首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim HY  Cote GG  Crain RC 《Planta》1996,198(2):279-287
Leaflet movements of Samanea saman (Jacq.) Merr. depend in part upon circadian-rhythmic, light-regulated K+ fluxes across the plasma membranes of extensor and flexor cells in opposing regions of the leaf-moving organ, the pulvinus. We previously showed that blue light appears to close open K+ channels in flexor protoplasts during the dark period (subjective night) (Kim et al., 1992, Plant Physiol 99: 1532–1539). In contrast, transfer to darkness apparently closes open K+ channels in extensor protoplasts during the light period (subjective day) (Kim et al., 1993, Science 260: 960–962). We now report that both these channel-closing stimuli increase inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] levels in the appropriate protoplasts. If extensor cells are given a pulse of red light followed by transfer to darkness, channels still apparently close (Kim et al. 1993) but changes in Ins(1,4,5)P3 levels are complex with an initial decrease under red light followed by accumulation. Neomycin, an inhibitor of polyphosphoinositide hydrolysis, inhibits both blue-light-induced Ins(1,4,5)P3 production and K+-channel closure in flexor protoplasts and both dark-induced Ins(1,4,5)P3 production and K+ channel closure in extensor protoplasts. The G-protein activator, mastoparan, mimics blue light and darkness in that it both increases Ins(1,4,5)P3 levels and closes K+ channels in the appropriate cell type at the appropriate time. These results indicate that phospholipase C-catalyzed hydrolysis of phosphoinositides, possibly activated by a G protein, is an early step in the signal-transduction pathway by which blue light and darkness close K+ channels in S. saman pulvinar cells.Abbreviations DiS-C3-(5) 3,3-dipropylthiadicarbocyanine iodide - F measure change in Dis-C3-(5) fluorescence - Fo initial Dis-C3-(5) fluorescence - Ins(1,4,5)P3 inositol 1,4,5-trisphosphate - PtdIns(4,5)P2 phosphatidylinositol 4,5-bisphosphate - rbc red blood cell Supported by grants from NSF (IBN 9206179 and MCB 9305154) and U.S.-Israel Binational Agricultural Research and Development Fund (IS-1670-90RC) to R.C.C. We thank the University of Connecticut Biotechnology Center for the use of a fluorescent spectrophotometer.  相似文献   

2.
The phospholipase C (PLC; EC 3.1.4.3) activity in isolated plasma membranes of light-grown wheat (Triticum aestivum L. cv. Prelude) leaves was investigated. The activity against the polyphosphoinositides was strongly dependent on Ca2+ and was affected by the anionic detergent deoxycholate (DOC). In the presence of 20 M Ca2+ the PLC activity preferred phosphatidylinositol 4,5-bisphosphate (PIP2) over phosphatidylinositol 4-monophosphate (PIP) as a substrate. Instead, with 1 mM Ca2+ the enzyme clearly favoured PIP. In addition, the PIP2-PLC activity was increased by Mg2+ and in the presence of GTP, guanosine 5-(-thio)-triphosphate as well as ATP, CTP, guanosine 5-diphosphate and guanosine 5-(-thio)-diphosphate. Further analysis showed that a molybdate-sensitive phosphatase activity catalysing the dephosphorylation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is also associated with the plasma-membrane vesicles. Dephosphorylation of Ins(1,4,5)P3 was reduced in the presence of GTP or by inclusion of the unspecific phosphatase inhibitor molybdate. The results indicate the presence of a PIP2-PLC activity and the presence of a molybdate-sensitive phosphatase activity in wheat plasma-membrane vesicles.Abbreviations DOC deoxycholate - IDPase inosine 5-diphosphatase - InsPs inositol phosphates, the numbering at the end indicates the number of phosphate residues and when their positions on the inositol ring are known they are indicated in parentheses, i.e. - Ins(1,4,5)P3 inositol 1,4,5-trisphosphate - PIP phosphatidylinositol 4-monophosphate - PIP2 phosphatidylinositol 4,5-bisphosphate - PLC phospholipase C This work was financially supported by grant from the Deutsche Forschungsgemeinschaft (DFG). M. C. Arz gratefully acknowledges the support of a Graduiertenstipendium des Landes Nordrhein-Westfalen (Germany). We wish to thank S. Laden and G.E. Grambow for assistance.  相似文献   

