首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
3.
The Macrophya formosana group is reviewed and six species are recognized from Europe and East Asia, among them two new species, M. brevispuralis Li, Liu & Wei sp. nov. and M. pseudoformosana Li, Liu & Wei sp. nov. from China, and four known species, M. crassula (Klug 1817), M. dolichogaster Wei & Ma, 1997, M. formosana Rohwer 1916 and M. liukiuana Takeuchi 1926. A key to all known species of the Macrophya formosana group is provided.  相似文献   

4.
The Macrophya regia group is reviewed and five species are recognized from China, among them two new species, M. acutiserrula Li, Liu & Wei sp. nov. and M. frontalis Li, Liu & Zhu sp. nov., and three known species, M. regia Forsius 1930 , M. maculoclypeatina Wei et al. 2003, and M. xiaoi Wei et al. 2003. A key to the Chinese species of the Macrophya regia group are provided.  相似文献   

5.
A new species, Macrophyra pseudocoxalis Li, Liu & Wei, sp. nov., of the genus Macrophya Dahlbom (Hymenptera: Tenthredinidae) from China is described. A key to known Chinese species of the Macrophya coxalis group is provided. The type specimens of the new species are deposited in the Lishui Academy of Forestry, Lishui, Zhejiang, China.  相似文献   

6.
7.
8.
9.
10.
Molecular characters are analysed on their own and in combination with morphological data to examine the phylogenetic relationships of the basal lineages of Hymenoptera ('Symphyta'). This study covers 47 sawfly genera and nine apocritan families and includes molecular sequences from five genes − 12S, 16S, 18S and 28S ribosomal genes and cytochrome oxidase 1 − as well as 343 morphological characters. A robust-choice sensitivity analysis is performed with the data. First, the simultaneous analysis is repeated three times, each time employing a different step matrix for weighting the transformations of the molecular characters. Then, the results of all three simultaneous analyses are summarized in a strict consensus in order to avoid basing the conclusions on a narrow set of assumptions. This methodology is discussed in the paper. The relationships among superfamilies largely confirm previous hypotheses, being (Xyeloidea (Tenthredinoidea s.l. (Pamphilioidea (Cephoidea (Siricoidea (Xiphydrioidea (Orussoidea Apocrita))))))), where Siricoidea is understood as Siricidae+Anaxyelidae. However, the relationships within Tenthredinoidea s.s. proposed here are novel: ({Argidae Pergidae}[ Athalia {(Diprionidae Cimbicidae) Tenthredinidae minus Athalia }]).  © 2003 The Linnean Society of London . Biological Journal of the Linnean Society , 2003, 79, 245–275.  相似文献   

11.
12.
13.
Morphological (including ultrastructural) and developmental characters utilized in recent literature are critically reviewed as the basis to reassess the phylogenetic relationships of gastropods. The purpose of this paper is to provide a framework of characters for future studies and a testable phylogenetic hypothesis. This is one of the first attempts to use such characters to assess the relationships of all major clades using parsimony methods. The analysis uses 117 characters and includes 40 taxa, predominantly ‘prosobranchs’. Five outgroup taxa are included, representing four conchiferan groups and Poly-placophora. Of the 117 characters reviewed and included in the analyses, nine are shell characters (four of these are shell structure), two opercular, two muscular, four ctenidial, 12 renopericardial and 24 reproductive (including 17 based on sperm and spermatogenesis), 27 of the digestive system, 32 of the nervous system and sense organs; the remainder are developmental (3) and of the foot and hypobranchial gland. In the initial analysis the data set included a mixture of binary and multistate characters with all characters unordered. These data were also analysed after scaling so that each character had equal weight. A third data set was constructed in which all characters were coded as binary characters. These analyses resulted in some implausible character transformations, mainly-involving the regaining of lost pallial structures. Additional analyses were run on all three sets of data after removing five characters showing the most unlikely transformations. These analyses resulted in generally similar topologies. The robustness of the clades was tested using clade decay. The adaptive radiation of gastropods and their life history traits are briefly described and discussed and the terminology for simultaneous hermaphroditism refined. A scenario for the evolution of torsion equated with the fossil record is proposed and the effects of torsion and coiling on gastropods are discussed along with asymmetry imposed by limpet-shaped body forms. It is suggested that the first gastropods were ultradextral. The idea that heterochrony has played a major part in gastropod evolution is developed and discussed, particularly the paedomorphic stamp imposed on the apogastropods. The veliger larvae of caenogastropods and heterobranchs are contrasted and found to differ in many respects. The evolution of planktotrophy within gastropods is discussed. Recent phylogenetic hypotheses for gastropods based on molecular data are generally in broad agreement with the present results. On the basis of our analyses we discuss the major monophyletic groups within gastropods. Gastropods appear to be a monophyletic clade, and divide into two primary groups, the Eogastropoda (incorporating the patellogastropods and their (probably sinistrally coiled) ancestors and the Orthogastropoda – the remainder of the gastropods. Orthogastropoda comprises several well defined clades. The vetigastropod clade encompasses most of the groups previously included in the paraphyletic Archaeogastropoda (fissurellids, trochoideans, scissurelloideans, halioroideans pleurotomarioideans) as well as lepeto-driloidean and lepetelloidean limpets and seguenzids. The location of the hot vent taxa Peltospiridae and Neomphalidae varies with each analysis, probably because there is a lack of ultrastructural data for these taxa and parallelism in many characters. They either form a paraphyletic or monophyletic group at or near the base of the vetigastropods or a clade with the neritopsines and cocculinoideans. The neritopsines (Neritoidea etc.) consistently form a clade with the cocculinoidean limpets, but their position on the tree also differs depending on the data set used and (in the case of the scaled data) whether or not the full suite of characters is used. They are either the sister to the rest of the orthogastropods or to the apogastropods. Caenogastropods [Mesogastropoda (+ architaenioglossan groups) + Neogastropoda] are consistently monophyletic as are the heterobranchs (‘Heterostropha’+ Opisthobranchia + Pulmo-nata). The caenogastropods and heterobranchs also form a clade in all the analyses and the name Apogastropoda is redefined to encompass this group. New taxa are proposed, Sorbeoconcha for the caenogastropods exclusive of the architaenioglossan taxa, and Hypsogastropoda for the ‘higher caenogastropods“– the Sorbeoconcha exclusive of the Cerithioidea and Campaniloidea.  相似文献   

