid protease retained full activity after 1 h at 60 C at a pH range between 3.5 and 5.5. At the most stable pH of 4.5, more than 65% of its activity remained after heat treatment for 1 h at 70 C. These thermal properties show the enzyme as a thermophilic protein. The enzyme activity was strongly inhibited by sodium lauryl sulfate and oxidizing reagents such as potassium permanganate and N-bromosuccinimide. No inhibition was caused by chelating reagents, potato inhibitor, and those reagents which convert sulfhydryl groups to mercaptides. Reducing reagents showed an activating effect. The enzyme showed the trypsinogen-activating property at an acidic pH range; optimal trypsinogen activation was obtained at a pH of approximately 3.0. The isoelectric point of the enzyme was estimated to be pH 3.89 by disk electrofocusing. By using gel filtration, an approximate value of 41,000 was estimated for the molecular weight.  相似文献   

17.
The primary catabolic pathways in the fungi Penicillium notatum and P. duponti, and Mucor rouxii and M. miehei were examined by measuring the relative rate of 14CO2 production from different carbon atoms of specifically labelled glucose. It was found that these organisms dissimilate glucose predominantly via the Embden--Meyerhof pathway in conjunction with the tricarboxylic acid cycle and to a lesser extent by the pentose phosphate pathway. Phosphofructokinase (EC 2.7.1.11) activity could not be detected initially in Penicillium species because of the interference from mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) and NADH oxidase (EC 1.6.99.3). A combination of differential centrifuging and a heat treatment of Penicillium cell-free extracts in the presence of fructose-6-phosphate removed the interfering enzymes. The kinetic characteristics of phosphofructokinase from P. notatum and M. rouxii are described. The enzyme presents highly cooperative kinetics for fructose-6-phosphate. The kinetics for ATP show no cooperativity and inhibition by excess ATP is observed. The addition of AMP activated the P. notatum enzyme, relieving ATP inhibition; slight inhibition by AMP was observed with the M. rouxii enzyme. In contrast M. rouxii pyruvate kinase (EC 2.7.1.40) is activated 50-fold by fructose-1,6-diphosphate whereas pyruvate kinase from P. notatum and P. duponti were unaffected by fructose-1,6-diphosphate.  相似文献   

18.
An extracellular xylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8, endo 1,4-beta-xylanase) was found to be the major protein in the culture filtrate of Penicillium chrysogenum when grown on 1% xylan. In contrast to other microorganism no xylanase multiplicity was found in P. chrysogenum under the conditions used. This enzyme was purified to homogeneity by high performance anion-exchange and size-exclusion chromatography. It had an M(r) of 35,000 as estimated by SDS-PAGE and was shown to be active as a monomer. No glycosylation of the protein could be detected neither by a sensitive glycostain nor by enzymatic deglycosylation studies. The enzyme hydrolyzed oat spelt and birchwood xylan randomly, yielding xylose and xylobiose as major end products. It had no cellulase, CMCase, beta-xylosidase or arabinogalactanase activity but acted on p-nitrophenylcellobioside. The pH and temperature optima for its activity were pH 6.0 and 40 degrees C, respectively. Eight peptides obtained after endoproteinase LysC digestion of xylanase have been sequenced, six of them showed considerable amino acid similarity to glucanases and high M(r)/acidic xylanases from different bacteria, yeasts and fungi.  相似文献   

19.
[35S]Adenosine-5'-phosphosulfate (APS) binding to Penicillium chrysogenum APS kinase was measured by centrifugal ultrafiltration. APS did not bind to the free enzyme with a measurable affinity even at low ionic strength where substrate inhibition by APS is quite marked. However, APS bound with an apparent Kd of 0.54 microM in the presence of 5 mM MgADP. In the presence of 0.1 M (NH4)2SO4, Kd,app was increased to 2.1 +/- 0.7 microM. Bound [35S]APS was displaced by low concentrations of 3'-phosphoadenosine-5'-phosphosulfate (PAPS), or iso-(2') PAPS, or (less efficiently) by adenosine-3,5'-diphosphate (PAP) or adenosine-5'-monosulfate (AMS). The results support our conclusion that substrate inhibition of the fungal enzyme by APS results from the formation of a dead end E. MgADP.APS complex. That is, APS binds to the subsite vacated by PAPS in the compulsory (or predominately) ordered product release sequence (PAPS before MgADP). Radioligand displacement was used to verify the Kd for APS dissociation from E.MgADP.APS and to determine the Kd values for the dissociation of iso-PAPS (13 +/- 5 microM), PAP (4.8 mM), or AMS (5.2 mM) from their respective ternary enzyme.MgADP.ligand complexes. Incubation of the fungal enzyme with [gamma-32P]MgATP did not yield a phosphoenzyme that survives gel filtration or gel electrophoresis.  相似文献   

20.
ATP sulfurylase from Penicillium chrysogenum is a homohexamer that contains three free sulfhydryl groups/subunit, only one of which (designated SH-1) can be modified by disulfide, maleimide, and halide reagents under nondenaturing conditions. Modification of SH-1 has only a small effect on kcat but causes the [S]0.5 values for MgATP and SO4(2-) (or MoO4(2-) to increase by an order of magnitude. Additionally, the velocity curves become sigmoidal with a Hill coefficient (nH) of about 2 (Renosto, F., Martin, R. L., and Segel, I. H. (1987) J. Biol. Chem. 262, 16279-16288). Direct equilibrium binding measurements confirmed that [32P]MgATP binds to the SH-modified enzyme in a positively cooperative fashion (nH = 2.0) if a sulfate subsite ligand (e.g. FSO3-) is also present. [35S]Adenosine 5'-phosphosulfate (APS) binding to the SH-modified enzyme displayed positive cooperativity (nH = 1.9) in the absence of a PPi subsite ligand. The results indicate that positive cooperativity requires occupancy of the adenylyl and sulfate (but not the pyrophosphate) subsites. [35S]APS binding to the native enzyme displayed negative cooperativity (or binding to at least two classes of sites). Isotope trapping profiles for the single turnover of [35S]APS: (a) confirmed the equilibrium binding curves, (b) indicated that all six sites/hexamer are catalytically active, and (c) showed that APS does not dissociate at a significant rate from E.APS.PPi. The MgPPi concentration dependence of [35S]APS trapping was indicative of MgPPi binding to two classes of sites on both the native and SH-modified enzyme. Inactivation of the native or SH-modified enzyme by phenylglyoxal in the presence of saturating APS was biphasic. The semilog plots suggested that only half of the sites were highly protected. The cumulative data suggest a model in which pairs of sites or subunits can exist in three different states designated HH (both sites have a high APS affinity, as in the native free enzyme), LL (both sites have a low APS affinity as in the SH-modified enzyme), and LH (as in the APS-occupied native or SH-modified enzyme). Thus, the HH----LH transition displays negative cooperativity for APS binding while the LL----LH transition displays positive cooperativity. The relative reactivities of like-paired SH-reactive reagents were in the order: N-phenylmaleimide greater than N-ethylmaleimide; dithionitropyridine greater than dithionitrobenzoate; thiolyte-MQ greater than thiolyte-MB. The log kmod versus pH curve indicates that the pKa of SH-1 is greater than 9.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号