3.
Alcohols induce mating-structure activation in Chlamydomonas eugametos gametes. From the effect of ethanol on the 32P-labelling of polyphosphoinositides, we conclude that the synthesis of these lipids is stimulated. Biologically inactive concentrations of ethanol (<6%) had no effect on synthesis, but 6–8% ethanol stimulated synthesis for upto 60 min. The 32P incorporated into polyphosphoinositides and phosphatidic acid during ethanol treatment was readily chased out when 1 mM unlabelled Na3PO4 was added. Using a binding assay for inositol 1,4,5-trisphosphate, we show that the production of this phospholipid constituent is dramatically increased after ethanol treatment. This effect, coupled to a rise in intracellular calcium concentration, could explain gamete activation. The significance of these results in explaining other ethanol-induced phenomena in algae is discussed.Abbreviations Ins(1,4,5)P3 inositol 1,4,5-trisphosphate - PtdA phosphatidic acid - PtdIns phosphatidylinositol - PtdIns(4)P phosphatidylinositol 4-phosphate - PtdIns(4,5)P2 phosphatidylinositol 4,5-bisphosphate To whom correspondence should be addressedWe thank Dr. P. van Haastert (Biochemistry, University of Groningen, The Netherlands) and his colleagues for introducing us to their Ins(1,4,5)P3 assay, and Ben ten Brink (Molecular Cell Biology, University of Amsterdam, The Netherlands) for information about contractile vacuoles. We also thank Bas Nagelkerken, Marcel van der Vaart, Pieter van der Schoor, Gyuri Fenyvesi and Susan Kenter for their help.  相似文献   

4.
A role for cytosolic free Ca2+ (Ca2+i) in the regulation of growth of Papaver rhoeas pollen tubes during the self-incompatibility response has recently been demonstrated [Franklin-Tong et al. Plant J. 4:163–177 (1993); Franklin-Tong et al. Plant J. 8:299–307 (1995); Franklin-Tong et al. submitted to Plant J.]. We have investigated the possibility that Ca2+i is more generally involved in the regulation of pollen tube growth using confocal laser scanning microscopy (CLSM). Data obtained using Ca2+ imaging, in conjunction with photolytic release of caged inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], point to a central role of the phosphoinositide signal transduction pathway in the control of Ca2+ fluxes and control of pollen tube growth. These experiments further revealed that increases in cytosolic levels of Ins(1,4,5)P3 resulted in the formation of distinct Ca2+ waves. Experiments using the pharmacological agents heparin, neomycin and mastoparan further indicated that Ca2+ waves are propagated, at least in part, by Ins(1,4,5)P3-induced Ca2+ release rather than by simple diffusion or by “classic” Ca2+-induced Ca2+ release mechanisms. We also have data which suggest that Ca2+ waves and oscillations may be induced by photolytic release of caged Ca2+. Ratio-imaging has enabled us to identify an apical oscillating Ca2+ gradient in growing pollen tubes, which may regulate normal pollen tube growth. We also present evidence for the involvement of Ca2+ waves in mediating the self-incompatibility response. Our data suggest that changes in Ca2+i and alterations in growth rate/patterns are likely to be closely correlated and may be causally linked to events such as Ca2+-induced, or Ins(1,4,5)P3-induced wave formation and apical Ca2+ oscillations.Presented at the 1997 SEB Annual Meeting: Interactive MultiMedia Biology - Experimental Biology Online Symposium, Canterbury, 7-11 April  相似文献   

5.
In the last decade a great deal of attention was awarded to a signal transduction pathway which is utilized primarily by Ca2+ mobilizing signal molecules and which involves the hydrolysis of a quantitatively minor phospholipid, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) by a PtdIns-specific phospholipase C (PLC). The evidence for the existence of receptor-mediated GTP binding protein-coupled PLC in myocardium and its possible functions are briefly summarized. The minireview is concentrated on the following aspects: 1) cellular localization and synthesis of polyphospho-PtdIns from PtdIns, 2) desensitization of the 1-adrenergic agonist and endothelin-1 mediated PtdIns responses, 3) oscillatory Ca2+ transients initiated by Ptdlns(4,5)P2 hydrolysis, 4) polyunsaturated fatty acids as constituents of polyphospho-PtdIns and of the protein kinase C activator 1,2-diacylglycerol (DAG), 5) source other than Ptdlns(4,5)P2 contributing to the stimulated DAG, 6) role of the PtdIns pathway in cardiomyocyte growth and gene expression during the hypertrophic response. (Mol Cell Biochem116: 59–67, 1992)Abbreviations Phosphatidylinositol 4,5-bisphosphate PtdIns(4,5)P2 - Phosphatidylinositol 4-monophosphate PtdIns(4)P4 - Phosphatidylinositol PtdIns - Inositol 1,4,5-triphosphate Ins(1,4,5)P3 - Inositol 1,3,4,5-tetrakisphosphate Ins(1,3,4,5)P4 - Inositol 1-monophosphate Ins(1)P - Inositol 1,4-bisphosphate Ins(1,4)P2 - Inositol Ins - Inositolphosphates InsPn - Guanine 5'-triphosphate GTP - GTP binding protein G-protein - Phosphatidylinositolspecific phospholipase C PLC - Protein kinase C PKC - 1,2-Diacylglycerol DAG - Monoacylglycerol MAG - cytidyldiphoshate-diacylglycerol CDP-DAG - Sarcolemma SL - Sarcoplasmic reticulum SR - Stearic acid 18:0 - Polyunsaturated fatty acids PUFA - Arachidonic acid 20:4n-6 - Linoleic acid 18:2n-6 - Eicosapentaenoic acid 20:5n-3 - Docosahexaenoic acid 22:6n-3 - Phosphatidic acid PtdOH - Phospholipase D PLD - Phosphatidylcholine PtdChol  相似文献   

