首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationships between water chemistry and aquatic macroinvertebrate communities of 41 headwater streams were studied in the Vosges Mountains (N-E of France) in an attempt to assess the impact of acidification on macroinvertebrate diversity. The taxa richness of macroinvertebrates decreased drastically in headwater streams which were characterized by low pH, low calcium and high aluminum content. All taxonomic groups were affected, but Molluscans, Crustaceans and Ephemeroptera disappeared totally from strongly acidified streams. Simple indices based on taxa richness such as the coefficient of community loss may provide accurate tools to quickly assess the impact of acidification on macroinvertebrate communities. Despite the reduction of atmospheric SO2 emissions, acidification of freshwater in the Vosges Mountains continues to affect streams which were believed in the past to constitute refuge biotopes for numerous species. Consequently, acidification represents a real threat for numerous invertebrates. This study arises the question of the evolution in the future of headwater stream ecosystems. Urgent decisions and interventions are required to preserve non-acidified streams and to restore impacted ecosystems while awaiting spontaneous recovery.  相似文献   

2.
Although the California mediterranean climate region is widely considered a biodiversity hotspot for terrestrial plants and vertebrates, freshwater biodiversity in this region is generally not well known. Using information from museum specimen databases, published literature, biological assessment surveys, and specialist’s knowledge, we review freshwater biodiversity for several groups of stream organisms in the med-climate region of California, which includes 2,220 species in 292 families. The groups with the highest diversity of lotic species are aquatic insects and diatoms, which comprise 39 and 36 % of species in our lists, respectively. Sequential floods and drying periods limit the overall biodiversity of many stream organisms in California mediterranean rivers, and continued climate and land-use change may cause disproportionate biodiversity declines in the region. However, only 4 % of lotic species have been evaluated in the IUCN Red List of Threatened Species, and many assessments are outdated. Future development of online databases for botanical and zoological collections will significantly enhance biodiversity and distribution knowledge. This information will enable us to more accurately and efficiently assess the effects of global change on biodiversity of freshwater organisms, to evaluate conservation status of individual taxa, and to set conservation priorities for stream ecosystems.  相似文献   

3.
The impact of different land-use types on species is traditionally estimated by correlating landscape proportions recorded in buffer areas around focal points with species data observed at these sites. If a high proportion of a specific land-use type exists within a small radius, it will be accumulated in larger buffers and may confound the interpretation at larger scales. We sampled freshwater invertebrates in ten streams using cages with artificial substrate and compared the effects of arable land proportions calculated in disc-shaped buffers of increasing radius versus areas calculated from non-overlapping rings of increasing radius. We hypothesize that (1) the accumulative disc-based approach leads to confounding effects across increasing buffer size and that (2) the use of ring-based methods facilitates the identification of relevant scales for conservation measures. The abundance of crustaceans showed a positive relationship with arable land proportions, but Plecoptera abundance and the taxonomic richness of Ephemeroptera and Plecoptera decreased with increasing arable land proportions in the surrounding landscape. Our results further support the presence of confounding effects in disc-based analyses, as correlations between arable land proportions and Crustacea, or Plecoptera, respectively, were affected by the accumulation of small-scale area proportions. The distance at which arable land proportions significantly affected benthic fauna in freshwater streams was consistently shorter if calculated from rings rather than from discs. Although an a priori definition of ring width introduces new challenges, a combined use of disc- and ring-based techniques for the estimation of land-use effects may substantially improve the realization of conservation and protection measures in terrestrial and aquatic systems.  相似文献   

4.
Freshwater pearl mussels (Margartifera margaritifera L.) are among the most critically threatened freshwater bivalves worldwide. The pearl mussel simultaneously fulfils criteria of indicator, flagship, keystone and umbrella species and can thus be considered an ideal target species for the process conservation of aquatic ecosystem functioning. The development of conservation strategies for freshwater pearl mussels and for other bivalve species faces many challenges, including the selection of priority populations for conservation and strategic decisions on habitat restoration and/or captive breeding. This article summarises the current information about the species’ systematics and phylogeny, its distribution and status as well as about its life history strategy and genetic population structure. Based on this information, integrative conservation strategies for freshwater mollusc species which combine genetic and ecological information are discussed. Holistic conservation strategies for pearl mussels require the integration of Conservation Genetics and Conservation Ecology actions at various spatial scales, from the individual and population level to global biodiversity conservation strategies. The availability of high resolution genetic markers for the species and the knowledge of the critical stages in the life cycle, particularly of the most sensitive post-parasitic phase, are important prerequisites for conservation. Effective adaptive conservation management also requires an evaluation of previous actions and management decisions. As with other freshwater bivalves, an integrative conservation approach that identifies and sustains ecological processes and evolutionary lineages is urgently needed to protect and manage freshwater pearl mussel diversity. Such research is important for the conservation of free-living populations, as well as for artificial culturing and breeding techniques, which have recently been or which are currently being established for freshwater pearl mussels in several countries.  相似文献   

