首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 72-kilodalton adenovirus DNA-binding protein (DBP) binds to single-stranded DNA as well as to RNA and double-stranded DNA and is essential for the replication of viral DNA. We investigated the binding of DBP to double-stranded DNA by gel retardation analysis. By using a 114-base-pair DNA fragment, five or six different complexes were observed by gel retardation. The mobility of these complexes is dependent on the DBP concentration, suggesting that the complexes arise by sequential binding of DBP molecules to the DNA. In contrast to binding to single-stranded DNA, the binding of DBP to double-stranded DNA appears to be noncooperative. DBP binds to linear DNA as well as to circular DNA, while linear DNA containing the adenovirus terminal protein was also recognized. No specificity for adenovirus origin sequences was observed. To study whether the binding of DBP could influence initiation of DNA replication, we analyzed the effect of DBP on the binding of nuclear factor I (NFI) and NFIII, two sequence-specific origin-recognizing proteins that enhance initiation. At subsaturating levels of NFI, DBP increases the rate of binding of NFI considerably, while no effect was seen on NFIII. This stimulation of NFI binding is specific for DBP and was not observed with another protein (NFIV), which forms a similar DNA-multimeric protein complex. In agreement with enhanced NFI binding, DBP stimulates initiation of adenovirus DNA replication in vitro especially strongly at subsaturating NFI concentrations. We explain our results by assuming that DBP forms a complex with origin DNA that promotes formation of an alternative DNA structure, thereby facilitating the binding of NFI as well as the initiation of DNA replication via NFI.  相似文献   

2.
The adenovirus (Ad) DNA-binding protein (DBP) is essential for the elongation phase of Ad DNA replication by unwinding the template in an ATP-independent fashion, employing its capacity to form multimers. DBP also enhances the rate of initiation, with the highest levels obtained at low concentrations of Ad DNA polymerase (Pol). Here, we show that stimulation of initiation depends on the template conformation. Maximal stimulation, up to 15-fold, is observed on double-stranded or viral TP-containing origins. The stimulation is reduced on partially single-stranded origins and DBP does not enhance initiation any more once the origin is completely unwound. This suggests a role for DBP in origin unwinding that is comparable to its unwinding capacity during elongation. However, mutant DBP proteins defective in unwinding and elongation can still enhance initiation on ds templates. DBP also stimulates the binding of nuclear factor I (NFI) to the origin and lowers the K(m) for coupling of the first nucleotide to the precursor terminal protein by Pol. Mobility shift experiments reveal that DBP stimulates the binding of Pol on double-stranded origin and nonorigin DNA but not on single-stranded DNA. This effect is specific for DBP and is also seen with other DNA Pols. Our results suggest that, rather than by origin unwinding, DBP enhances initiation by modulating the origin conformation such that DNA Pol can bind more efficiently.  相似文献   

3.
The RecA and SSB proteins will catalyze the joining of two DNA molecules containing homologous sequences but lacking homologous ends in a reaction termed paranemic joining. The absence of homologous ends can be achieved by (1) pairing two circular DNAs or (2) using linear DNA(s) with ends lacking homology to the pairing partner. Here we have used electron microscopy (EM) to examine such pairings. Circular M13 single-stranded (ss) DNA enveloped by RecA protein into a presynaptic filament was paired with linear M13mp7 double-stranded (ds) DNA containing non-M13 sequences at its ends. Joint complexes were frequently seen in which the dsDNA was joined with the presynaptic filament over several kilobase (10(3) bases) lengths of the dsDNA. In this region, the presynaptic filament appeared disorganized as contrasted to the customary helical structure of the filament containing only a single strand of DNA. The same ultrastructure, but with greater detail, was observed when the samples were prepared for EM without fixation using a new method of fast-freezing and freeze-drying. EM immunogold staining demonstrated the presence of SSB protein in the disorganized region containing all three strands, but not in the regular helically arranged region. Psoralen photo-crosslinking of the DNA in the joint complexes revealed that the three DNA strands were in close proximity only over a single short (200 to 300 base-pairs) region. The joining of nicked circular M13 dsDNA and presynaptic filaments containing circular M13 ssDNA resulted in the intertwining of the dsDNA about the circular presynaptic filament. The joints produced in this case were short, as was the single region of psoralen photo-crosslinking of the three DNA strands. A model of how these long three-stranded joints form is presented involving the movement of a short "true" paranemic joint along the presynaptic filament.  相似文献   

