首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peripheral blood mononuclear cells (PBMC) have been accepted as a unique material for cancer immunotherapy using dendritic cells (DC) or activated lymphocytes that are being developed as an alternative or adjuvant to conventional therapies such as surgery, chemotherapy and radiation treatment. Although successful cryopreservation of large numbers of PBMC is critical for the immunotherapy, subsequent functional study of the effects of PBMC cryopreservation on differentiation into immune cells has not been well defined. In this study, over 1.0 × 108 cells/ml PBMC were cryopreserved as long as 52 weeks using a controlled-rate freezer (CRF) and stored in a vapor phase of liquid nitrogen tank. The effect of PBMC cryopreservation on differentiation into DC was studied by comparing the phenotypic and functional properties of immature DC (iDC) and mature DC (mDC) derived from cryopreserved PBMC to those from fresh PBMC. The results show that cryopreservation of PBMC at a fairly high cell concentration does not significantly affect cell recovery, viability, or phenotypes of PBMC. After differentiation into DC, iDC and mDC derived from cryopreserved PBMC had their typical phenotypes and function equivalent to those derived from fresh PBMC. Therefore, the improved cryopreservation process of PBMC described in this study is available for DC-based cancer immunotherapy.  相似文献   

2.
Immunotherapy is one of the most rapidly progressing and promising fields in antitumor therapy. It is based on the idea of using immune cells of patient or healthy donors for elimination of malignant cells. T lymphocytes play a key role in cell-mediated immunity including the response to tumors. Recently developed approaches of altering antigen specificity of T cells consist of their genetic modification (introduction of additional T cell receptor or chimeric antigen receptor), as well as the use of bispecific molecules that crosslink target and effector cells. These approaches are used to retarget T lymphocytes with arbitrary specificity against tumor antigens in the context of antitumor immunotherapy. The high potential of T cell immunotherapy was demonstrated in a number of clinical trials. In the future, it is possible to develop approaches to the therapy of a wide spectrum of tumors. The selection of the optimal antigen is the main challenge in successful T cell immunotherapy, as it largely determines the effectiveness of the treatment, as well as the risk of side effects. In this review we discuss potential methods of modification of T cell specificity and targets for immunotherapy.  相似文献   

3.
Immunotherapy has been developed for the treatment of metastatic cancers refractory to conventional therapies. Immunotherapy utilizes immune cells and/or biological response modifiers (BRMs) to induce an anti-tumor response mediated by the patient's immune system. BRMs, including lymphokines and cytokines, are used as single agents or in combination for cancer therapy. Some BRMs, particularly interleukin 2 (IL-2), can activate and expandin vitro lymphocytes with anti-tumor reactivity which will be adoptively transferred to the patient. To enhance the therapeutic effect of immunotherapy, gene therapy is currently under investigation and involves the insertion of cytokine genes in immune cells or in tumor cells. The development and future of cancer immunotherapy will be discussed in this review.  相似文献   

4.
Immunotherapy is an attractive approach for treating cancer. T‐cell engagers (TCEs) are a type of immunotherapy that are highly efficacious; however, they are challenged by weak T‐cell activation and short persistence. Therefore, alternative solutions to induce greater activation and persistence of T cells during TCE immunotherapy is needed. Methods to activate T cells include the use of lectins, such as phytohemagglutinin (PHA). PHA has not been used to activate T cells in vivo, for immunotherapy, due to its biological instability and toxicity. An approach to overcome the limitations of PHA while also preserving its function is needed. In this study, we report a liposomal PHA which increased PHA stability, reduced toxicity and performed as an immunotherapeutic that is able to activate T cells for the use in future cancer immunotherapies to circumvent current obstacles in immunosuppression and T‐cell exhaustion.  相似文献   

5.
In the unique supply chain of cellular therapies, preservation is important to keep the cell product viable. Many factors in cryopreservation affect the outcome of a cell therapy: (i) formulation and introduction of a freezing medium, (ii) cooling rate, (iii) storage conditions, (iv) thawing conditions and (v) post-thaw processing. This article surveys clinical trials of cellular immunotherapy that used cryopreserved regulatory, chimeric antigen receptor or gamma delta T cells, dendritic cells or natural killer (NK) cells. Several observations are summarized from the given information. The aforementioned cell types have been similarly frozen in media containing 5–10% dimethyl sulfoxide (DMSO) with plasma, serum or human serum albumin. Two common freezing methods are an insulated freezing container such as Nalgene Mr. Frosty and a controlled-rate freezer at a cooling rate of -1°C/min. Water baths at approximately 37°C have been commonly used for thawing. Post-thaw processing of cryopreserved cells varied greatly: some studies infused the cells immediately upon thawing; some diluted the cells in a carrier solution of varying formulation before infusion; some washed cells to remove cryoprotective agents; and others re-cultured cells to recover cell viability or functionality lost due to cryopreservation. Emerging approaches to preserving cellular immunotherapies are also described. DMSO-free formulations of the freezing media have demonstrated improved preservation of cell viability in T lymphocytes and of cytotoxic function in natural killer cells. Saccharides are a common type of molecule used as an alternative cryoprotective agent to DMSO. Improving methods of preservation will be critical to growth in the clinical use of cellular immunotherapies.  相似文献   