5.
Freshwater mussels provide important functions and services for aquatic ecosystems, but populations of many species have been extirpated. Information on biodiversity plays an important role in the conservation and management of freshwater mussels. The Xin River Basin is a biodiversity hotspot for freshwater mussels in China, with more than 43 species known, but populations of which are decreasing. Here, we quantify the diversity of freshwater mussels in the middle and lower reaches of the Xin River Basin and study the correlation of habitat characteristics and freshwater mussel diversity. Compared to the historical period, the number of species, density, and biomass of freshwater mussels decreased 33%, 83%, and 82% in the current period, respectively. Fifty two percent of recorded species were empty shells, and 14 native freshwater mussels were not found in the study area. Four species are currently listed as vulnerable species using IUCN criteria and their global status. The assemblage structure of freshwater mussels exhibits significant spatial differences, and there was a correlation with substrate and physicochemical parameters. The main tributary of the Xin River with higher freshwater mussel diversity should be established as one large protected area because the nestedness component was the main pattern of beta diversity. These results indicated freshwater mussel diversity was declining rapidly, which can help focus conservation effort for freshwater mussel biodiversity.  相似文献   

6.
7.
Suitable reservoirs and monitoring methods are needed to manage scarce water supplies in dry countries. We assessed here the impact on aquatic macroinvertebrates of the only dam on the Eerste River, which runs through the heart of a biodiversity hotspot, the Cape Floristic Region, South Africa. The dam and associated activities, were the only forms of disturbance in this otherwise pristine area. We sampled over 20,000 macroinvertebrate individuals and illustrated some categorical effects of the impoundment and its effects on macroinvertebrate assemblages. Macroinvertebrate species diversity below the dam was only half of that in the pristine catchment area above the dam. Furthermore, Ephemeroptera, Plecoptera and Trichoptera diversity and abundance dropped to almost zero as a result of the impoundment. In contrast, the abundance of the Diptera family Chironomidae increased substantially below the dam. These changes in macroinvertebrate diversity mirrored those recorded in biologically less diverse areas, but are of major concern in this biodiversity hotspot with its rich endemic fauna. We conclude that such an impoundment, while important for human welfare, results in a high price being paid in terms of loss of local biodiversity.  相似文献   

8.
Southwestern Australia is recognised as a global biodiversity hotspot, characterised by high diversity and endemism of vascular terrestrial plants. However, the significance of its freshwater biodiversity is not well understood. This review provides an updated account of species richness in rivers in the Mediterranean region (med-region) of southwestern Australia. Taxonomic knowledge of many aquatic invertebrate groups in this region has improved significantly in the last two decades as a result of ecological surveys and government funding for taxonomic research. Of the 662 species of plants and animals surveyed, 43% were found to be endemic to the region, yet when taxonomic groups were considered separately, levels of endemism were varied. To date, few aquatic species from the med-region are listed as threatened; however, many more species would be expected to be included if assessed against appropriate criteria. Conservation efforts are focussed on climate change mitigation and managing the impacts of broad scale land clearing for agriculture. Reserve design and location of important nature reserves on the extreme south coast, limits the ability for species’ movement to cooler, wetter regions. This will necessitate supporting restoration which leads to increased resilience in freshwater ecosystems to withstand the combined effects of climate change and land use.  相似文献   

9.
热带岛屿生物多样性是全球生物多样性保护研究的热点之一。海南岛是中国面积最大的热带岛屿, 丰富独特的淡水蟹类是维持岛内淡水生态系统功能完整性的关键类群。本文通过多年野外调查, 综合历史及最新文献资料, 对海南岛淡水蟹类物种多样性及其现状进行调查和评估, 并对淡水蟹类物种多样性保护现状进行了分析讨论。研究发现, 海南岛淡水蟹类物种多样性分布中心位于中南部山地, 主要集中于中部的霸王岭、鹦哥岭和猕猴岭, 南部的五指山和吊罗山, 以及西南部的尖峰岭一带。其物种多样性整体上呈现中南部山地高、平原台地低的特点。根据《IUCN物种红色名录濒危等级和标准》对海南岛淡水蟹类物种现状的评估结果显示, 全岛受威胁淡水蟹类物种的占比为16.7%。基于分布区预测, 以海南热带雨林国家公园为主体的保护地对淡水蟹类潜在适宜分布区的覆盖度明显优于此前碎片化的各级保护区。本文研究结果显示, 海南岛淡水蟹类的总体生存状况良好, 但一部分山地或平原种类处于受胁状态。国家公园体制的建立有望为岛内淡水蟹类物种多样性保护提供前所未有的机遇。基于物种多样性分布格局开展淡水蟹类等淡水生物多样性监测, 有助于促进海南岛淡水生态系统完整性的长效保护与可持续发展。  相似文献   