4.
The RecA protein of Escherichia coli will drive the pairing and exchange of strands between homologous DNA molecules in a reaction stimulated by single-stranded binding protein. Here, reactions utilizing three homologous DNA pairs which can undergo both paranemic and plectonemic joining were examined by electron microscopy: supertwisted double-stranded (ds) DNA and linear single-stranded (ss) DNA, linear dsDNA and circular ssDNA, and linear dsDNA and colinear ssDNA. Several major observations were: (i) with RecA protein bound to the DNA, plectonemic joints were ultrastructurally indistinguishable from paranemic joints; (ii) complexes which appeared to be joined both paranemically and plectonemically were present in these reactions in roughly equal numbers; and (iii) in complexes undergoing strand exchange, both DNA partners were often enveloped within a RecA protein filament consisting of hundreds of RecA protein monomers and several kilobases of DNA. These observations suggest that, following RecA protein-ssDNA filament formation, strand exchange proceeds by a pathway that can be divided structurally into three phases: pairing, envelopment/exchange, and release of the products.  相似文献   

5.
The adenovirus single-stranded DNA (ssDNA)-binding protein (DBP) is necessary for the elongation step in viral DNA replication. In an attempt to characterize the putative ssDNA-binding domain of the DBP, we purified and characterized the Ad2ts111A DBP, which contains a glycine-to-valine substitution at amino acid 280. This mutation is adjacent to that in the previously studied Ad2+ND1ts23. Ad2+ND1ts23 exhibits a temperature-sensitive defect in DNA replication, and its DBP has previously been shown to bind ssDNA with reduced affinity. Ad2ts111A DBP, like Ad2+ND1ts23, does not support adenovirus DNA replication in vitro at elevated temperatures. However, the Ad2ts111A DBP binds ssDNA more tightly than does Ad2+ND1ts23 and is not temperature sensitive in this function. To determine the nucleic acid-binding properties of DBP, we applied spectrofluorometric techniques, which had not been used previously to study adenovirus DBP. Using the homopolynucleotide poly(1,N6)-ethenoadenylic acid (poly(r epsilon A], we have determined that the binding site size is approximately 16 nucleotides. In 20 mM NaCl, the Ad2wt, Ad2ts111A, and Ad2+ND1ts23 DBP proteins all bound stoichiometrically to poly(r epsilon A) with overall apparent affinities above 108 M-1. Based on titrations carried out at higher salt concentrations, however, the stability of these complexes did appear to increase in the order Ad2+ND1ts23 less than Ad2ts111A less than Ad2wt. By these techniques, we have confirmed also that the DBP of another temperature-sensitive mutant, H5ts107, like the Ad2ts111A DBP, retains its ability to bind ssDNA even at a restrictive temperature utilizing the salt concentration compatible with adenovirus DNA replication in vitro. The H5ts107 DBP, which contains an amino acid substitution at position 413, is defective for in vitro replication at nonpermissive temperature but is not temperature sensitive for binding to ssDNA. In summary, our results indicate that the replication defects of the Ad2ts111A are similar to those of H5ts107 and cannot be attributed to defective, nonspecific ssDNA binding by the DBP. It appears that ssDNA binding by itself is not sufficient to account for the role of DBP in adenovirus DNA replication.  相似文献   

6.
The adenovirus DNA-binding protein (DBP) is a multifunctional protein that is essential for viral DNA replication. DBP binds both single-stranded and double-stranded DNA as well as RNA in a sequence-independent manner. Previous studies showed that DBP does not promote melting of duplex poly(dA-dT) in contrast to prokaryotic single-strand-binding proteins. However, here we show that DBP can displace oligonucleotides annealed to single-stranded M13 DNA. Depending upon the DBP concentration, strands of at least 200 nucleotides can be unwound. Although unwinding of short (17-bp), fully duplex DNA is facilitated by DBP, unwinding of larger (28-bp) duplexes is only possible if single-stranded protruding ends are present. These protruding ends must be at least 4 nucleotides long for optimal unwinding, and both 5' and 3' single-stranded overhangs suffice. DBP-promoted strand displacement is sensitive to MgCl2 and NaCl and not dependent upon ATP. Our results suggest that DBP, through formation of a protein chain on the displaced strand, may destabilize duplex DNA ahead of the replication fork, thereby assisting in strand displacement during replication.  相似文献   

