首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The extracellular matrix (ECM) of unfertilized Xenopus laevis eggs consists of an elaborate filamentous network in the perivitelline space (PS) and a thick fibrillar vitelline envelope (VE), with a thin layer of horizontal filaments (HF) separating the two. At fertilization this ECM is converted into the fertilization envelope (comprised of the fertilization (F) layer and altered VE), and a third layer, the smooth (S) layer, is formed at the upper boundary of the PS (Larabell and Chandler, 1988). In this report, we use quick-freeze, deep-etch, rotary-shadow electron microscopy to show that an intact S layer can be formed in vitro by incubation of unfertilized eggs in an exudate obtained from cortical granules. Within 5 min numerous 36-nm-diameter particles assemble in a highly ordered array at the microvillar tips. These particles appear to "melt" and to form patches of smooth material and within 10 min one continuous sheet has formed. The presence of the VE is required for formation of the S layer, and we suggest that the HF layer is the site of assembly.  相似文献   

2.
The extracellular matrix of Xenopus laevis eggs was analyzed at fixed intervals after prick-activation using quick-freeze, deep-etch, rotary-shadow electron microscopy. This technique revealed that the modifications of the matrix seen at fertilization do not occur simultaneously, but that instead there is an orderly progression of alterations at activation. The first modification, conversion of the vitelline envelope (VE) to the altered vitelline envelope (VE), occurs within 2 to 3 min after activation. Intermediate stages of the VE to VE transformation can be visualized traveling around the egg in a wave-like fashion. Upon completion of the wave, the loosely woven outer surface of the VE, believed to be the prefertilization layer, remains unaltered. Subsequent formation of the fertilization (F) layer at this VE-jelly interface occurs between 4 and 8 min postactivation. Finally, between 10 and 15 min postactivation, the smooth (S) layer forms on the tips of the microvilli and surrounds the entire egg.  相似文献   

3.
The extracellular matrix of Xenopus laevis oocytes was analyzed before and after meiotic maturation using quick-freeze, deep-etch, rotary-shadow electron microscopy. The perivitelline space (PS) of the meiotically immature oocyte contains a filamentous network which connects microvilli (MV) and follicle cell macrovilli to the folded oocyte surface below. The envelope overlying the PS is composed of bundles of large fibers which course between the tips of the MV. Spaces between these bundles contain smaller fibrils which secure the egg envelope to the microvillar tips. Meiotic maturation is accompanied by flattening of the oocyte plasma membrane, formation of an orderly array of MV, and elevation of the egg envelope. In the coelomic eggs, the reorganized envelope is composed of loosely bundled large fibers which course above the microvillar tips rather than between them. The spaces between these bundles contain small fibers similar to those seen in the meiotically immature oocyte. This reorganized envelope, however, will not bind sperm; further modifications must transpire during passage through the oviduct to render it sperm receptive.  相似文献   

4.
Summary Elongated microvilli attach the early sea urchin embryo to the fertilization envelope and support it in a concentric position within the perivitelline space. The contractility of the elongated microvilli was demonstrated in several ways. (1) During normal cleavage, these microvilli change their length to adapt to the change in shape and numbers of blastomeres. (2) When treated with calcium-free sea water, embryos become eccentrically located and the microvilli extend further than normal on one side; when returned to normal sea water, the embryos become centered again. (3) Several agents cause the fertilization envelope to become higher and thinner than normal and the elongated microvilli to extend correspondingly if treated within ten min after fertilization. In some cases, both elongated microvilli and fertilization envelope return to normal size when returned to normal sea water. (4) Fertilization in a papain solution causes the elongated microvilli and the fertilization envelope to contract to the surface of the embryo. (5) Refertilization after the papain-induced contraction can bring about the elongation of these microvilli and the elevation of the fertilization envelope a second time. It was also shown that elongated microvilli are extended immediately upon fertilization, at the same time as the short microvilli. The firm adherence of the tips of elongated microvilli to the fertilization envelope by means of extracellular matrix fibers is shown in a high voltage electron microscope stereoimage. This allows us to understand why it is that when the elongated microvilli extend or contract, the fertilization envelope also extends and contracts accordingly.  相似文献   