6.
Long-term storage of cell stocks insures that cells are available for use whenever needed. Cryopreservation of cells is the method of choice for preservation of important or rare cell stocks. There are several factors to consider when establishing a protocol for freezing, thawing, and recovery of cells after storage. These parameters may include cell concentration, cryoprotectant choice and concentration, and thawing rate among others. Further, the assessment of cell viability and/or function prior to and following cryopreservation is imperative in order to accurately determine downstream utility as well for optimizing the cryopreservation process. This chapter is designed to provide guidance and insight into developing robust and successful protocols for preserving cells that will preserve cell stocks and provide optimal cell yield and viability.  相似文献   

7.
Production of biopharmaceuticals from mammalian cells requires generation of master, working and post-production cell banks of high quality under GMP conditions. An optimal cryopreservation strategy is needed for each new production cell line, particularly with regard to establishing production processes that are completely devoid of serum or even any animal components and to ensuring robust thaw performance for reliable production. Here, we describe a novel strategy employing flow-cytometric (FC) analysis of Annexin V-stained cells for high-throughput characterization of cell banks. Our data show that this method enables predictive evaluation of a cryopreservation strategy as early as 6h after thawing of cells. Furthermore, a broad study is presented characterizing various factors that may influence the quality of serum-free production cell banks from NSO and CHO cell lines. These results demonstrate how FC-based analysis can be used for development of future state-of-the-art cryopreservation strategies.  相似文献   

8.
Immunotherapy is currently under active investigation as an adjuvant therapy to improve the overall survival of patients with acute myeloid leukaemia (AML) by eliminating residual leukaemic cells following standard therapy. The graft-versus-leukaemia effect observed following allogeneic haematopoietic stem cell transplantation has already demonstrated the significant role of immune cells in controlling AML, paving the way to further exploitation of this effect in optimized immunotherapy protocols. In this review, we discuss the current state of cellular immunotherapy as adjuvant therapy for AML, with a particular focus on new strategies and recently published results of preclinical and clinical studies. Therapeutic vaccines that are being tested in AML include whole tumour cells as an autologous source of multiple leukaemia-associated antigens (LAA) and autologous dendritic cells loaded with LAA as effective antigen-presenting cells. Furthermore, adoptive transfer of cytotoxic T cells or natural killer cells is under active investigation. Results from phase I and II trials are promising and support further investigation into the potential of cellular immunotherapeutic strategies to prevent or fight relapse in AML patients.  相似文献   

9.
Cryopreservation is the only long-term storage option for the storage of vessels and vascular constructs. However, endothelial barrier function is almost completely lost after cryopreservation in most established cryopreservation solutions. We here aimed to improve endothelial function after cryopreservation using the 2D-model of porcine aortic endothelial cell monolayers.?The monolayers were cryopreserved in cell culture medium or cold storage solutions based on the 4°C vascular preservation solution TiProtec®, all supplemented with 10% DMSO, using different temperature gradients. After short-term storage at ?80°C, monolayers were rapidly thawed and re-cultured in cell culture medium.?Thawing after cryopreservation in cell culture medium caused both immediate and delayed cell death, resulting in 11 ± 5% living cells after 24 h of re-culture. After cryopreservation in TiProtec and chloride-poor modifications thereof, the proportion of adherent viable cells was markedly increased compared to cryopreservation in cell culture medium (TiProtec: 38 ± 11%, modified TiProtec solutions ≥ 50%). Using these solutions, cells cryopreserved in a sub-confluent state were able to proliferate during re-culture. Mitochondrial fragmentation was observed in all solutions, but was partially reversible after cryopreservation in TiProtec and almost completely reversible in modified solutions within 3 h of re-culture. The superior protection of TiProtec and its modifications was apparent at all temperature gradients; however, best results were achieved with a cooling rate of ?1°C/min.?In conclusion, the use of TiProtec or modifications thereof as base solution for cryopreservation greatly improved cryopreservation results for endothelial monolayers in terms of survival and of monolayer and mitochondrial integrity.  相似文献   