7.
G Lavelle  C Patch  G Khoury    J Rose 《Journal of virology》1975,16(4):775-782
Single-stranded fragments of adenovirus type 2 DNA were isolated from infected KB cells under conditions which retarded reassociation of complementary sequences but did not denature native viral DNA. Of the total intracellular, virus-specific DNA labeled during a 1-h pulse with tritiated thymidine begining 15 h after infection, about 20% was single stranded when fractionated on hydroxylapatite. This DNA shifted predominantly to the double-stranded fraction on hydroxylapatite during an extended chase incubation, suggesting that it may represent single-stranded DNA in replicating intermediates. Furthermore, the single-stranded DNA annealed nearly equally to both strands of the adenovirus genome. These findings indicate that at least portions of both complementary strands of adenovirus type 2 DNA are exposed as single strands during the period of viral DNA synthesis.  相似文献   

8.
We have analysed DNA from African cassava mosaic virus (ACMV)-infected Nicotiana benthamiana by two-dimensional agarose gel electrophoresis and detected ACMV-specific DNAs by blot-hybridisation. ACMV DNA forms including the previously characterised single-stranded, open-circular, linear and supercoiled DNAs along with five previously uncharacterised heterogeneous DNAs (H1-H5) were resolved. The heterogeneous DNAs were characterised by their chromatographic properties on BND-cellulose and their ability to hybridise to strand-specific and double-stranded probes. The data suggest a rolling circle mechanism of DNA replication, based on the sizes and strand specificity of the heterogeneous single-stranded DNA forms and their electrophoretic properties in relation to genome length single-stranded DNAs. Second-strand synthesis on a single-stranded virus-sense template is evident from the position of heterogeneous subgenomic complementary-sense DNA (H3) associated with genome-length virus-sense template (VT) DNA. The position of heterogeneous virus-sense DNA (H5), ranging in size from one to two genome lengths, is consistent with its association with genome-length complementary-sense template (CT) DNA, reflecting virus-sense strand displacement during replication from a double-stranded intermediate. The absence of subgenomic complementary-sense DNA associated with the displaced virus-sense strand suggests that replication proceeds via an obligate single-stranded intermediate. The other species of heterogeneous DNAs comprised concatemeric single-stranded virus-sense DNA (H4), and double-stranded or partially single-stranded DNA (H1 and H2).  相似文献   

9.
The human adenovirus type 2 (Ad2) mutant Ad2ts111 has previously been shown to contain two mutations which result in a complex phenotype. Ad2ts111 contains a single base change in the early region 1B (E1B) 19,000-molecular-weight (19K) coding region which yields a cyt deg phenotype and another defect which maps to the E2A 72K DNA-binding protein (DBP) coding region that causes a temperature-sensitive DNA replication phenotype. Here we report that the defect in the Ad2ts111 DBP is due to a single G----T transversion that results in a substitution of valine for glycine at amino acid 280. A temperature-independent revertant, Ad2ts111R10, was isolated, which reverts back to glycine at amino acid 280 yet retains the cyt and deg phenotypes caused by the 19K mutation. We physically separated the two mutations of Ad2ts111 by constructing a recombinant virus, Ad2ts111A, which contained a wild-type Ad2 E1B 19K gene and the gly----val mutation in the 72K gene. Ad2ts111A was cyt+ deg+, yet it was still defective for DNA replication at the nonpermissive temperature. The Ad2ts111 DBP mutation is located only two amino acids away from the site of the mutation in Ad2+ND1ts23, a previously sequenced DBP mutant. Biochemical studies of purified Ad2+ND1ts23 DBP showed that this protein was defective for elongation but not initiation of replication in a cell-free replication system consisting of purified Ad polymerase, terminal protein precursor, and nuclear factor I. Ad2+ND1ts23 DBP bound less tightly to single-strand DNA than did Ad2 DBP, as shown by salt gradient elution of purified DBPs from denatured DNA cellulose columns. This decreased binding to DNA was probably due to local conformational changes in the protein at a site that is critical for DNA binding rather than to global changes in protein structure, since both the Ad2+ND1ts23 and Ad2 DBPs showed identical cleavage patterns by the protease thermolysin at various temperatures.  相似文献   

10.
11.
M13 phage is a long, thin nucleoprotein filament containing a single-stranded DNA loop. Exposing the filaments to a chloroform/water interface at 20 °C causes them to contract into hollow spherical particles (spheroids), while exposure at low temperatures yields short, thick rods (I-forms). All of the DNA remains within the I-forms while a specific third remains within the spheroids. Here, a photo-crosslinking reagent, psoralen, has been used to probe secondary structure of the DNA in situ in these chloroform-relaxed phage forms. Following photo-crosslinking, the DNA that had been held within the spheroids appeared to be a duplex rod when seen by electron microscopy, while the DNA extruded from the spheroids was an open single-stranded DNA loop. Photo-crosslinking of the DNA in the I-forms yielded linear duplex DNA rods close to the length of M13 phage filaments. Similar observations derived from experiments with deletion and insertion mutant phage showed that the stability of the duplex rods did not depend on the sequence homology between the two opposing strands. These results showthat two non-homologous strands of DNA can exist in an apparently duplex structure and suggest that this is directed by proteins, possibly involving interaction at a membrane.  相似文献   