10.
JANI HEINO 《Freshwater Biology》2011,56(9):1703-1722
1. The aim of this paper is to review literature on species diversity patterns of freshwater organisms and underlying mechanisms at large spatial scales. 2. Some freshwater taxa (e.g. dragonflies, fish and frogs) follow the classical latitudinal decline in regional species richness (RSR), supporting the patterns found for major terrestrial and marine organism groups. However, the mechanisms causing this cline in most freshwater taxa are inadequately understood, although research on fish suggests that energy and history are major factors underlying the patterns in total species and endemic species richness. Recent research also suggests that not all freshwater taxa comply with the decline of species richness with latitude (e.g. stoneflies, caddisflies and salamanders), but many taxa show more complex geographical patterns in across‐regions analyses. These complexities are even more profound when studies of global, continental and regional extents are compared. For example, clear latitudinal gradients may be present in regional studies but absent in global studies (e.g. macrophytes). 3. Latitudinal gradients are often especially weak in the across‐ecosystems analyses, which may be attributed to local factors overriding the effects of large‐scale factors on local communities. Nevertheless, local species richness (LSR) is typically linearly related to RSR (suggesting regional effects on local diversity), although saturating relationships have also been found in some occasions (suggesting strong local effects on diversity). Nestedness has often been found to be significant in freshwater studies, yet this pattern is highly variable and generally weak, suggesting also a strong beta diversity component in freshwater systems. 4. Both geographical location and local environmental factors contribute to variation in alpha diversity, nestedness and beta diversity in the freshwater realm, although the relative importance of these two groups of explanatory variables may be contingent on the spatial extent of the study. The mechanisms associated with spatial and environmental control of community structure have also been inferred in a number of studies, and most support has been found for species sorting (possibly because many freshwater studies have species sorting as their starting point), although also dispersal limitation and mass effects may be contributing to the patterns found. 5. The lack of latitudinal gradients in some freshwater taxa begs for further explanations. Such explanations may not be gained for most freshwater taxa in the near future, however, because we lack species‐level information, floristic and faunistic knowledge, and standardised surveys along extensive latitudinal gradients. A challenge for macroecology is thus to use the best possible species‐level information on well‐understood groups (e.g. fish) or use surrogates for species‐level patterns (e.g. families) and then develop hypotheses for further testing in the freshwater realm. An additional research challenge concerns understanding patterns and mechanisms associated with the relationships between alpha, beta and gamma components of species diversity. 6. Understanding the mechanistic basis of species diversity patterns should preferably be based on a combination of large‐scale macroecological and landscape‐scale metacommunity research. Such a research approach will help in elucidating patterns of species diversity across regional and local scales in the freshwater realm.  相似文献   

11.
Most of our current understanding of rarity has come from studies of terrestrial plants and animals, whereas freshwater habitats remain poorly documented under this topic. Here we considered the spatial distribution patterns of rarity at the river catchment scale, for five freshwater taxa (fish, Ephemeroptera, Plecoptera, Trichoptera and Coleoptera) in southwestern France. The data were collected at 554 and 155 sampling sites for fish and aquatic insects, respectively. General Linear Modelling was used to assess the influence of some typological variables (elevation, stream order, distance from source, and reach slope) on local numbers of rare species (restricted range). The relative numbers of rare species per taxa varied from 16% (Plecoptera) to 59% (Trichoptera). GLM chiefly yielded highly significant correlations between rarity and distance from the source and/or elevation for all taxa, showing that numbers of rare stream species increase towards downstream areas within the stream system. The spatial patterns in rarity for the different study taxa were rather concordant, probably as a result of similar responses to environmental conditions. By focusing on integrative variables, we emphasized the influence of river typology on the rarity of aquatic animals. Areas which carry rare species may concentrate an important fraction of the regional biodiversity. If end-users need geographic models (i.e. maps) to design river management frameworks, numerical patterning is needed to provide theoretical backgrounds: by predicting what the rarity should be like in a given area, we can provide explicit spatial schemes that may be useful to target further research, and to implement management options.  相似文献   