10.
Immunotherapy, particularly active vaccination, may be developed as an effective and safe treatment modality for malignant gliomas, which continue to have a poor prognosis, despite advances in surgical techniques and adjuvant chemotherapy and radiotherapy. Since no glioma-specific tumor-associated antigens (TAAs) have been discovered, autologous tumor cells or well-established glioma cell lines could be used in future vaccination protocols to induce antitumour immunity against unknown TAAs. One obstacle for clinical use of these tumour cell vaccines is related to foetal calf serum (FCS). Efforts are currently being directed toward developing FCS-free media and serum-free alternatives to culture these cell vaccines. In this study, a medium containing human serum and one serum-free medium (UltraCulture), supplemented or not with epidermal growth factor, were tested on morphology, survival, DNA content and TAA expression of human glioma cell lines and glioma biopsy primary cultures. Their effects were compared on FCS-containing medium. Results show that, whatever the medium used, no significant variations in morphology and survival were observed. Furthermore, human serum-containing medium or UltraCulture preserved at early passage cultures the cell population of interest present in the biopsies before culture. In addition, the expression profile of eight TAAs was similar between these media. These data indicate that human serum-containing medium and UltraCulture serum-free medium could be promising candidates to produce tumour-cell vaccines.  相似文献   

11.
Traditional therapies for cancer include surgery, chemotherapy, and radiation. Chemotherapy has widespread systemic cytotoxic effects against tumor cells but also affects normal cells. Radiation has more targeted local cytotoxicity but is limited to killing cells in the radiation field. Immunotherapy has the potential for systemic, specific killing of tumor cells. However, if the immune response is specific to a single antigen, tumor evasion can occur by down-regulation of that antigen. An immunotherapy approach that induces polyvalent immunity to autologous tumor antigens can provide a personalized vaccine with less potential for immunologic escape. A cytotoxic immunotherapy strategy creates such a tumor vaccine in situ. Immunogenic tumor cell death provides tumor antigen targets for the adaptive immune response and stimulates innate immunity. Attraction and activation of antigen presenting cells such as dendritic cells is important to process and present tumor antigens to T cells. These include cytotoxic T cells that kill tumor cells and T cells which positively and negatively regulate immunity. Tipping the balance in favor of anti-tumor immunity is an important aspect of an effective strategy. Clinically, immunotherapies may be most effective when combined with standard therapies in a complimentary way. An example is gene-mediated cytotoxic immunotherapy (GMCI) which uses an adenoviral vector, AdV-tk, to deliver a cytotoxic and immunostimulatory gene to tumor cells in vivo in combination with standard therapies creating an immunostimulatory milieu. This approach, studied extensively in animal models and early stage clinical trials, is now entering a definitive Phase 3 trial for prostate cancer.  相似文献   

12.
在猪胎儿成纤维细胞(porcine fetal fibroblasts, PFF)冻存过程中,血清品质常常制约着细胞的冻存效果。为了解决这个问题,本研究旨在开发一种无血清冻存液应用于猪胎儿成纤维细胞冻存。用3种不同冻存液冻存猪胎儿成纤维细胞,每种冻存10管。冻存30 d后复苏细胞,测定冻存细胞存活率,细胞增殖活力以及电转后细胞活性。结果显示:自制无血清细胞冻存液,冻存猪胎儿成纤维细胞后存活率达95.33%;细胞增殖活力以及电转后细胞活性均显著高于标准胎牛血清冻存液(p<0.05),与特级胎牛血清冻存液效果相当(p>0.05)。因此,自制冻存液冻存猪胎儿成纤维细胞效果稳定,能够替代含血清冻存液,有良好的推广应用前景。  相似文献   

13.
We present a case report of patient with intracranial chondrosarcoma and attempt to use vaccination of dendritic cells as the salvage therapy. To our knowledge, this is the first case report of DCs vaccination in the head and neck chondrosarcoma. Immunotherapy with allogeneic DCs stimulated with tumor cell lysates in this case was demonstrated to be feasible, safe and well tolerated. Unfortunately we did not observe any clinical or immune response during vaccination. CD4+ and CD8+ regulatory cells could be responsible for ineffectiveness of immunotherapy.  相似文献   