5.
Embryos and larvae of the starfish Pisaster ochraceus are surrounded by a complex extracellular matrix (ECM) layer called the hyaline layer (HL). A similar but less well-organized ECM layer lines some regions of the larval gut. Examination of material preserved by freeze substitution shows that the HL consists of a coarse outer meshwork, a boundary layer, a supporting layer, which is divided into three sublayers, H1, H2, and H3, and an intervillus layer. The development of the HL has been studied in material preserved by freeze substitution. Development begins at fertilization when exocytosis of the cortical granules releases ECM into the perivitelline space and elevates the fertilization membrane. Shortly after, plaques of dense material with attached fibers are present on the outer surface of the egg plasmalemma. Following this, these plaques and fibers are associated with the tips of short microvilli, suggesting that they may induce microvillus formation. Next, the tips of some of the microvilli are joined by short regions of the H1 sublayer. Some of these H1 regions have short segments of boundary layer material associated with their outer surfaces while others are naked. Just prior to hatching, the H1 and boundary layers completely surround the embryo, separating the developing coarse meshwork and intervillus layers. Short segments of the H2 and H3 sublayers are also present. Posthatching, the microvilli and all HL layers increase in thickness and density, particularly the H2, boundary, and coarse outer meshwork layers. The results suggest a sequential organization of HL components from ECM that is secreted into the perivitelline space.  相似文献   

6.
Summary The early sea urchin embryo is supported in a concentric position within the perivitelline space by elongated microvilli which are attached to the fertilization envelope by extracellular matrix fibers. This “attachment complex,” of microvillus tip: extracellular matrix fibers: fertilization envelope, was revealed by two methods: the use of pronase or calcium-free sea water to dissolve the extracellular matrix fibers, thus causing the eggs to lose their concentric location, and the visualization of the “attachment complex” using video-enhanced differential interference contrast microscopy and transmission electron microscope images. The presence of the “attachment complex” helps in understanding two types of early developmental events: (1) the apparently continual change in microvillus length during cleavage stages which retains the embryos in their concentric position and (2) the hatching process.  相似文献   

7.
Formation and structure of the fertilization envelope in Xenopus laevis   总被引:19,自引:0,他引:19  
This paper reports the morphological events that occur when the vitelline envelope (VE) of an unfertilized egg of Xenopus laevis is transformed into the fertilization envelope (FE) surrounding the zygote. The VE is about 1 μm thick and is composed of an interlacing network of small filaments. The FE is constructed from the VE plus an electron-dense layer (fertilization layer), about 2–6 μm thick, on the outer surface of the VE, i.e., at the interface between the VE and the innermost jelly-coat layer. The fertilization layer is a stable component of the FE and is not removed by mercaptan solutions used to dejelly eggs. The events of FE formation were observed in the light and electron microscopes after dejellied eggs were activated by pricking. The FE is established when material from the cortical granules is extruded into the perivitelline space. The cortical granule material passes through the VE as the envelope lifts away from the egg surface. Some cortical granule material deposits in the interstices of the VE, but most of it forms the fertilization layer on the outer surface of the envelope. The cortical reaction is completed about 8–9 min after addition of sperm when eggs are fertilized in vitro.  相似文献   

8.
Synbranchus marmoratus is a protogynous diandric teleost fish widely distributed throughout South America. The aim of this work was to study the ultrastructure of the vitelline envelope and the relationship among oocyte and their follicular cells during oogenesis. During perinucleolar stage, the oocyte and the follicular cells form microvillar processes that project into the perivitelline space. The oocyte secretes a dense and amorphous material, which appears as the first evidence of the vitelline envelope (VE) development. The VE passes from a double to a multilayered structure during oocyte growth. In mature oocytes, the VE reach a mean thickness of 11 microm, having up to 30 layers. Oocyte microvilli are thinner than the follicular ones and were seen in contact with the follicular plasmalema, however we could not find any contact between the follicular microvilli and the oolemma. Before ovulation, microvillar processes retract and the pore canals seem to collapse. An outer electron dense layer occludes the superficial pore and forms a continuous layer. No jelly or adhesive coatings were seen at least in ovulated eggs sampled from ovarian lumen. Follicular cell and oocyte cytological characteristics do not differ from those described in other teleosts species.  相似文献   

