首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global dynamics of an SEIR epidemic model with saturating contact rate   总被引:9,自引:0,他引:9  
Heesterbeek and Metz [J. Math. Biol. 31 (1993) 529] derived an expression for the saturating contact rate of individual contacts in an epidemiological model. In this paper, the SEIR model with this saturating contact rate is studied. The basic reproduction number R0 is proved to be a sharp threshold which completely determines the global dynamics and the outcome of the disease. If R0 < or =1, the disease-free equilibrium is globally stable and the disease always dies out. If R0 > 1, there exists a unique endemic equilibrium which is globally stable and the disease persists at an endemic equilibrium state if it initially exists. The contribution of the saturating contact rate to the basic reproduction number and the level of the endemic equilibrium is also analyzed.  相似文献   

2.
We analyze the global dynamics of a mathematical model for infectious diseases that progress through distinct stages within infected hosts with possibility of amelioration. An example of such diseases is HIV/AIDS that progresses through several stages with varying degrees of infectivity; amelioration can result from a host's immune action or more commonly from antiretroviral therapies, such as highly active antiretroviral therapy. For a general n-stage model with constant recruitment and bilinear incidence that incorporates amelioration, we prove that the global dynamics are completely determined by the basic reproduction number R(0). If R(0)≤1, then the disease-free equilibrium P(0) is globally asymptotically stable, and the disease always dies out. If R(0)>1, P(0) is unstable, a unique endemic equilibrium P* is globally asymptotically stable, and the disease persists at the endemic equilibrium. Impacts of amelioration on the basic reproduction number are also investigated.  相似文献   

3.
本文研究一类描述某种严重疾病的传染数目变大时在心理上产生影响的非单调传染率的SEIR传染病模型.研究表明模型的动力行为和疾病的爆发完全由基本再生数R0决定.当R0≤1时,无病平衡点是全局稳定的,疾病消亡;当R0〉1时,地方病平衡点是全局稳定的,疾病持续且发展成地方病.  相似文献   

4.
We generalize to n patches the Ross-Macdonald model which describes the dynamics of malaria. We incorporate in our model the fact that some patches can be vector free. We assume that the hosts can migrate between patches, but not the vectors. The susceptible and infectious individuals have the same dispersal rate. We compute the basic reproduction ratio R(0). We prove that if R(0)1, then the disease-free equilibrium is globally asymptotically stable. When R(0)>1, we prove that there exists a unique endemic equilibrium, which is globally asymptotically stable on the biological domain minus the disease-free equilibrium.  相似文献   

5.
具有一般形式饱和接触率SEIS模型渐近分析   总被引:13,自引:4,他引:9  
研究具有一般形式饱和接触率SEIS模型渐近性态,得到决定疾病绝灭和持续的阈值-基本再生数R0。当R0 ≤ 1时,仅存在无病平衡点P^0;当R0>1时,除存在无病平衡点P^0外,还存在惟一的地方病平衡点P^*。当R0<1时,无病平衡点P^0全局渐近稳定;当R0>1时,地方病平衡点P^*局部渐近稳定。特别地,无因病死亡时,极限方程地方病平衡点P^-*全局渐近稳定。  相似文献   

6.
For a single patch SIRS model with a period of immunity of fixed length, recruitment-death demographics, disease related deaths and mass action incidence, the basic reproduction number R(0) is identified. It is shown that the disease-free equilibrium is globally asymptotically stable if R(0)<1. For R(0)>1, local stability of the endemic equilibrium and Hopf bifurcation analysis about this equilibrium are carried out. Moreover, a practical numerical approach to locate the bifurcation values for a characteristic equation with delay-dependent coefficients is provided. For a two patch SIRS model with travel, it is shown that there are several threshold quantities determining its dynamic behavior and that travel can reduce oscillations in both patches; travel may enhance oscillations in both patches; or travel can switch oscillations from one patch to another.  相似文献   

7.
具有饱和发生率的病毒感染模型的全局稳定性分析   总被引:1,自引:0,他引:1  
讨论了一类具有饱和发生率的病毒感染数学模型,分析得到了无病平衡点和持续带毒平衡点的全局稳定性条件.当病毒感染的基本再生数R_01时,无病平衡点全局渐近稳定;当R_01时,持续带毒平衡点全局渐近稳定.  相似文献   