12.
Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.  相似文献   

13.
In contrast to other replication systems, adenovirus DNA replication does not require a DNA helicase to unwind the double-stranded template. Elongation is dependent on the adenovirus DNA-binding protein (DBP) which has helix-destabilizing properties. DBP binds cooperatively to single-stranded DNA (ssDNA) in a non-sequence-specific manner. The crystal structure of DBP shows that the protein has a C-terminal extension that hooks on to an adjacent monomer which results in the formation of long protein chains. We show that deletion of this C-terminal arm results in a monomeric protein. The mutant binds with a greatly reduced affinity to ssDNA. The deletion mutant still stimulates initiation of DNA replication like the intact DBP. This shows that a high affinity of DBP for ssDNA is not required for initiation. On a single-stranded template, elongation is also observed in the absence of DBP. Addition of DBP or the deletion mutant has no effect on elongation, although both proteins stimulate initiation on this template. Strand displacement synthesis on a double-stranded template is only observed in the presence of DBP. The mutant, however, does not support elongation on a double-stranded template. The unwinding activity of the mutant is highly reduced compared with intact DBP. These data suggest that protein chain formation by DBP and high affinity binding to the displaced strand drive the ATP-independent unwinding of the template during adenovirus DNA replication.  相似文献   

14.
Complexes of RecA-DNA filaments, formed in the presence of a non-hydrolyzable ATP analog, ATP gamma S, aggregate together into regular bundles in the presence of Mg2+. Electron micrographs of several different forms of RecA-double-stranded DNA bundles have been analyzed: bundles of six supercoiled filaments at two different concentrations of Mg2+, and bundles of three supercoiled filaments at a single concentration of Mg2+. The bundles are all characterized by a regular left-handed supercoiling of the component filaments arising from the non-integral number of RecA subunits per turn of the RecA helix in these aggregates, about 6.15 units/turn. When single-stranded DNA is used instead of double-stranded DNA, regular aggregates composed of many filaments are formed. These aggregates do not supercoil, consistent with a symmetry of the component filaments of close to 6.0 units/turn. These different structures have provided a strong confirmation of the analysis of isolated RecA filaments. Since different RecA protomers within the component filaments of these aggregates are in different environments, they have provided a direct view of different conformations that RecA subunits may adopt within the same filament as a result of nonequivalent contacts. The conformational changes we have visualized are quite large, with apparent movements of mass over distances greater than 2 nm. The RecA-mediated strand exchange reaction is a highly dynamic process, which involves both the unwinding and stretching of DNA, in addition to the physical movement of DNA strands. It is quite likely, therefore, that the different conformations of RecA subunits seen in these aggregates represent different states of RecA during its enzymatic strand exchange activity.  相似文献   

15.
R loops were generated with late adenovirus type 2 (Ad2) mRNA in double-stranded viral DNA, and visualized by electron microscopy. Unpaired DNA sequences in Ad2:Ad2+ND4 heteroduplex DNA served as a visual marker for the orientation of R loops with respect to the conventional DNA map. The most abundant classes of late Ad2 mRNA observed by this technique hybridized, in order of R-loop frequency, with midpoints near posit1ons 0.57, 0.88, 0.77, and 0.40 to 0.50 of the DNA map. The R loop at position 0.57, 0.88, 0.77, and 0.40 containing the hexon gene; the one at position 0.88 corresponded to a region containing the fiber gene. The relative frequencies of these two R loops paralleled those of the encoded gene products. The mRNA sizes, calculated from those of the respective R loops, were slightly larger than needed to code for these polypeptides. Using the R-loop technique, two locations at which adjacent mRNA''s hybridized to different strands were accurately mapped at positions 0.61 and 0.91 of the DNA. The map positions of late Ad2 mRNA correlated well to published RNA and protein maps.  相似文献   

