首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Small multicopy plasmids carrying the Escherichia coli genes ksgA and pdxA were constructed by ligation in vitro of an EcoRI restriction fragment from ksg10 (Andrésson and Davies, 1980a) into the EcoRI sites of the ColE1 plasmids RSF2124 and pVH51. Cleavage maps of the plasmids were determined for 21 different restriction enzymes. The ksgA gene was located in a 750 basepairs (bp) region 1,450 bp clockwise of the EcoRI site in folA; pdxA is in a 2,040 bp region immediately clockwise of ksgA.  相似文献   

2.
Two Genetic Loci for Resistance to Kasugamycin in Escherichia coli   总被引:2,自引:5,他引:2       下载免费PDF全文
There are two loci for resistance to the antibiotic kasugamycin (Ksg) in Escherichia coli. Mutations at ksgA resulted in 30S ribosomal subunit resistance to Ksg. The map location of ksgA was near minute 0.5: ksgA was 95% cotransducible with pdxA, and the apparent gene order was thr... ksgA... pdxA. Studies in stable ksgA/ksgA+ merodiploids showed that sensitivity was dominant over resistance. Mutations at a second gene (ksgB), located between minutes 25 and 39, resulted in phenotypic KsgR indistinguishable from ksgA mutations, but ribosomes from ksgB strains were sensitive to the drug in vitro. Spontaneous and induced mutations to KsgR were usually of the ksgA (ribosomal) type.  相似文献   

3.
Summary We have examined the organization of tRNATyr genes in three ecotypes of Arabidopsis thaliana, a plant with an extremely small genome of 7 × 107 bp. Three tRNATyr gene-containing EcoRI fragments of 1.5 kb and four fragments of 0.6, 1.7, 2.5 and 3.7 kb were cloned from A. thaliana cv. Columbia (Col-O) DNA and sequenced. All EcoRl fragments except those of 0.6 and 2.5 kb comprise an identical arrangement of two tRNATyr genes flanked by a tRNASer gene. The three tRNA genes have the same polarity and are separated by 250 and 370 bp, respectively. The tRNATyr genes encode the known cytoplasmic tRNAGA Tyr. Both genes contain a 12 by long intervening sequence. Densitometric evaluation of the genomic blot reveals the presence of at least 20 copies, including a few multimers, of the 1.5 kb fragment in Col-O DNA, indicating a multiple amplification of this unit. Southern blots of EcoRl-digested DNA from the other two ecotypes, cv. Landsberg (La-O) and cv. Niederzenz (Nd-O) also show 1.5 kb units as the major hybridizing bands. Several lines of evidence support the idea of a strict tandem arrangement of this 1.5 kb unit: (i) Sequence analysis of the EcoRI inserts of 2.5 and 0.6 kb reveals the loss of an EcoRI site between 1.5 kb units and the introduction of a new EcoRI site in a 1.5 kb dimer. (ii) Complete digestion of Col-O DNA with restriction enzymes which cleave only once within the 1.5 kb unit also produces predominantly 1.5 kb fragments. (iii) Partial digestion with EcoRI shows that the 1.5 kb fragments indeed arise from the regular spacing of the restriction sites. The high degree of sequence homology among the 1.5 kb units, ranging from 92% to 99%, suggests that the tRNASer/tRNATyr cluster evolved 1–5 million years ago, after the Brassicaceae diverged from the other flowering plants about 5–10 million years ago.  相似文献   

4.
Summary Screening the tryptophan (Trp)-dependent indole-3-acetic acid (IAA) production of different Azospirillum species revealed that A. irakense KA3 released 10 times less IAA into the medium than A. brasilense Sp7. A cosmid library of strain Sp7 was transferred into A. irakense KA3 with the aim of characterizing genes involved in IAA biosynthesis. Trp-dependent IAA production was increased in two transconjugants which both contained an identical 18.5 kb HindIII fragment from Sp7. After Tn5 mutagenesis, cosmids carrying Tn5 insertions at 36 different positions of the 18.5 kb fragment were isolated and transferred into strain KA3. IAA production by the recipient strains was screened by HPLC. The Tn5 insertions of 4 clones with decreased IAA production were mapped on a 2 kb Sall — SphI fragment. Recombination of Tn5 insertions at this locus into the genome of strain Sp7 led to Trp auxotrophic mutants. A 5.2 kb EcoRI — SalI fragment including the kb SalI — SphI fragment was sequenced and six open reading frames were identified. Three of them were clustered and their deduced amino acid sequences showed significant similarity to TrpG, TrpD and TrpC, which are enzymes involved in tryptophan biosynthesis. One of the remaining open reading frames probably encodes an acetyltransferase. The region responsible for the enhanced Trp-dependent IAA production in strain KA3 corresponded to trpD, coding for the phosphoribosyl anthranilate transferase.  相似文献   