9.
Morphological features of fertilization envelope assembly in egges from the sea urchin Lytechinus pictus were examind in platinum replicas of samples quick-frozen, deep-etched, and rotary-shadowed at various times after insemination. Unfertilized eggs are surrounded by the vitelline layer, a glycocalyx, which faith-fully follows the contours of the microvillus-studded egg surface. The vitelline layer is secured to the plasma membrane below via a series of short projections called vitelline posts. The vitelline matrix itself is an elaborate meshwork of uniformly sized filaments, which are decorated in places with globular particles. At fertilization, the vitelline layer elevates off the egg surface and by 1 min after insemination appears as a thin, airy network of fibers. In contrast to Strongylocentrotus purpuratus, impressions of the underlying microvilli are not retained in this species. The vitelline template appears to become filled in by the deposition of amorphous secretory material between 1 and 5 min after fertilization. This smooth, amorphous layer is then coated with a thin sheet of paracrystalline material. Paracrystalline coating is incomplete at 5 min, but by 20 min after insemination the coat is complete, consisting of ordered parallel rows of roset-telike particles.  相似文献   

10.
During the initial stages of fertilization envelope elevation in eggs of Strongylocentrotus pur puratus and S. droebachiensis a large concavity of the egg cortex was observed in the light microscope. This concavity corresponded in shape and size with the elevating fertilization envelope. However, after the vitelline layers of eggs were disrupted and the eggs inseminated, the concavity failed to develop although the eggs were fertilized and developed normally. We propose that the concavity is formed owing to increased hydrostatic pressure within the perivitelline space. To further support this hypothesis we measured total egg protein secreted during fertilization, and found that 98% was retained within the perivitelline space. Furthermore, 80% of the total protein was contributed by the hyaline layer. Presumably, colloidal osmotic pressure and/or hydration of fertilization product, trapped beneath the fertilization envelope, is responsible for increased hydrostatic pressure within the perivitelline space, and therefore promotes not only fertilization envelope elevation, but the cortical concavity as well.  相似文献   

11.
Abstract. The ultrastructural features of the ovary and oogenesis have been described in 6 species of patellid limpets from South Africa. The ovary is a complex organ that is divided radially into numerous compartments or lacunae by plate-like, blind-ended, hollow trabeculae that extend from the outer wall of the ovary to its central lumen. Trabeculae are composed of outer epithelial cells, intermittent smooth muscle bands, and extensive connective tissue. Oocytes arise within the walls of the trabeculae and progressively bulge outward into the ovarian lumen during growth while partially surrounded by squamous follicle cells. During early vitellogenesis, the follicle cells lift from the surface of the underlying oocytes and microvilli appear in the perivitelline space. Follicle cells restrict their contact with the oocytes to digitate foot processes that form desmosomes with the oolamina. When vitellogenesis is initiated, the trabecular epithelial cells hypertrophy and become proteosynthetically active. Yolk synthesis involves the direct incorporation of extraoocytic precursors from the lumen of the trabeculae (hemocoel) into yolk granules via receptor-mediated endocytosis. Lipid droplets arise de novo and Golgi complexes synthesize cortical granules that form a thin band beneath the oolamina. A fibrous jelly coat forms between the vitelline envelope and the overlying follicle cells in all species.  相似文献   

12.
At fertilization, the vitelline envelope surrounding the egg of Xenopus laevis is modified by the addition of an electron-dense component termed the “F layer.” The F layer functions as a block to polyspermy and as a block to the escape of macromolecules from the perivitelline space, thereby causing an osmotically driven envelope elevation. F-layer formation has been hypothesized to result from interaction between a cortical-granule lectin, released in the cortical reaction, and a jelly-coat ligand. Evidence for this hypothesis was sought by determining the location of the cortical-granule lectin both before and after fertilization, using a specific antibody conjugated to horseradish peroxidase. The cortical-granule lectin was localized only in the cortical granules of the unfertilized egg and was located predominantly in the perivitelline space and the F layer of a fertilized egg. These observations support the hypothesis that the F layer is formed by a cortical-granule-Iectin–jelly layer-ligand interaction.  相似文献   

13.
Summary The process of cortical change upon fertilization of eggs of the teleostean fish,Oryzias latipes was investigated. A cortical alveolus (CA) contains colloidal material, a spherical body, and often a membranous structure. Upon insemination, breakdown of the cortical alveoli and elevation of the chorion began around the animal pole and ended at the vegetal pole. It was found that the spherical body was extruded with the colloidal material from the CA: the spherical body swelled after the opening of an aperture and was extruded into the perivitelline space through a large aperture. The empty CA shrank and disappeared completely as a result of the transformation of its envelope to numerous microvilli. The spherical body isolated or in the perivitelline space could be digested quickly by proteolytic enzymes. When spherical bodies in the perivitelline space of a fertilized egg were digested enzymatically, the vitellus came into direct contact with the chorion. The present study seems to show that swollen spherical bodies derived from CA play a role in maintaining a certain distance between the chorion and the vitellus after fertilization.  相似文献   