6.
《Autophagy》2013,9(12):1472-1489
The role of intracellular Ca2+ signaling in starvation-induced autophagy remains unclear. Here, we examined Ca2+ dynamics during starvation-induced autophagy and the underlying molecular mechanisms. Tightly correlating with autophagy stimulation, we observed a remodeling of the Ca2+ signalosome. First, short periods of starvation (1 to 3 h) caused a prominent increase of the ER Ca2+-store content and enhanced agonist-induced Ca2+ release. The mechanism involved the upregulation of intralumenal ER Ca2+-binding proteins, calreticulin and Grp78/BiP, which increased the ER Ca2+-buffering capacity and reduced the ER Ca2+ leak. Second, starvation led to Ins(1,4,5)P3R sensitization. Immunoprecipitation experiments showed that during starvation Beclin 1, released from Bcl-2, first bound with increasing efficiency to Ins(1,4,5)P3Rs; after reaching a maximal binding after 3 h, binding, however, decreased again. The interaction site of Beclin 1 was determined to be present in the N-terminal Ins(1,4,5)P3-binding domain of the Ins(1,4,5)P3R. The starvation-induced Ins(1,4,5)P3R sensitization was abolished in cells treated with BECN1 siRNA, but not with ATG5 siRNA, pointing toward an essential role of Beclin 1 in this process. Moreover, recombinant Beclin 1 sensitized Ins(1,4,5)P3Rs in 45Ca2+-flux assays, indicating a direct regulation of Ins(1,4,5)P3R activity by Beclin 1. Finally, we found that Ins(1,4,5)P3R-mediated Ca2+ signaling was critical for starvation-induced autophagy stimulation, since the Ca2+ chelator BAPTA-AM as well as the Ins(1,4,5)P3R inhibitor xestospongin B abolished the increase in LC3 lipidation and GFP-LC3-puncta formation. Hence, our results indicate a tight and essential interrelation between intracellular Ca2+ signaling and autophagy stimulation as a proximal event in response to starvation.  相似文献   

7.
Abstract: Addition of endothelins (ETs) to neuroblastomaglioma hybrid cells (NG108-15) induced increases in cytosolic free Ca2+ ([Ca2+]i) levels of labeled inositol monophosphates and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The increases in [Ca2+]i elicited by the three ETs (ET-1, ET-2, and ET-3) were transient and did not show a sustained phase. Chelating extracellular Ca2+ in the medium by adding excess EGTA decreased the ET-mediated Ca2+ response by 40-50%. This result indicates that a substantial portion of the increase in [Ca2+]i was due to influx from an extracellular source. However, the increase in [Ca2+]i was not affected by verapamil or nifedipine (10?5M). A rank order potency of ET-1 ET-2 ET-3 is shown for the stimulated increase in [Ca2+]i, as well as labeled inositol phosphates, in these cells. ATP (10?4M) and bradykinin (10?7M) also induced the increases in [Ca2+]i and Ins(1,4,5)P3 in NG108-15 cells, albeit to a different extent. When compared at 10?7M, bradykinin elicited a five- to sixfold higher increase in the level of Ins(1,4,5)P3, but less than a twofold higher increase in [Ca2+]i than those induced by ET-1. Additive increases in both Ins(1,4,5)P3 and [Ca2+]i were observed when ET-1, ATP, and bradykinin were added to the cells in different combinations, suggesting that each receptor agonist is responsible for the hydrolysis of a pool of polyphosphoinositide within the membrane. ET-1 exhibited homologous desensitization of the Ca2+ response, but partial heterologous desensitization to the Ca2+ response elicited by ATP. On the contrary, ET-1 did not desensitize the response elicited by bradykinin, although bradykinin exhibited complete heterologous desensitization to the response elicited by ET-1. Taken together, these results illustrate that, in NG108-15 cells, a considerable amount of receptor cross talk occurs between ET and other receptors that transmit signals through the polyphosphoinositide pathway.  相似文献   