5.
Definitive restriction fragment length polymorphisms (RFLPs) representing the exact locations responsible for isotypicity between the human complement components C4A and C4B, and their generally associated major Rodgers (Rg1) and Chido (Ch1) antigenic determinants, have been designed. By means of a C4d-specific genomic probe for Southern blot analysis, a C4A gene can be defined by the presence of the 276 bp and 191 bp N 1 a IV fragments, while a C4B gene can be defined by a single 467 bp N1aIV fragment. In addition, an Rgl-expressing C4 gene can be represented by a 565 bp EcoO 109 fragment, and a Chl-expressing C4 gene by a 458 by EcoO 109 fragment, under the same conditions. All these polymorphic restriction fragments can be unambiguously and conveniently detected. In combination with the Taq I polymorphic patterns specific for the C4 loci and for the neighboring 21-hydroxylase genes, the nature and structure of the tandem C4,21-hydroxylase gene complex can be elucidated. In this study, it is inferred that the null allele of the HLA haplotype B44 DR6 C4A3 C4BQO is not a C4B allele, but probably encodes another C4A 3 allotype at the second C4 locus.Abbreviations used in this paper C4 (long) - C4 gene of 22 kb, with a 6–7 kb intron - C4 (short) - C4 gene of 16 kb, without a 6–7 kb intron; complotype SCO1, factor B S, C2 C, C4A QO; C4B 1 Dedicated to the memory of our teacher, the late Professor Rodney Porter C. H. F. R. S.  相似文献   

6.
An iron-regulated gene, pbsC, required for siderophore production in fluorescent Pseudomonas sp. strain M114 has been identified. A kanamycin-resistance cassette was inserted at specific restriction sites within a 7 kb genomic fragment of M114 DNA and by marker exchange two siderophore-negative mutants, designated M1 and M2, were isolated. The nucleotide sequence of approximately 4 kb of the region flanking the insertion sites was determined and a large open reading frame (ORF) extending for 2409 by was identified. This gene was designated pbsC (pseudobactin synthesis C) and its putative protein product termed PbsC. PbsC was found to be homologous to a family of enzymes involved in the biosynthesis of secondary metabolites, including EntF of Escherichia coli. These enzymes are believed to act via ATP-dependent binding of AMP to their substrate. Several areas of high sequence homology between these proteins and PbsC were observed, including a conserved AMP-binding domain. The expression of pbsC is iron-regulated as revealed when a DNA fragment containing the upstream region was cloned in a promoter probe vector and conjugated into the wild-type strain, M114. The nucleotide sequence upstream of the putative translational start site contains a region homologous to previously defined –16 to –25 sequences of iron-regulated genes but did not contain an iron-box consensus sequence. It was noted that inactivation of the pbsC gene also affected other iron-regulated phenotypes of Pseudomonas M114.  相似文献   

7.
Summary The structural gene, nirS, for the respiratory nitrite reductase (cytochrome cd 1) from Pseudomonas stutzeri was identified by (i) sequencing of the N-terminus of the purified protein and partial sequencing of the cloned gene, (ii) immunoscreening of clones from a lambda gt11 expression library, (iii) mapping of the transposon Tn5 insertion site in the nirS mutant strain MK202, and (iv) complementation of strain MK202 with a plasmid carrying the insert from an immunopositive lambda clone. A mutation causing overproduction of cytochrome c 552 mapped on the same 8.6 kb EcoRI fragment within 1.7 kb of the mutation affecting nirS. Two mutations affecting nirD, which cause the synthesis of an inactive cytochrome cd 1 lacking heme d 1, mapped 1.1 kb apart within a 10.5 kb EcoRI fragment contiguous with the fragment carrying nirS. Nir mutants of another type that had low level synthesis of cytochrome cd 1, had Tn5 insertions within an 11 kb EcoRI fragment unlinked to the nirS + and nirD + fragments. Cosmid mapping provided evidence that nirS and nirD, and the previously identified gene cluster for nitrous oxide respiration are closely linked. The nirS gene and the structural gene for nitrous oxide reductase, nosZ, are transcribed in the same direction and are separated by approximately 14 kb. Several genes for copper processing are located within the intervening region.  相似文献   