8.
Mathematical analysis is carried out that completely determines the global dynamics of a mathematical model for the transmission of human T-cell lymphotropic virus I (HTLV-I) infection and the development of adult T-cell leukemia (ATL). HTLV-I infection of healthy CD4(+) T cells takes place through cell-to-cell contact with infected T cells. The infected T cells can remain latent and harbor virus for several years before virus production occurs. Actively infected T cells can infect other T cells and can convert to ATL cells, whose growth is assumed to follow a classical logistic growth function. Our analysis establishes that the global dynamics of T cells are completely determined by a basic reproduction number R(0). If R(0)< or =1, infected T cells always die out. If R(0)>1, HTLV-I infection becomes chronic, and a unique endemic equilibrium is globally stable in the interior of the feasible region. We also show that the equilibrium level of ATL-cell proliferation is higher when the HTLV-I infection of T cells is chronic than when it is acute.  相似文献   

9.
提出一个改进的乙肝病毒感染动力学模型.本模型有三个平衡点.对于HBV感染人群,三个平衡点分别对应于三类人群:感染病毒后自愈人群、健康带毒人群、慢性乙肝患者人群.证明了当模型导出的基本复制数R_0〈1时病毒清除平衡点具有局部稳定性和全局渐近稳定性,当1〈R_0〈k_3d/(k_2λ-k_3a)+1时持续带毒平衡点具有局部稳定性.  相似文献   

10.
研究了一类具有非线性传染率的SEIQR流行病数学模型,得到了疾病灭绝与否的基本再生数R_O,当R_O≤1时,无病平衡点全局渐近稳定,且疾病最终消亡;当R_O>1时,惟一地方病平衡点全局渐近稳定.  相似文献   

11.
文章研究的是一个具有时滞的媒介传播流行病模型.假定长期的发病率是双线性大规模行动的方式,确定了疾病是否流行的阈值R_0.当R_0≤1时,得到无病平衡点是全局稳定的,即疾病消失;当R_0〉1时,得到地方病平衡点.在具有时滞的微分模型中,时滞与载体转变成传染源的孵化期有关。我们研究了时滞对平衡点稳定性的影响,研究表明,在从寄生源到载体的传播过程中,时滞可以破坏动力系统并且得到了Hopt分支的周期解.  相似文献   

12.
考虑了垂直传染和预防接种因素对传染病流行影响的SEIRS模型,主要研究了系统的平衡点及其稳定性,得出当预防接种水平超过某一个阈值时疾病可以根除,若接种水平低于阈值时疾病将流行.  相似文献   

13.
In this paper, with the assumptions that an infectious disease in a population has a fixed latent period and the latent individuals of the population may disperse, we formulate an SIR model with a simple demographic structure for the population living in an n-patch environment (cities, towns, or countries, etc.). The model is given by a system of delay differential equations with a fixed delay accounting for the latency and a non-local term caused by the mobility of the individuals during the latent period. Assuming irreducibility of the travel matrices of the infection related classes, an expression for the basic reproduction number R0{\mathcal{R}_0} is derived, and it is shown that the disease free equilibrium is globally asymptotically stable if R0 < 1{\mathcal{R}_0 < 1} , and becomes unstable if ${\mathcal{R}_0 > 1}${\mathcal{R}_0 > 1} . In the latter case, there is at least one endemic equilibrium and the disease will be uniformly persistent. When n = 2, two special cases allowing reducible travel matrices are considered to illustrate joint impact of the disease latency and population mobility on the disease dynamics. In addition to the existence of the disease free equilibrium and interior endemic equilibrium, the existence of a boundary equilibrium and its stability are discussed for these two special cases.  相似文献   

14.
In this paper, an SIS patch model with non-constant transmission coefficients is formulated to investigate the effect of media coverage and human movement on the spread of infectious diseases among patches. The basic reproduction number R0 is determined. It is shown that the disease-free equilibrium is globally asymptotically stable if R0?1, and the disease is uniformly persistent and there exists at least one endemic equilibrium if R0>1. In particular, when the disease is non-fatal and the travel rates of susceptible and infectious individuals in each patch are the same, the endemic equilibrium is unique and is globally asymptotically stable as R0>1. Numerical calculations are performed to illustrate some results for the case with two patches.  相似文献   