8.
Summary We have examined the effects of various inositol polyphosphates, alone and in combination, on the Ca2+-activated K+ current in internally perfused, single mouse lacrimal acinar cells. We used the patch-clamp technique for whole-cell current recording with a set-up allowing exchange of the pipette solution during individual experiments so that control and test periods could be directly compared in individual cells. Inositol 1,4,5-trisphosphate (Ins 1,4,5 P3) (10–100 m) evoked a transient increase in the Ca2+-sensitive K+ current that was independent of the presence of Ca2+ in the external solution. The transient nature of the Ins 1,4,5 P3 effect was not due to rapid metabolic breakdown, as similar responses were obtained in the presence of 5mm 2,3-diphosphoglyceric acid, that blocks the hydrolysis of Ins 1,4,5 P3, as well as with the stable analoguedl-inositol 1,4,5-trisphosphorothioate (Ins 1,4,5 P(S)3) (100 m). Ins 1,3,4 P3 (50 m) had no effect, whereas 50 m Ins 2,4,5 P3 evoked responses similar to those obtained by 10 m Ins 1,4,5 P3. A sustained increase in Ca2+-dependent K+ current was only observed when inositol 1,3,4,5-tetrakisphosphate (Ins 1,3,4,5 P4) (10 m) was added to the Ins 1,4,5 P3 (10 m)-containing solution and this effect could be terminated by removal of external Ca2+. The effect of Ins 1,3,4,5 P4 was specifically dependent on the presence of Ins 1,4,5 P3 as it was not found when 10 m concentrations of Ins 1,3,4 P3 or Ins 2,4,5 P3 were used. Ins 2,4,5 P3 (but not Ins 1,3,4 P3) at the higher concentration of 50 m did, however, support the Ins 1,3,4,5 P4-evoked sustained current activation. Ins 1,3,4 P3 could not evoke sustained responses in combination with Ins 1,4,5 P3 excluding the possibility that the action of Ins 1,3,4,5 P4 could be mediated by its breakdown product Ins 1,3,4 P3. Ins 1,3,4,5 P4 also evoked a sustained response when added to an Ins 1,4,5 P(S)3-containing solution. Ins 1,3,4,5,6 P5 (50 m) did not evoke any effect when administered on top of Ins 1,4,5 P3. In the absence of external Ca2+, addition of Ins 1,3,4,5 P4 to an Ins 1,4,5 P3-containing internal solution evoked a second transient K+ current activation. Readmitting external Ca2+ in the continued presence internally of Ins 1,4,5 P3 and Ins 1,3,4,5 P4 made the response reappear. We conclude that both Ins 1,4,5 P3 and Ins 1,3,4,5 P4 play crucial and specific roles in controlling intracellular Ca2+ homeostasis.  相似文献   

9.
The role of calcium ions in the L-thyroxine-induced initiation of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) and also the course of releasing individual fractions of inositol phosphates and diacylglycerides (DAG) were studied in liver cells during early stages of the hormone effect. L-Thyroxine stimulated a rapid hydrolysis in hepatocytes of PtdInsP2 labeled with [14C]linoleic acid and [3H]inositol mediated by phosphoinositide-specific phospholipase C. This was associated with accumulation of [14C]DAG, total inositol phosphates, [3H]inositol 1,4,5-trisphosphate (Ins1,4,5P3) and [3H]inositol 1,4-bisphosphate (Ins1,4P2). Elimination of calcium ions from the incubation medium of hepatocytes did not abolish the effect of thyroxine on the accumulation of [14C]DAG and total [3H]inositol phosphates. Preincubation of liver cells with TMB-8 increased the stimulatory effect of L-thyroxine on the accumulation of [14C]DAG. During the incubation of hepatocytes in the presence of the hormone the content of 14C-labeled fatty acids did not change. The L-thyroxineinduced accumulation of [3H]Ins1,4,5P3 and [3H]Ins1,4P2 did not depend on the presence of calcium ions in the incubation medium of the cells.  相似文献   