16.
The DNA-binding, annealing and recombinational activities of purified RecA-DNA complexes stabilized by ATP gamma S (a slowly hydrolysable analog of ATP) are described. Electrophoretic analysis, DNase protection experiments and observations by electron microscopy suggest that saturated RecA complexes formed with single- or double-stranded DNA are able to accommodate an additional single strand of DNA with a stoichiometry of about one nucleotide of added single-stranded DNA per nucleotide or base-pair, respectively, of DNA resident in the complex. This strand uptake is independent of complementarity or homology between the added and resident DNA molecules. In the complex, the incoming and resident single-stranded DNA molecules are in close proximity as the two strands can anneal in case of their complementarity. Stable RecA complexes formed with single-stranded DNA bind double-stranded DNA efficiently when the added DNA is homologous to the complexed strand and then initiate a strand exchange reaction between the partner DNA molecules. Electron microscopy of the RecA-single-stranded DNA complexes associated with homologous double-stranded DNA suggests that a portion of duplex DNA is taken into the complex and placed in register with the resident single strand. Our experiments indicate that both DNA binding sites within RecA helical filaments can be occupied by either single- or double-stranded DNA. Presumably, the same first DNA binding site is used by RecA during its polymerization on single- or double-stranded DNA and the second DNA binding site becomes available for subsequent interaction of the protein-saturated complexes with naked DNA. The way by which additional DNA is taken into RecA-DNA complexes shows co-operative character and this helps to explain how topological problems are avoided during RecA-mediated homologous recombination.  相似文献   

17.
Recombinase proteins assembled into helical filaments on DNA are believed to be the catalytic core of homologous recombination. The assembly, disassembly and dynamic rearrangements of this structure must drive the DNA strand exchange reactions of homologous recombination. The sensitivity of eukaryotic recombinase activity to reaction conditions in vitro suggests that the status of bound nucleotide cofactors is important for function and possibly for filament structure. We analyzed nucleoprotein filaments formed by the human recombinase Rad51 in a variety of conditions on double-stranded and single-stranded DNA by scanning force microscopy. Regular filaments with extended double-stranded DNA correlated with active in vitro recombination, possibly due to stabilizing the DNA products of these assays. Though filaments formed readily on single-stranded DNA, they were very rarely regular structures. The irregular structure of filaments on single-stranded DNA suggests that Rad51 monomers are dynamic in filaments and that regular filaments are transient. Indeed, single molecule force spectroscopy of Rad51 filament assembly and disassembly in magnetic tweezers revealed protein association and disassociation from many points along the DNA, with kinetics different from those of RecA. The dynamic rearrangements of proteins and DNA within Rad51 nucleoprotein filaments could be key events driving strand exchange in homologous recombination.  相似文献   

18.
RecA protein forms filaments on both single- and double-stranded DNA. Several studies confirm that filament extension occurs in the 5' to 3' direction on single-stranded DNA. These filaments also disassemble in an end-dependent fashion, and several indirect observations suggest that the disassembly occurs on the end opposite to that at which assembly occurs. By labeling the 5' end of single-stranded DNA with a segment of duplex DNA, we demonstrate unambiguously that RecA filaments disassemble uniquely in the 5' to 3' direction.  相似文献   

19.
The RecA protein of Escherichia coli has been used in vitro to mediate a strand-exchange reaction between homologous DNA molecules. A three-dimensional reconstruction of a RecA filament on double-stranded DNA has been previously determined from electron micrographs, and the reconstruction displays a clear axial polarity. The RecA-mediated strand-exchange reaction between a double-stranded DNA and a homologous single-stranded DNA that is complexed with a RecA helical polymer proceeds with a known polarity. Using image analysis of electron micrographs, we have determined the relation between the structural polarity of RecA filaments and the 3' and 5' polarity of single-stranded DNA. Thus, the structural polarity of RecA filaments can now be related to the direction in which the RecA-mediated strand-exchange reaction advances along the complexed single-stranded DNA.  相似文献   

20.
DNA-binding properties of the major core protein of adenovirus 2.   总被引:5,自引:0,他引:5       下载免费PDF全文
The major adenovirus core protein (P.VII) binds to various species of duplex and single-stranded DNA molecules as a linear function of P.VII concentration. P.VII progressively condenses 32S Ad2 DNA into rapidly sedimenting forms having an S value of around 2,280. P.VII does not coat DNA like cytochrome C, instead DNA-protein beads are visualized in the electron microscope at low protein concentration. These beads appear to interact forming larger structures and at high P.VII concentrations the DNA molecule becomes highly compacted. Analysis of DNA fragments formed after digestion of P.VII-DNA complexes and isolated cores with micrococcal nuclease suggest that the organization of the DNA in the two structures is essentially identical. The initial P.VII and DNA interaction is sensitive to both ionic and hydrophobic environments, whereas the in vitro DNA-P.VII complexes are extremely stable and are not disrupted in the presence of 3 M NaCl, 1% sarcosyl or 5% deoxycholate. Properties of these in vitro DNA-protein VII complexes share striking similarities to isolated viral core particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号