14.
We studied the glycopatterns and ultrastructure of the extra-cellular matrix (ECM) of the egg of the Apennine yellow-bellied toad Bombina pachypus, by light and electron microscopy in order to determine structure, chemical composition and function. Histochemical techniques in light microscopy included PAS and Alcian Blue pH 2.5 and 1.0, performed also after β-elimination. Lectin-binding was tested with nine lectins (AAA, ConA, DBA, HPA, LTA, PNA, SBA, UEA-I, WGA). An inner fertilization envelope (FE) and five jelly layers (J1-J5) were observed, differing in histochemical staining, lectin binding and ultrastructure. Most glycans were O-linked, with many glucosamylated and fucosylated residues. The fertilization envelope presented a perivitelline space and a fertilization layer, with mostly neutral glycans. The jelly layers consisted of fibers and granules, whose number and orientation differed between layers. Fibers were densely packed in J(1) and J(4) layers, whereas a looser arrangement was observed in the other layers. Jelly-layer glycans were mostly acidic and particularly abundant in the J(1) and J(4) layers. In the J(1), J(2) and J(5) layers, neutral, N-linked glycans were also observed. Mannosylated and/or glucosylated as well as galactosyl/galactosaminylated residues were more abundant in the outer layers. Many microorganisms were observed in the J(5) layer. We believe that, apart from their functions in the fertilization process, acidic and fucosylated glycans could act as a barrier against pathogen penetration.  相似文献   

15.
This paper describes ultrastructural and ultracytochemical events occurring during the process of transformation of the vitelline envelope (VE) into the fertilization envelope (FE) in the egg of Cyprinus carpio. The VE is composed of four layers, except the micropylar region. The outermost (first) layer can be subdivided into a double layer (upper and lower halves) by cytochemical differences. The upper half is more protein-rich and positive for acid phosphatase (AcPase) activity, while the lower one is more carbohydrate-rich and negative for AcPase.
The most striking differences between the VE and the FE appear in the first layer component and the thickness. The FE first layer, ultrastructurally and cytochemically consisting of a single layer, gradually grows to be about five-fold as thick as the VE first layer by 40 min after fertilization. This may be due to displacement of the former VE first layer by deposits of the cortical alveolar exudate.  相似文献   

16.
Ovulated opossum oocytes are surrounded by a zona pellucida, but not by cumulus cells. Opossum sperm carry at least four acrosomal hydrolases (hyaluronidase, acrosin, N-acetylhexosaminidase, and arylsulfatase); the functions of these enzymes in opossum fertilization are uncertain. To identify possible substrates for these hydrolases, the ultrastructure of opossum oocytes was examined after fixation in the presence of ruthenium red which stabilizes extracellular matrices. This oocyte is unusual in having a wide perivitelline space containing a highly structured extracellular matrix (ECM). The ECM is comprised of granules and filaments, and it resembles matrices known to contain hyaluronic acid in other systems. Hydrolases, known to be present in opossum acrosomes, were tested for their effect on the ultrastructure of the zona pellucida and matrix of the perivitelline space. Trypsin dissolved the zona pellucida and decreased the size of the granules in the perivitelline space. Streptomyces hyaluronidase, which specifically attacks hyaluronic acid, removed only matrix filaments. Arylsulfatase, N-acetylhexosaminidase, and beta-glucuronidase did not affect the zona pellucida or ECM in our assay. These observations are consistent with the ideas that (1) opossum sperm must penetrate two oocyte investments, the zona pellucida and ECM of the perivitelline space; (2) the ECM contains hyaluronic acid (filaments) and protein (granules); (3) opossum sperm acrosin may function in penetration of the zona pellucida and ECM; and (4) opossum sperm hyaluronidase may function in penetration of the ECM by degrading hyaluronic acid (filaments). Dissolution of the granules and filaments from oocyte microvilli is probably necessary to permit close apposition and fusion of the sperm and oocyte membranes. The evolutionary significance of these results is discussed.  相似文献   