8.
Pulsed-field gel electrophoresis (transverse alternating field electrophoresis system), combined with rare cutting endonucleases, was used to size the genome of five strains of lactic acid bacteria belonging to the species Lactobacillus plantarum. The sum of the fragment sizes obtained with SfiI restriction digest yielded a total value of 2700–2905 kb. Moreover, SfiI digestion gives specific patterns which could allow an intraspecific identification of L. plantarum strains. The genome sizes of Pediococcus pentosaceus, Pc. acidilactici, and Carnobacterium divergens have been estimated by this method as being 1200 kb, 1560 kb, and 3200 kb respectively.  相似文献   

9.
Summary An hydrogenase-deficient (Hup) mutant of Rhodobacter capsulatus was obtained by adventitious insertion of IS21 DNA into an hydrogenase structural gene (hup) of the wild-type strain 1310. The resulting Hup mutant, strain JP91, selected by its inability to grow autotrophically (Aut phenotype) together with other Hup mutant strains obtained by classical ethyl methane sulphonate mutagenesis were used in R plasmid-mediated conjugation experiments to map the hup/aut loci on the chromosome of R. capsulatus. The hup genes tested in this study were found to cluster on the chromosome in the proximity of the his-1 marker. A cluster of hup genes comprising the structural genes was isolated from a gene bank constructed in the cosmid vector pHC79 with 40 kb insert DNA. The clustered hup genes, characterized by hybridization studies and complementation analyses of the R. capsulatus Hup mutants, span 15–20 kb of DNA.  相似文献   

10.
Summary We have cloned two genes, nirB +and cysG +which are required for NADH-dependent nitrite reductase to be active, from the 74 min region of the Escherichia coli chromosome. Restriction mapping and complementation analysis establish the gene order crp-nirB-cysG-aroB. Both genes are trans-dominant in merodiploids and, under some conditions, can be expressed independently. The cysG +gene can be expressed from both high and low copy number plasmids carrying a 3.6 kb PstI-EcoRI restriction fragment. Attempts to sub-clone the nirB +gene into pBR322 on a 14.5 kb EcoRI fragment were unsuccessful, but this fragment was readily sub-cloned into and expressed from the low copy number plasmid pLG338 (Stoker et al. 1982). Overproduction of the 88 kDa nitrite reductase apoprotein by strains carrying a functional nirB +gene suggests that nirB is the structural gene for this enzyme.  相似文献   

11.
A degree of conservation of the genes located between class II and class I [central major histocompatibility complex (MHC) genes] is apparent among mammalian species including primates and the mouse. Few others have been analyzed. The caprine MHC is of particular interest, since it has recently been observed that susceptibility to a lentivirus-induced polyarthritis (caprine arthritis) segregates with serologically defined MHC class I antigens. This arthritis resembles, in a number of respects, rheumatoid arthritis in man. Human cDNA probes were used to examine the caprine central MHC and class I and II genes by restriction fragment length polymorphism (RFLP) and by pulsed field gel electrophoresis (PFGE) in order to define the polymorphism and linkage of central MHC genes to class I and class II genes. An outbred population of dairy goats (Saanen, British Alpine, Anglo Nubian, and Toggenberg) was examined for class I and class II RFLPs. Both regions were found to be highly polymorphic. The number of fragments hybridizing to an HLA-B7 probe after Eco RI, Bam HI, Bgl II, or Hind III digestion suggests there may be 10–13 class I genes. The degree of polymorphism was comparable to that reported in the mouse. Limited polymorphism was found in the central MHC genes. The caprine C4 and CYP21 genes were duplicated and demonstrated RFLP with Bam HI, Hind III, Eco RV, and Taq I. An infrequent Taq I C2 polymorphism was found. PFGE revealed substantial conservation of both the order and linkage of the central MHC genes when compared with mous and man. C4, C2, CYP21, HSP70, and tumor necrosis factor (TNF) genes are all located within 800 kilobase (kb) of the class I loci. Distant from the class I region, the C4, C2, and CYP21 genes are linked on a short genomic segment (180 kb Not I and 190 kb Pvu I fragments). HSP70 cohybridizes with the complement genes on a 380 kb Mlu I fragment. Linkage of HSP70, TNF, and class I genes was found on a single Not I fragment (610 kb). TNF and class I cohybridize on Pvu I (730 kb) and Not I (610 kb) fragments. Conservation of a similar central MHC genomic structure across species argues for functional interaction between the central MHC genes. We postulate selection for these central MHC genes through their role as non antigen-specific regulators of immune response.  相似文献   