10.
Rabbit pancreatic acinar cells, permeabilized by saponin treatment, rapidly accumulated 3.5 nmol of Ca2+/mg protein in an energy-dependent pool when incubated at an ambient free Ca2+ concentration of 100 nm. Maximal loading of the internal stores was reached at 10 min and remained unchanged thereafter. Complete inhibition of the Ca2+ pump with thapsigargin revealed that this plateau was the result of a steady-state between slow Ca2+ efflux and ATP-driven Ca2+ uptake. Sixty percent of the pool could be released by Ins(1,4,5)P3, whereas GTP released another twenty percent. The striking finding of this study is that the energy-dependent store could also be released by ruthenium red. Uptake experiments in the presence of ruthenium red revealed that the dye, at concentrations below 100 m, selectively reduced the size of the Ins(1,4,5)P3-releasable pool. Ruthenium red had no effect on the half-maximal stimulatory concentration of Ins(1,4,5)P3. At concentrations beyond 100 m, the dye also affected the GTP-releasable pool. Comparison with thapsigargin revealed that ruthenium red released Ca2+ from stores loaded to steady-state at a rate markedly faster than can be explained by inhibition of the ATPase alone. From the data presented, we concluded that ruthenium red selectively releases Ca2+ from the Ins(1,4,5)P3-sensitive store by activating a Ca2+ release channel, whereas Ca2+ release from the GTP-sensitive store is predominantly caused by inhibition of the Ca2+ pump. The postulated ruthenium red-sensitive Ca2+ release channel might be similar to the ryanodine-receptor in muscle.The research of Dr. P.H.G.M. Willems has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.  相似文献   

11.
The Ins(1,4,5)P3 receptor acts as a central hub for Ca2+ signaling by integrating multiple signaling modalities into Ca2+ release from intracellular stores downstream of G-protein and tyrosine kinase-coupled receptor stimulation. As such, the Ins(1,4,5)P3 receptor plays fundamental roles in cellular physiology. The regulation of the Ins(1,4,5)P3 receptor is complex and involves protein-protein interactions, post-translational modifications, allosteric modulation, and regulation of its sub-cellular distribution. Phosphorylation has been implicated in the sensitization of Ins(1,4,5)P3-dependent Ca2+ release observed during oocyte maturation. Here we investigate the role of phosphorylation at T-930, a residue phosphorylated specifically during meiosis. We show that a phosphomimetic mutation at T-930 of the rat Ins(1,4,5)P3 receptor results in decreased Ins(1,4,5)P3-dependent Ca2+ release and lowers the Ins(1,4,5)P3 binding affinity of the receptor. These data, coupled to the sensitization of Ins(1,4,5)P3-dependent Ca2+ release during meiosis, argue that phosphorylation within the coupling domain of the Ins(1,4,5)P3 receptor acts in a combinatorial fashion to regulate Ins(1,4,5)P3 receptor function.  相似文献   

12.
Summary The photoreceptor cells in the honeybee drone contain an elaborate Ca2+-sequestering endoplasmic reticulum (ER). We measured Ca-oxalate formation within the ER of permeabilized retinal slices with a microphotometer and studied the kinetics of Ca2+-uptake into the ER and the properties of Ins(1,4,5)P3-induced Ca2+-release.The ATP-dependent Ca2+-uptake mechanism has a high affinity for Ca2+: Uptake rate was half maximal at Ca2+ free 0.6 M.Addition of Ins(1,4,5)P3 caused a persistent depression of Ca-oxalate formation due to Ca2+ -release from the ER. The Ins(1,4,5)P3-dependent Ca2+-release mechanism has a high affinity (half maximal rate with 0.2 M Ins(1,4,5)P3) and a high specificity for Ins(1,4,5)P3: Ins(2,4,5)P3 was 6 times, Ins(1,3,4,5)P4 was 15 times less potent in inducing Ca2+-release. 3 M Ins(1,4)P2 had no detectable effect. The sensitivity for Ins(1,4,5)P3 was maximal between 280 nM and 1.6 M Ca2+ free and decreased at higher and lower Ca2+-concentrations.Our data show that the ER in invertebrate photoreceptor cells is an effective Ca2+ -sink and an Ins(1,4,5)P3-sensitive Ca2+-source. We support the idea (Payne et al. 1988) that the ER-network close to the photoreceptive membrane, the submicrovillar cisternae (SMC), are the light- and Ins(1,4,5)P3-sensitive Ca2+-stores.Abbreviations ER endoplasmic reticulum - Ins(1,4,5)P 3 D-inositol 1,4,5-trisphosphate - Ins(1,3,4)P 3 D-inositol 1,3,4-trisphosphate - Ins(2,4,5)P 3 D-inositol 2,4,5-trisphosphate - Ins(1,4)P 2 D-inositol 1,4-bisphosphate - Ins(1,3,4,5)P 4 D-inositol 1,3,4,5-tetrakisphosphate - SMC submicrovillar cisternae - [Ca 2+]i intracellular free Ca2+-concentration  相似文献   