14.
15.
Two new species of the nigricornis subgroup of Tenthredo fortunei group from China are described: Tenthredo plagionotella sp. nov. and T. zhoui sp. nov. The diagnosis of Tenthredo fortunei group is briefly discussed. A key to the subgroups of the Tenthredo fortunei group and the known species of nigricornis subgroup is provided.  相似文献   

16.
A cladistic analysis of the lower Hymenoptera, including all the ‘symphytan’ families and the apocritan families Stephanidae, Megalyridae, Trigonalyidae, Ibaliidae, Vespidae and Gasteruptiidae, has been undertaken. A total of 98 characters were scored for 21 taxa. Twenty equally parsimonious minimum-length trees were obtained. The phylogenetic status of the Xyelidae is uncertain: they might be monophyletic. or the Xyelinae might be the sistergroup of the rest of the Hymenoptera. The non-xyelid Hymenoptera are probably monophyletic; the phylogeny Tenthredinoidea + (Megalodontoidea + (Cephidae + (Anaxyelidea + (Siricidae + (Xiphydriidae + (Orussidae + Apocrita)))))) is proposed for this clade. The Blasticotomidae are probably the sistergroup of all othe Tenthredinoidea, but tenthredinoid phylogeny is otherwise uncertain. Substantial homoplasy occurs within the ‘siricoid’ families, making the relative positions of the Anaxyelidae and Siricidae uncertain. The Stephanidae might be the sistergroup of the rest of the Apocrita; the phylogeny of the remaining apocritan taxa included is insufficiently elucidated. The phylogeny proposed here supports the hypothesis that the appearance of parasitism in the Hymenoptera took place in the common ancestor of Orussidae + Apocrita, the host of which was probably wood boring insect larvae. The exact larval mode of feeding of the ancestral hymenopteran cannot be determined due ot the diversity of lifestyles in the basal lineages of the order.  相似文献   

17.
18.
Variation in structures of the posterior surface of the head in Hymenoptera is compared and interpreted according to theories of head capsule evolution, with focus on understanding previously baffling conditions in the superfamily Chalcidoidea. Features are investigated separately without first classifying subforaminal bridges into subcategories. In Proctotrupomorpha (including Chalcidoidea), Ceraphronoidea and some Ichneumonoidea, there are multiple posterior pits associated with the tentorium. In most examined Hymenoptera with a subforaminal bridge, there was a differentiated median area, typically with highly variable microtrichia. This area is elevated in Cephoidea and Pamphilioidea, but is not elevated in other Hymenoptera. Subforaminal bridges in Apocrita previously classified as hypostomal bridges are discussed in the context of A.P. Rasnitsyn's hypothesis that relative importance of adult feeding drives subforaminal bridge evolution.  相似文献   

19.
The morphology of the plantulae (= tarsal pulvilli = plantar lobes), structures attached to the underside of the tarsus in Hymenoptera, was examined in 55 genera from all 14 families of the basal lineages of Hymenoptera ('Symphyta') and a few species of Apocrita, using scanning electron microscopy. Two distinct types of plantula were found: (1) integrated , an unsclerotized patch positioned ventro-distally on each tarsomere, and (2) distal , a membranous vesicle attached to the apical end of each tarsomere. The evolution of these two types is discussed in the light of current phylogenetic hypotheses. The plantulae exhibit an astonishing variety of form and structural details; their potential phylogenetic and taxonomic value is discussed.  相似文献   

20.
A new combined molecular and morphological phylogeny of the Eulophidae is presented with special reference to the subfamily Entedoninae. We examined 28S D2–D5 and CO1 gene regions with parsimony and partitioned Bayesian analyses, and examined the impact of a small set of historically recognized morphological characters on combined analyses. Eulophidae was strongly supported as monophyletic only after exclusion of the enigmatic genus Trisecodes. The subfamilies Eulophinae, Entiinae (=Euderinae) and Tetrastichinae were consistently supported as monophyletic, but Entedoninae was monophyletic only in combined analyses. Six contiguous bases in the 3e′ subregion of the 28S D2 rDNA contributed to placement of nominal subgenus of Closterocerus outside Entedoninae. In all cases, Euderomphalini was excluded from Entiinae, and we suggest that it be retained in Entedoninae. Opheliminae n. stat. is raised from tribe to subfamily status. Trisecodes is removed from Entedoninae but retained as incertae sedis in Eulophidae until its family placement can be determined new placement . The genera Neochrysocharis stat. rev. and Asecodes stat. rev. are removed from synonymy with Closterocerus because strong molecular differences corroborate their morphological differences. Closterocerus (Achrysocharis) germanicus is transferred to the genus Chrysonotomyia n. comb. based on molecular and morphological characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号