14.
Large culture collections of microalgae and cyanobacteria such as the Coimbra Collection of Algae (ACOI) hold unialgal cultures consisting of a population of cells/colonies of a certain species. These cultures are usually non-axenic, as other organisms such as bacteria and microfungi are also present in culture due to co-isolation. Attention has been recently given to partner organisms since studies indicate that some bacteria are important for nutrient uptake of the algal cells, acting as simbionts. Despite this benign effect in the actively growing cultures, when cryopreservation is applied for inactive-stage storage, these organisms may recover faster than the algae, thus affecting their recovery and the viability assessments. In this study, a set of mucilaginous ACOI microalgae were selected, cell features known for their relevance in cryopreservation success were recorded and simple two-step cryopreservation tests were applied. Thawed samples were transferred to fresh culture medium for recovery. Viability was assessed and partner organism proliferation (pop) was recorded. Results were analyzed by t-tests. Statistical models allowed us to support the known tendency for small, unicellular algae with no outer structures to be successfully cryopreserved and the negative effect of vacuoles in the cell prior to cryopreservation. On average cryopreservation with MeOH or Me2SO led to the recovery of nearly half the cells. It was found that the cryoprotection step with MeOH is when pop is triggered and that the use of Me2SO can prevent this effect. Progress on understanding the cultured consortia will assist the improvement of cryopreservation and research using microalgal cultures.  相似文献   

15.
PURPOSE: Immunotherapy holds promise as a new strategy for the eradication of residual cells in acute myeloid leukaemia (AML). Leukaemic antigen presenting cells (APCs) combining optimal antigen presentation and tumour antigenicity could be used as potent T cell activators. For clinical purposes it is desirable to culture APCs under serum-free conditions. Therefore, we compared morphological, immunophenotypical and functional outcome of the serum-free culture of AML-APCs to their serum-enriched culture. METHODS: AML blasts (n=19) were cultured in the presence of either a cytokine mix or calcium ionophore (CI) for 14 and 2 days, respectively, in FCS-containing medium (FCS), StemSpan serum-free medium (SP) and CellGro serum-free medium (CG). After culture relative yields were calculated and immunophenotypic analysis of APC markers was performed. The mixed leukocyte reaction (MLR) was used to determine T cell stimulating capacity. RESULTS: Serum-free culture of AML-APCs resulted in comparable morphology, relative yields and immunophenotype to serum-enriched culture. By comparing both serum-free media we observed a trend towards a more mature phenotype of CI-cultured AML-APCs in SP. MLR showed that serum-free cultured cells have equal T cell stimulatory capacity in comparison with serum-enriched culture. CONCLUSION: These data show that the serum-free culture of AML-APCs is feasible and that these APCs are comparable to serum-enriched cultured AML-APCs with regard to morphological, immunophenotypical and functional characteristics. These AML-APCs are suitable for the development of active specific immunisation protocols which meet the criteria for good clinical practise (GCP).  相似文献   

16.
Abstract Background aims. Interest in natural killer (NK) cell-based immunotherapy has resurged since new protocols for the purification and expansion of large numbers of clinical-grade cells have become available. Methods. We have successfully adapted a previously described NK expansion method that uses K562 cells expressing interleukin (IL)-15 and 4-1 BB Ligand (BBL) (K562-mb15-41BBL) to grow NK cells in novel gas-permeable static cell culture flasks (G-Rex). Results. Using this system we produced up to 19 × 10(9) functional NK cells from unseparated apheresis products, starting with 15 × 10(7) CD3(-) CD56 (+) NK cells, within 8-10 days of culture. The G-Rex yielded a higher fold expansion of NK cells than conventional gas-permeable bags and required no cell manipulation or feeding during the culture period. We also showed that K562-mb15-41BBL cells up-regulated surface HLA class I antigen expression upon stimulation with the supernatants from NK cultures and stimulated alloreactive CD8 (+) T cells within the NK cultures. However, these CD3 (+) T cells could be removed successfully using the CliniMACS system. We describe our optimized NK cell cryopreservation method and show that the NK cells are viable and functional even after 12 months of cryopreservation. Conclusions. We have successfully developed a static culture protocol for large-scale expansion of NK cells in the gas permeable G-Rex system under good manufacturing practice (GMP) conditions. This strategy is currently being used to produce NK cells for cancer immunotherapy.  相似文献   

17.
Summary L1210 tumor subpopulations were isolated by lectin-nylon chromatography and evaluated in active, specific immunotherapy of residual L1210 leukemia (following reduction in tumor burden by chemotherapy). Immunotherapy with cells either not binding mannosylspecific columns or eluted from fucose-specific columns resulted in a higher percent of long-term survivors compared to mice treated with chemotherapy only. In contrast, immunotherapy with cells eluted from galactose-specific columns was deleterious, and abrogated the beneficial effects of chemotherapy. The results emphasize that (a) clinical immunotherapy may be either beneficial or deleterious, depending upon the properties of the tumor cell vaccine, and (b) the therapeutic value of L1210 subpopulations is related to the expression of cell-surface carbohydrates.Supported, in part, by a research contract from the National Cancer Institute, USA  相似文献   