13.
Abstract: Histamine stimulation of bovine adrenal medullary cells rapidly activated phospholipase C. [3H]Inositol 1,4,5-trisphosphate [[3H]Ins(1,4,5)P3] levels were transiently increased (200% of basal values between 1 and 5 s) before declining to a new steady-state level of ~140% of basal values. [3H]Inositol 1,4-bisphosphate [[3H]Ins(1,4)P2] content increased to a maximal and maintained level of 250% of basal values after 1 s, whereas levels of [3H]inositol 1,3,4-trisphosphate [[3H]-Ins(1,3,4)P3], [3H]inositol 1,3-bisphosphate, and [3H]-inositol 4-monophosphate ([3H]Ins4P) increased more slowly. The rapid responses were not reduced by the removal of extracellular Ca2+, but they were no longer sustained over time. The turnover rates of selected inositol phosphate isomers have been estimated in the intact cell. [3H]Ins(1,4,5)P3 was rapidly metabolized (t1/2 of 11 s), whereas the other isomers were metabolized more slowly, with t1/2 values of 113, 133, 104, and 66 s for [3H]Ins(1,3,4)P3, [3H]Ins(1,4)P2, an unresolved mixture of [3H]inositol 1- and 3-monophosphate ([3H]Ins1/3P), and [3H]Ins4P, respectively. The calculated turnover rate of [3H]Ins(1,4,5)P3 was sufficient to account for the turnover of the combination of both [3H]Ins(1,4)P2 and [3H]Ins(1,3,4)P3 but not that of [3H]Ins1/3P or [3H]Ins4P. These observations demonstrate that histamine stimulation of these cells results in a complex Ca2+-dependent and -independent response that may involve the hydrolysis of inositol phospholipids in addition to phosphatidylinositol 4,5-bisphosphate.  相似文献   

14.
In rat cardiac sarcolemmal membranes a phosphoinositide-specific phospholipase C (PLC) was found to be present. The enzyme hydrolysed exogenous [3H-]phosphatidylinositol 4,5-biphosphate ([3H-]PtdIns(4,5)P 2) in an optimized assay mixture containing 15 leg SL protein, 100 mM NaCl, 1 mM free Ca2+,14 mM Na-cholate and 20 AM [3H-]PtdIns (4,5)P 2 (400–500 dpm/gm-l) in 30 mM HEPES-Tris buffer (pH 7.0). The average specific activity was 9.14±0.55 nmol-mg–1·2.5 min–1. The addition of Mg2+ to the assay mixture did not change PLC activity but increased the relative amounts of dephosphorylated inositol products. In the absence of Na+ and at a low Ca2+ concentration (0.3 M), Mg2+ also enhanced the intraSL levels of PtdIns4P and PtdIns, and, moreover, inhibited PLC activity (IC500.07 mM). PtdIns4P seemd to be a good substrate for the rat SL PLC (23.07 ± 1.57 nmol·mg–1·2.5 min–1) whereas PtdIns was hydrolysed at a very low rate (0.36 ± 0.08 nmol·mg–1·2.5 min–1). Unlike PtdIns(4,5)P 2, PLC-dependent PtdIns4P and PtdIns hydrolysis was not inhibited by Ca2+ concentrations over 1 mM. The possibility of distinct isozymes being responsible for the different hydrolytic activities is discussed. (Mol Cell Biochem116: 27–31, 1992).Abbreviations DAG sn-1,2-diacylglycerol - EGTA ethyleneglycol-O,O-bis(aminoethyl)-N,N,N,N,-tetraacetic acid - Ins(1,4,5)P 3 inositol 1,4,5-trisphosphate - InsP inositol monophosphate (unidentified isomer) - InsP 2 inositol bisphosphate (unidentified isomer) - InsP 3 inositol trisphosphate (unidentified isomer) - InsP x any inositol phosphate - PLC phospholipase C - PtdIns phosphatidylinositol - PtdIns(4,5)P 2 phosphatidylinositol 4,5-bisphosphate - PtdIns4P phosphatidylinositol 4-monophosphate - SL sarcolemma  相似文献   