12.
1. The impacts of anthropogenic surface water acidification are much better known than those of natural acidity. Recent studies have indicated biodiversity is not degraded and species composition unaltered in naturally acidic compared to circumneutral watercourses.
2. Here, we use a geographically extensive dataset comprising sites in more than 200 Swedish streams to test whether the lack of effects on macroinvertebrate species diversity is due to exaptation and adaptation to natural acidity.
3. To this end, we modelled pH associated with spring flood episodes, which inflict the most challenging hydrochemical conditions to the biota. We compared taxonomic richness and species composition along the modelled pH gradient in northern Sweden, where acidity is largely natural, with southern Sweden, a region influenced by significant anthropogenic acidification.
4. We found Plecoptera richness did not respond to varying pH either in northern or southern Sweden. Ephemeroptera richness was sensitive to pH in both regions, while that of Trichoptera increased with increasing pH in southern Sweden, but decreased in the north. The taxonomic composition of Plecoptera changed along the pH gradient in both regions, whereas that of Ephemeroptera and Trichoptera changed more strongly with pH in southern Sweden.
5. Our results support the hypothesis that stream invertebrates are able to tolerate low pH through exaptation or adaptation, but that this capability varies among taxonomic groups.  相似文献   

13.
Synopsis Several freshwater species use the Kyrönjoki River estuary as a spawning and nursery area. The main reasons for this seem to be the morphology of the estuary, the abundance of shelter provided by aquatic macrophytes, high food production and favourable temperature conditions. Acidification of the estuary due to drainage from acidic soils has made part of the estuary unsuitable for fish reproduction. In addition, year to year fluctuations in the acidity of the estuarine water have affected the reproductive success of several species. The severity of the effects of the acidification at the population level is determined by the spatial and temporal distribution of the larvae and juveniles.  相似文献   

14.
淡水鱼类功能多样性及其研究方法   总被引:2,自引:0,他引:2  
目前,群落功能多样性备受生态学界关注,被认为是能解决生态问题的一种重要途径。我国对于群落功能多样性主要集中在植物群落和微生物群落,而在鱼类群落方面的研究几乎是空白。我国鱼类资源正面临着严重威胁,包括水坝建设导致的鱼类通道受阻、水库形成造成鱼类产卵场功能消失、过度捕捞、水质恶化和富营养化加重、外来种入侵等因素,导致渔业资源急剧衰退,水生生态系统功能下降。以淡水鱼类群落为例,对鱼类功能多样性的数据获取及处理分析与评价、测定指标及计算方法与研究难点等进行综述,以期为鱼类资源保护提供新的理论依据和切入点。  相似文献   

15.
Understanding the correlation between genetic diversity and species diversity in freshwater communities is important to elucidate the influences of local selective forces on the genetic diversity of local aquatic plant populations across different communities. This study employed amplified fragment length polymorphism (AFLP) to assess the genetic diversity of Potamogeton pectinatus L. populations between two sister-lakes with contrasting trophic levels, eutrophic and oligotrophic, in the Yunnan Plateau in southwest of China. The results showed high genetic differentiation between eutrophic lake and oligotrophic lake. The genetic distances between P. pectinatus populations were significantly correlated with the species evenness, but not with difference in species richness of aquatic plant communities. The results underpinned that genetic diversity at inter-population levels and local species diversity in plant communities are positively correlated. In addition, our results also suggested that habitat types might play an important role in the genetic diversity of the P. pectinatus populations between these two lakes.  相似文献   

16.
About 130 years of anthropogenic acidification of Round Loch of Glenhead, SW Scotland, has resulted in successively decreased stability, diversity, productivity and survival rate of the non-biting midge (Diptera: Chironomidae) fauna. Similar trends have also been observed among mayflies, caddis-flies and water mites. The first effects of anthropogenic acidification on the insect and mite fauna, as evidenced by palaeolimnological analyses of210Pb-dated sediment cores, occurred as early as around 1850, i.e. earlier than in any other lake hitherto studied. The drop in the lake's pH was first indicated by decreased stability and changes in species composition of chironomids and mayflies in the littoral zone. Major changes in the profundal chironomid fauna did not take place until about 1950, when mean lake pH dropped below 5.0. At the same time, the littoral insect fauna became even more unstable and the first significant elimination of species occurred. Comparison with insect fauna of other lakes suggests that a pH of less than 5 might be critical for the ecological conditions in many acidified lakes. None of the twelve most common chironomid species present prior to the acidification of the lake had disappeared after 120–130 years of considerable acidification, and they are all common in oligotrophic lakes with a pH of 6.5–7.0. This is in contrast to the effects of heavy acidification on other aquatic animal groups. Chironomids are probably more sensitive to lake trophic status than lake acidity.  相似文献   