17.
N D Holland 《Tissue & cell》1979,11(3):445-455
The egg coats of an ophiuroid echinoderm (Ophiopholis aculeata) are described by electron microscopy before and after fertilization. The unfertilized egg is closely invested by a vitelline coat about 40 A thick, and the peripheral cytoplasm is crowded with cortical granules five or six deep. During the cortical reaction, which rapidly follows insemination, exocytosis of cortical granules takes place. Some of the cortical granule material is evidently added to the vitelline coat to form a composite structure, the fertilization envelope, which is made up of a 400 A thick middle layer separating inner and outer dense layers, each about 50 A thick. The elevation of the fertilization envelope from the egg surface creates a perivitelline space in which the hyaline layer soon forms. The hyaline layer is about 2 micron thick, finely granular, and apparently derived from cortical granule material. The extracellular layers of the early developmental stages of ophiuroids and echinoids are quite similar in comparison to those of asteroids; this finding helps support Hyman's argument that the ophiuroids are more closely related to the echinoids than to the asteroids.  相似文献   

18.
Summary An ultrastructural investigation of the gametes and their interaction during the early events of fertilization in molluscs has been performed. A gamete binding event involving large numbers of sperm has been identified and examined in detail. The surface of the oocyte is projected into numerous microvilli which extend through the vitelline envelope. Tufts of fibrillar material radiate from the tips of these microvilli, forming a layer external to the vitelline envelope. The acrosomal vesicle of the mature spermatozoon contains two major components, which function differently during fertilization. The vesicle is indented at its adnuclear surface, constituting a preformed acrosomal tubule. This tubule does not elongate during the acrosome reaction. Completion of the reaction results in the formation of an extracellular coat, derived from one component of the acrosomal vesicle, on the anterior surface of the sperm. Sperm-egg binding is accomplished by an association of the extracellular coat on the reacted sperm and the fibrous tufts on the tips of the microvilli of the oocyte. Evidence that gamete membrane fusion occurs by fusion of the acrosomal tubule and a microvillus is presented. These observations provide a generalized pattern of molluscan fertilization.The assistance of Mr. B. Calloway in identifying and obtaining the organisms is gratefully acknowledged. This investigation was supported by NSF grants PCM 76-13459 and PCM 76-09654 and performed at the Bermuda Biological Station with instruments made available through the courtesy of Philips, Inc., DuPont-Sorvall, and L.K.B. Inc. Bermuda Biological Station Contribution No. 709  相似文献   

19.
Summary This communication presents results of studies on the formation and structure of the vitelline envelopes in three species of mites: Euryparasitus emarginatus (Gamasida), Erythraeus phalangoides (Actinedida), and Hafenrefferia gilvipes (Oribatida). In E. emarginatus and E. phalangoides, in which the oocytes are not covered with follicular cells, the material of the vitelline envelope appears first in vesicles under the surface of the oocytes prior to secretion by exocytosis. The formed vitelline envelope is built of a homogeneous material which is perforated by numerous channels containing oocyte microvilli. Later, as the microvilli are retracted, the channels disappear. In both of these species the formed vitelline envelope is incomplete and the micropylar orifice occurs as a transitional structure.In H. gilvipes follicular cells encircling the oocyte contain granules filled with material that is subsequently secreted into the perivitelline space forming the vitelline envelope on the oocyte surface. The inner layer of the vitelline envelope is granular, whereas the outer part is more homogeneous. Both lack channels containing microvilli and micropyle.  相似文献   

20.
Trypsin-like protease in sea urchin eggs is thought to reside in cortical granules since it is secreted at fertilization and has been isolated with cortical granule fractions from unfertilized eggs. A 35-kDa serine protease has been purified from Strongylocentrotus purpuratus eggs by soybean trypsin inhibitor-affinity chromatography. For this report the protease was localized by immunocytochemistry before and after fertilization, and its potential biological activity was examined by application of the isolated enzyme to the unfertilized egg surface. The protease was localized on sections by immunofluorescence and immunoelectron microscopy, and was found to reside in the spiral lamellae of S. purpuratus cortical granules and in the electron-dense stellate core of Arbacia punctulata granules. At fertilization the enzyme is secreted into the perivitelline space and accumulates only very briefly between the hyaline layer and the nascent fertilization envelope. Shortly thereafter the enzyme is lost from the perivitelline space and immunological reactivity is no longer associated with the egg surface. The 35-kDa cortical granule protease has vitelline delaminase activity but does not appear to destroy vitelline envelope sperm receptors as judged by the fertility of protease-treated eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号