12.
Dimethyl adenosine transferase (KsgA) performs diverse roles in bacteria, including ribosomal maturation and DNA mismatch repair, and synthesis of KsgA is responsive to antibiotics and cold temperature. We previously showed that a ksgA mutation in Salmonella enterica serovar Enteritidis results in impaired invasiveness in human and avian epithelial cells. In this study, we tested the virulence of a ksgA mutant (the ksgA::Tn5 mutant) of S. Enteritidis in orally challenged 1-day-old chickens. The ksgA::Tn5 mutant showed significantly reduced intestinal colonization and organ invasiveness in chickens compared to those of the wild-type (WT) parent. Phenotype microarray (PM) was employed to compare the ksgA::Tn5 mutant and its isogenic wild-type strain for 920 phenotypes at 28°C, 37°C, and 42°C. At chicken body temperature (42°C), the ksgA::Tn5 mutant showed significantly reduced respiratory activity with respect to a number of carbon, nitrogen, phosphate, sulfur, and peptide nitrogen nutrients. The greatest differences were observed in the osmolyte panel at concentrations of ≥6% NaCl at 37°C and 42°C. In contrast, no major differences were observed at 28°C. In independent growth assays, the ksgA::Tn5 mutant displayed a severe growth defect in high-osmolarity (6.5% NaCl) conditions in nutrient-rich (LB) and nutrient-limiting (M9 minimum salts) media at 42°C. Moreover, the ksgA::Tn5 mutant showed significantly reduced tolerance to oxidative stress, but its survival within macrophages was not impaired. Unlike Escherichia coli, the ksgA::Tn5 mutant did not display a cold-sensitivity phenotype; however, it showed resistance to kasugamycin and increased susceptibility to chloramphenicol. To the best of our knowledge, this is the first report showing the role of ksgA in S. Enteritidis virulence in chickens, tolerance to high osmolarity, and altered susceptibility to kasugamycin and chloramphenicol.  相似文献   

13.
Von Hippel-Lindau disease (VHL) is an inherited multisystem neoplastic disorder. We prepared a 2.5-megabase (Mb) restriction map of the region surrounding the VHL gene and identified and characterized overlapping deletions in three unrelated patients affected with VHL. The smallest nested deletion (100 kb) was located within a 510-kb NruI fragment detected by 19–63. The rearrangements detected will be useful in isolating and evaluating candidate cDNAs for the VHL gene. The detailed physical map will be useful in studying the organization and structure of genes in the VHL region.  相似文献   

14.
15.
Summary During a survey of Italian patients with familial hypercholesterolemia (FH), we identified an FH heterozygous patient with a gross rearrangement of the low density lipoprotein (LDL) receptor gene. Southern blot analysis of the proband's DNA digested with restriction enzymes PvuII, BamHI, BglII and XbaI and hybridization with cDNA probes complementary to the 3 end of the gene revealed the presence of abnormal fragments that were approximately 7 kb larger than their normal counterparts. DNA digestion with other enzymes (EcoRV, NcoI, KpnI and StuI) and hybridization with probes complementary to exons 13–17 generated normal fragments and an abnormal fragment of 6.3–6.8 kb. These results are consistent with the presence of an insertion of approximately 7 kb caused by a duplication of exons 13, 14 and 15. This is a novel mutation that is most probably the result of an unequal crossing-over between repetitive sequences located in intron 12 and intron 15. This novel mutation has been designated FHBologna 2.  相似文献   

16.
arsR, the first gene of the Staphylococcus xylosus (pSX267) arsenic/antimonite resistance (rs) operon encodes a negative regulatory protein, ArsR, which mediates inducibility of the resistances by arsenic and antimony compounds. ArsR, which has no obvious DNA-binding motif in its primary structure, was purified from an ArsR-overproducing Escherichia coli strain and identified as a DNA-binding protein by its behaviour in gel mobility shift assays. ArsR had a specific affinity for a 312 by DNA restriction fragment carrying the ars promoter; the minimum sequence complexed by ArsR was a 75 by polymerase chain reaction (PCR) fragment, which mainly comprised the –35 and –10 regions of the promoter. The effect of inducers on the DNA-binding activity of ArsR was examined by in vitro induction assays; only arsenite inhibited DNA-binding of the repressor. DNase I footprinting revealed two protected regions within the promoter region, spanning 23 and 9 nucleotides, respectively. Furthermore, a new cleavage site for DNase I between the protected regions was made accessible by binding of the repressor. The footprints cover a region of three inverted repeats located between the –35 and –10 motifs of the ars promoter. By high resolution footprinting with the hydroxy radical, five sites of close contact between the protein and DNA were identified.  相似文献   