17.
The wastewater from freshwater fish farming is responsible for important water quality modifications in receiving ecosystems. These point source pollution cause local problems for the management of the freshwater environment, especially in salmon rivers. The aim of this paper is to study the relationship between plant communities and environmental factors in two rivers basins on which seven fish farms are located and to assess the relative part of water pollution compared to other environmental factors involved in water plant distribution. The disturbance due to fish farming wastewater increased both richness and diversity of aquatic plant communities and modified the distribution of 11 aquatic macrophytes. Nevertheless, the main factors involved in the aquatic plant distribution in the whole data set were not the location upstream or downstream from one point source pollution but the belonging to one river system and the habitat physical features. Relevant prediction of macrophytic communities is a useful tool for bioindication purposes but several groups of variables that manifest themselves at different spatial levels must be considered.  相似文献   

18.
Unprecedented rates of species extinctions have prompted extensive research into the consequences of biodiversity losses on ecosystem functioning. While aquatic species are most threatened, research with freshwater and marine model systems has lagged behind progress made in terrestrial environments. This editorial to a special feature summarizes the main outcomes of a conference aimed at setting the stage for exploring the potential of aquatic systems to assess the role of biodiversity in ecosystem functioning. This series of papers proposes fresh approaches to the study of biodiversity effects on ecosystem functioning, outlines a new way of analyzing experimental data, presents a model that considers scale as an important factor determining outcomes, explores the effects of multiple stressors on species richness and ecosystem processes, and develops a food-web perspective that relates ecosystem properties to biodiversity. An insightful synthesis of lessons learned from aquatic systems is premature at present, but the papers clearly demonstrate the role that marine and freshwater systems can play in resolving open questions. The implications go well beyond the biodiversity in, and functioning of, ecosystems shaped by free-flowing or standing water.  相似文献   

19.
Rotifers are important components of freshwater ecosystems and sensitive indicators of environmental changes. This study was carried out to test the hypothesis that, among environmental variables, salinity and aquatic vegetation have significant effects on rotifer diversity and abundance. We analyzed rotifer assemblages in the littoral zone of 22 hydromorphologically different shallow waterbodies in West Azarbaijan, Iran. Rotifer diversity and abundance were not significantly associated with basin morphology, but were positively correlated with the percentage of vegetation cover. Salinity and electroconductivity positively influenced rotifer abundance, while they had significantly negative effects on rotifer diversity. Halobiont species from the genera Brachionus, Hexarthra, Synchaeta, and Notholca reached their highest abundances in the waterbodies with pronouncedly higher salinities. Our findings are in agreement with recent records showing that distinct rotifer assemblages occur in saline and non-saline waterbodies. The role of salinity and aquatic vegetation as the most important environmental drivers in shaping rotifer communities is confirmed. The results of this study suggested that environmental changes could be significant on the micro-biogeographical level, and that the interaction of salinity and observed human impact, i.e., trophic level, promote rotifer abundance as sensitive indicators of environmental changes.  相似文献   

20.
An assessment system suitable to support implementation of the EU Water Framework Directive's local water management plans should build on quantitative knowledge about a suite of well-documented indicator and umbrella species’ requirements for different stream orders. Assuring high communication value for improving local public awareness and participation for restoring ecological integrity in impaired headwater streams is critical. Loss and fragmentation of forests are major threats to ecological integrity. The aquatic macroinvertebrate order Plecoptera is commonly used as an indicator of the ecological integrity of streams. We measured abundance and taxonomic richness of Plecoptera in relation to land cover and water chemistry in second and third order catchments’ in 25 headwater streams in Central Europe's Carpathian Mountains. Plecoptera abundance and Plecoptera taxa richness were positively correlated to each other, as well as to forest proportion in the catchments, but negatively correlated to catchment area, inorganic carbon, alkalinity and conductivity. Segmented linear regression was then used to identify thresholds associated to forest proportion as a surrogate for catchment integrity. No threshold was found for Plecoptera abundance, but for taxa richness a threshold of 54% forest cover was found, below which Plecoptera was affected in second order streams. Using Plecoptera as a proxy for ecological integrity this study indicates that forest cover is an effective bioindicator in headwater catchments for predicting the ecological status of headwater streams. The non-linear relationship between forest cover and Plecoptera can be used as a science-based norm whereby land cover monitoring can be used to assess the ecological status of streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号