18.
《Cytotherapy》2019,21(5):566-578
BackgroundChimeric antigen receptor engineered T (CAR-T) cell therapy is a promising approach currently revolutionizing the field of cancer immunotherapy. However, data concerning clinical-grade CAR-T cell stability and functionality after months of cryopreservation have not been released by companies so far. To investigate the effect of cryopreservation on CAR-T cells and to further optimize the potency assays, we performed this study.MethodsA third generation of CD19 CAR-T cells was manufactured according to Good Manufacturing Practice (GMP) requirements, which is applied to patients in an ongoing clinical phase 1 study. Quality control tests for sterility, endotoxin and mycoplasma were performed for each batch. Stability in terms of viability, recovery, transduction efficiency and functional capacity was determined using microscopy, multiparametric flow cytometry as well as chromium-51 release tests.ResultsUp to 90days of cryopreservation had no influence on viability, recovery and transduction efficiency of CAR-T cells. However, higher cell concentration for cryopreservation could alter the cell viability and recovery but not the transduction efficiency. Moreover, directly after thawing, both the quantity and quality of the functionality of CAR-T cells were transiently hampered by the negative effects of cryopreservation. Notably, the impaired functionality could be fully restored and even strengthened after an overnight resting process.DiscussionCryopreservation is a challenge for the functional activity of CAR-T cells. However, CAR-T cells regain their potency by overnight incubation at 37°C, which mimics the clinical application setting. Therefore, an overnight resting step should be included in in vitro potency assays.  相似文献   

19.
History of cancer immunotherapy lasts for more than 120 years. In 1891 William B. Coley injected bacteria into inoperable cancer (bone sarcoma) and observed tumor shrinkage. He is recognized as the "'"Father of Immunotherapy"'". Cancer immunotherapy is based on the ability of the immune system to recognize cancer cells and to affect their growth and expansion. Beside the fact that, tumor cells are genetically distinct from their normal counterparts, and should be recognized and eliminated by immune system, the tumor associated antigens (TAAs) are often poorly immunogenic due to immunoediting. This process allows tumor to evolve during continuous interactions with the host immune system, and eventually escape from immune surveillance. Furthermore, tumor microenvironment consists of immunosuppressive cells that release immunosuppressive factors including IL-6, IL-10, IDO, TGFβ or VEGF. Interactions between cancer and stroma cells create network of immunosuppressive pathways, while activation of immune defense is inhibited. A key to successful immunotherapy is to overcome the local immunosuppression within tumor microenvironment and activate mechanisms that lead to tumor eradication. There are two clinical approaches of immunotherapy: active and passive. Active immunotherapy involves stimulation of immune response to tumor associated antigens (TAAs), either non-specifically via immunomodulating agents or specifically employing cancer vaccines. This review presents the progress and breakthroughs in design, development and clinical application of selected cell-based tumor vaccines achieved due to the generation and development of gene transfer technologies.  相似文献   

20.
Immunotherapy based on T cell responses to the tumor is believed to involve killing of cancer cells by induction of apoptosis. The predominant mechanisms are death ligand-induced signaling mainly by TNF-related apoptosis-inducing ligand (TRAIL) mediated by CD4 T cells, monocytes and dendritic cells, and perforin/granzyme mediated apoptosis mediated by CD8 T cells and NK cells. Resistance against TRAIL involves loss of TRAIL death receptors and/or activation of the MEK and/or Akt signal pathways. Resistance to CD8 CTL responses also involves activation of the MEK and/or Akt pathways. Apoptosis induced by immune responses is regulated by the Bcl-2 family of proteins. Many reagents have been developed against the Bcl-2 antiapoptotic proteins and clinical trials combining them with immunotherapy are awaited. The second group of agents that regulate the Bcl-2 family of proteins are the signal pathway inhibitors. Clinical trials with inhibitors of RAS, RAF or MEK are in progress and would appear an exciting combination with immunotherapy. One of the main drivers of resistance to apoptosis are adaptive mechanisms that allow cancer cells to overcome endoplasmic reticulum (ER) stress. These adaptive mechanisms inhibit practically all known apoptotic pathways and create an acidic environment that may reduce infiltration of lymphocytes against the tumor. The signal pathway inhibitors may be effective against these adaptive processes but additional agents that target ER stress pathways are in development. In conclusion, combination of immunotherapy with agents that target antiapoptotic mechanisms in cancer cells offers a new approach that requires evaluation in clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号