17.
To increase the available set of near-isogenic lines (NILs) for blast-resistance in rice, we have developed a general method for establishing NILs from populations of fixed recombinants that have been used for gene mapping. We demonstrated the application of this method by the selection of lines carrying genes from the rice cultivar Moroberekan. Moroberekan is a West African japonica cultivar that is considered to have durable resistance to rice blast. Multiple genes from Moroberekan conferring complete and partial resistance to blast have previously been mapped using a recombinant inbred (RI) population derived from a cross between Moroberekan and the highly and broadly susceptible indica cultivar CO39. To analyze individual blast-resistance genes, it is desirable to transfer them individually into a susceptible genetic background. This RI population, and the associated data sets on blast reaction and restriction fragment length polymorphism (RFLP) genotypes, were used for selection of lines likely to carry individual blast-resistance genes and a minimum number of chromosomal segments from Moroberekan. Because skewed segregation in the RI population favored CO39 (indica) alleles, resistant lines carrying 8.7–17.5% of Moroberekan alleles (the proportion expected after two or three backcrosses) could be selected. We chose three RI lines carrying different complete resistance genes to blast and two RI lines carrying partial resistance genes to blast as potential parents for the development of NILs. These lines were subjected to genetic analysis, which allowed clarification of some issues that could not be resolved during the initial gene-mapping study.  相似文献   

18.
Microcin C51 is a small peptide antibiotic produced by Escherichia coli cells harbouring the 38 kb low copy number plasmid pC51, which codes for microcin production and immunity. The genetic determinants for microcin synthesis and immunity were cloned into the vectors pBR325, pUC19 and pACYC184. Physical and phenotypic analysis of deletion derivatives and mutant plasmids bearing insertions of transposon Tn5 showed that a DNA fragment of about 5 kb is required for microcin C51 synthesis and expression of complete immunity to microcin. Partial immunity can be provided by a 2 kb DNA fragment. Mutant plasmids were tested for their ability to complement Mic mutations. Results of these experiments indicate that at least three plasmid genes are required for microcin production. The host OmpR function is also necessary for microcin C51 synthesis.  相似文献   

19.
Summary A HindIII (17.0 kb) and an EcoRl restriction fragment (6.9 kb) of Klebsiella pneumoniae nif DNA were cloned on two small amplifiable plasmids, pCM1 and pSA30 respectively. These plasmids between them carry 14 of the 15 known Klebsiella nif genes. The operon for the three structural genes for nitrogenase, nifpHDK, is carried on pSA30: four and five of the remaining six operons are on pCRA37 and pCM1 respectively. All of the nif genes were assigned to endonculease restriction fragments of DNA using the Southern blotting technique (Southern, 1975) with total DNA of nif insertion mutants and radioactive plasmid DNA which contained cloned nif DNA sequences. Their locations were consistent with the genetic map of nif genes. The estimated size of the nif gene cluster was 24 kb.  相似文献   

20.
Two type II keratin genes are localized on human chromosome 12   总被引:3,自引:0,他引:3  
Summary Human genomic DNA containing two type II keratin genes, one coding for keratin 1 (K1, a 68-kD basic protein) and another closely linked type II gene 10–15 kb upstream (K?, gene product unknown), was isolated on a single cosmid clone. EcoRI restriction fragments of the cosmid were subcloned into pGEM-3Z, and specific probes comprising the C-terminal coding and 3 noncoding regions of the two genes were constructed. The type II keratin genes were localized by in situ hybridization of the subcloned probes to normal human lymphocyte chromosomes. In a total of 70 chromosome spreads hybridized with the K? probe (gHK?-3, PstI, 800 bp), 36 of the 105 grains observed were on chromosome 12, and 32 of these were clustered on the long arm near the centromere (12q11–13). In 100 labeled metaphases hybridized with the K1 probe (gHK1–3, BamHI-PstI, 2100 bp), 53 grains localized to chromosome 12 and 46 of these were found in the same region (q11–13). Therefore, both the gene for human keratin 1, a specific marker for terminal differentiation in mammalian epidermis, and another closely linked unknown type II keratin gene (K?, 10–15 kb upstream of K1) are on the long arm (q11–13) of human chromosome 12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号