15.
主要介绍了一类带有非线性感染率的传染病模型.并且证明了当基本再生数Ro≤1时,无病平衡点是全局稳定的,当基本再生数R_0〉1时,疾病持续.  相似文献   

16.
In this paper we develop and analyse a model for the spread of HIV/AIDS amongst a population of injecting drug users. We start off with a brief literature survey and review; this is followed by the derivation of a model which allows addicts to progress through three distinct stages of variable infectivity prior to the onset of full blown AIDS and where the class of infectious needles is split into three according to the different levels of infectivity in addicts. Given the structure of this model we are required to make assumptions regarding the interaction of addicts and needles of different infectivity levels. We deliberately choose these assumptions so that our model serves as an upper bound for the prevalence of HIV under the assumption of a three stage AIDS incubation period. We then perform an equilibrium and stability analysis on this model. We find that there is a critical threshold parameter R(0) which determines the behaviour of the model. If R(0)< or =1, then irrespective of the initial conditions of the system HIV will die out in all addicts and all needles. If R(0)>1, then there is a unique endemic equilibrium which is locally stable if, as is realistic, the time scale on which addicts inject is much shorter than that of the other epidemiological and demographic processes. Simulations indicate that if R(0)>1, then provided that disease is initially present in at least one addict or needle it will tend to the endemic equilibrium. In addition we derive conditions which guarantee this. We also find that under calibration the long term prevalence of disease in our variable infectivity model is always greater than in an equivalent constant infectivity model. These results are confirmed and explored further by simulation. We conclude with a short discussion.  相似文献   

17.
考虑了具有周期传染率的SIR流行病模型,定义了基本再生数^-R0=β/(μ+γ),分析了该模型的动力学性态,证明了当^-R0〈1时无病平衡点是全局稳定的;^-R0〉1时,无病平衡点是不稳定的,模型至少存在一个周期解。对小振幅的周期传染率模型,给出了模型周期解的近似表达式,证明了该周期解的稳定性,最后做了数值模拟,结果显示周期解可能是全局稳定的。  相似文献   

18.
若干具有非线性传染力的传染病模型的稳定性分析   总被引:11,自引:6,他引:5  
讨论了具有常数迁入和非线性传染力的三类传染病模型,即SIRI模型,SIRI框架下的DS模型及SIR框架下的DI模型。给出了它们基本再生数R0的表达式,证明了R0≤1时无病平衡点是全局稳定的,同时证明了如果地方病平衡点存在,则必是全局稳定的结果(从而必唯一)对第一和第三个模型还给出了R0>1时地方病平衡点的存在唯一性。  相似文献   

19.
With the recent resurgence of vector-borne diseases due to urbanization and development there is an urgent need to understand the dynamics of vector-borne diseases in rapidly changing urban environments. For example, many empirical studies have produced the disturbing finding that diseases continue to persist in modern city centers with zero or low rates of transmission. We develop spatial models of vector-borne disease dynamics on a network of patches to examine how the movement of humans in heterogeneous environments affects transmission. We show that the movement of humans between patches is sufficient to maintain disease persistence in patches with zero transmission. We construct two classes of models using different approaches: (i) Lagrangian models that mimic human commuting behavior and (ii) Eulerian models that mimic human migration. We determine the basic reproduction number R0 for both modeling approaches. We show that for both approaches that if the disease-free equilibrium is stable (R0<1) then it is globally stable and if the disease-free equilibrium is unstable (R0>1) then there exists a unique positive (endemic) equilibrium that is globally stable among positive solutions. Finally, we prove in general that Lagrangian and Eulerian modeling approaches are not equivalent. The modeling approaches presented provide a framework to explore spatial vector-borne disease dynamics and control in heterogeneous environments. As an example, we consider two patches in which the disease dies out in both patches when there is no movement between them. Numerical simulations demonstrate that the disease becomes endemic in both patches when humans move between the two patches.  相似文献   

20.
Global stability of an SIR epidemic model with time delays   总被引:11,自引:0,他引:11  
An SIR disease transmission model is formulated under the assumption that the force of infection at the present time depends on the number of infectives at the past. It is shown that a disease free equilibrium point is globally stable if no endemic equilibrium point exists. Further the endemic point (if it exists) is globally stable with respect to the whole state space except the neighborhood of the disease free state.Research partly supported by the Ministry of Education, Science and Culture, Japan, Grant 05640256  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号