15.
Within the first 2 h of sexual reproduction, gametes of the green alga Chlamydomonas eugametos agglutinate, fuse via their mating structures, de-agglutinate and swim off as vis-à-vis pairs. During this period, increases in intracellular inositol 1,4,5-trisphosphate levels and changes in polyphosphoinositide synthesis were associated with cell fusion. The protein-kinase-C inhibitor staurosporine (0.1–0.2 M) inhibited the de-agglutination of pairs and therefore prevented them swimming away, while earlier stages of mating such as agglutination or cell fusion were unaffected. The results suggest that inositol 1,4,5-trisphosphate and diacylglycerol are fertilization signals in C. eugametos. The idea that they could also be fertilization signals in higher plants is discussed in relation to in vitro embryogenesis.Abbreviations DAG diacylglycerol - InsP3 inositol 1,4,5-trisphosphate - mt+/mt mating-type plus or minus - PKC protein kinase C - PtdOH phosphatidic acid - PtdInsP phosphatidylinositol - 4-phosphate PtdInsP2 phosphatidylinositol 4,5-bisphosphate  相似文献   

16.
The Ins(1,4,5)P3 receptor acts as a central hub for Ca2+ signaling by integrating multiple signaling modalities into Ca2+ release from intracellular stores downstream of G-protein and tyrosine kinase-coupled receptor stimulation. As such, the Ins(1,4,5)P3 receptor plays fundamental roles in cellular physiology. The regulation of the Ins(1,4,5)P3 receptor is complex and involves protein-protein interactions, post-translational modifications, allosteric modulation, and regulation of its sub-cellular distribution. Phosphorylation has been implicated in the sensitization of Ins(1,4,5)P3-dependent Ca2+ release observed during oocyte maturation. Here we investigate the role of phosphorylation at T-930, a residue phosphorylated specifically during meiosis. We show that a phosphomimetic mutation at T-930 of the rat Ins(1,4,5)P3 receptor results in decreased Ins(1,4,5)P3-dependent Ca2+ release and lowers the Ins(1,4,5)P3 binding affinity of the receptor. These data, coupled to the sensitization of Ins(1,4,5)P3-dependent Ca2+ release during meiosis, argue that phosphorylation within the coupling domain of the Ins(1,4,5)P3 receptor acts in a combinatorial fashion to regulate Ins(1,4,5)P3 receptor function.  相似文献   

17.
  • 1.1. The mobilization of Ca2+ from intracellular stores by d-myo-inositol 1,4,5-triphosphate[Ins(1,4,5)P3] is now widely accepted as the primary link between plasma membrane receptors that stimulate phospholipase C and the subsequent increase in intracellular free Ca2+ that occurs when such receptors are activated (Berridge, 1993). Since the observations of VoIpe et al. (1985) which showed that Ins(1,4,5)P3 could induce Ca2+ release from isolated terminal cisternae membranes and elicit contracture of chemically skinned muscle fibres, research has focused on the role of Ins(1,4,5)P3 in the generation of SR Ca2+ transients and in the mechanism of excitation-contraction coupling (EC-coupling).
  • 2.2. The mechanism of signal transduction at the triadic junction during EC-coupling is unknown. Asymmetric charge movement and mechanical coupling between highly specialized triadic proteins has been proposed as the primary mechanism for voltage-activated generation of SR Ca2+ signals and subsequent contraction. Ins(1,4,5)P3 has also been proposed as the major signal transduction molecule for the generation of the primary Ca2+ transient produced during EC-coupling.
  • 3.3. Investigations on the generation of Ca2+ transients by Ins(1,4,5)P3 have been conducted on ion channels incorporated into lipid bilayers, skinned and intact fibres and isolated membrane vesicles. Ins(1,4,5)P3 induces SR Ca2+ release and the enzymes responsible for its synthesis and degradation are present in muscle tissue. However, the sensitivity of the Ca2+ release mechanism to Ins(l,4,5)P3 is highly dependent on experimental conditions and on membrane potential.
  • 4.4. While Ins(1,4,5)P3 may not be the major signal transduction molecule for the generation of the primary Ca2+ signal produced during voltage-activated contraction, this inositol polyphosphate may play a functional role as a modulator of EC-coupling and/or of the processes of myoplasmic Ca2+ regulation occurring on a time scale of seconds, during the events of contraction.
  相似文献   

18.
Abstract: Bovine adrenal chromaffin cells (BCC) were used to compare histamine- and angiotensin II-induced changes of inositol mono-, bis-, and trisphosphate (InsP1, InsP2, and InsP3, respectively) isomers, intracellular free Ca2+ ([Ca2+]i), and the pathways of inositol phosphate metabolism. Both agonists elevated [Ca2+]i by 200 nM 3–4 s after addition, but afterwards the histamine response was much more prolonged. Histamine and angiotensin II also produced similar four- to fivefold increases of Ins(1,4,5)P3 that peaked within 5 s. Over the first minute of stimulation, however, Ins(1,4,5)P3 formation was monophasic after angiotensin II, but biphasic after histamine, evidence supporting differential regulation of angiotensin II- and histamine-stimulated signal transduction. The metabolism of Ins(1,4,5)P3 by BCC homogenates was found to proceed via (a) sequential dephosphorylation to Ins(1,4)P2 and Ins(4)P, and (b) phosphorylation to inositol 1,3,4,5-tetrakisphosphate, followed by dephosphorylation to Ins(1,3,4)P3, Ins(1,3)P2, and Ins(3,4)P2, and finally to Ins(1 or 3)P. In whole cells, Ins(1 or 3)P only increased after histamine treatment. Additionally, Ins(1,3)P2 was the only other InsP2 besides Ins(1,4)P2 to accumulate within 1 min of agonist treatment [Ins(3,4)P2 did not increase]. These results support a correlation between the time course of Ins(1,4,5)P3 formation and the time course of [Ca2+]i transients and illustrate that Ca2+-mobilizing agonists can produce distinguishable patterns of inositol phosphate formation and [Ca2+], changes in BCC. Different patterns of second-messenger formation are likely to be important in signal recognition and may encode agonist-specific information.  相似文献   

19.
Abstract: The human neuroblastoma cell line SH-SY5Y, maintained at confluence for 14 days, released [3H]-noradrenaline ([3H]NA) when stimulated with either the muscarinic receptor agonist methacholine or bradykinin. The major fraction of release was rapid, occurring in <10 s, whereas nicotine-evoked release was slower. When the extracellular [Ca2+] ([Ca2+]e) was buffered to ~50–100 nM, release evoked by nicotine was abolished, whereas that in response to methacholine or bradykinin was reduced by ~50% with EC50 values of ?5.46 ± 0.05 M and ?7.46 ± 0.06 M (log10), respectively. Methacholine and bradykinin also produced rapid elevations of both inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and intracellular free [Ca2+] ([Ca2+]i). These elevations were reduced at low [Ca2+]e and under these conditions the EC50 values for peak elevation of [Ca2+]i were ?6.00 ± 0.14 M for methacholine and ?7.95 ± 0.34 M for bradykinin (n = 3 for all EC50 determinations). At low [Ca2+]e, depletion of nonmitochondrial intracellular Ca2+ stores with the Ca2+-ATPase inhibitor thapsigargin produced a transient small elevation of [Ca2+]i and a minor release of [3H]NA. At low [Ca2+]e, thapsigargin abolished elevation of [Ca2+]i in response to methacholine and bradykinin and completely inhibited their stimulation of [3H]NA release. It is proposed, therefore, that Ca2+ release from Ins(1,4,5)P3-sensitive stores is a major trigger of methacholine- and bradykinin-evoked [3H]NA release in SH-SY5Y cells.  相似文献   

20.
Metabolism of the putative messenger molecule d-myo-inositol(1,4,5)trisphosphate [Ins(1,4,5)P3] in plant cells has been studied using a soluble fraction from pea (Pisum sativum) roots as enzyme source and [5-32P]Ins(1,4,5)P3 and [2-3H]Ins(1,4,5)P3 as tracers. Ins(1,4,5)P3 was rapidly converted into both lower and higher inositol phosphates. The major dephosphorylation product was inositol(4,5)bisphosphate [Ins(4,5)P2] whereas inositol(1,4)bisphosphate [Ins(1,4)P2] was only present in very small quantities throughout a 15 minute incubation period. In addition to these compounds, small amounts of nine other metabolites were produced including inositol and inositol(1,4,5,X)P4. Dephosphorylation of Ins(1,4,5)P3 to Ins(4,5)P2 was dependent on Ins(1,4,5)P3 concentration and was partially inhibited by the phosphohydrolase inhibitors 2,3-diphosphoglycerate, glucose 6-phosphate, and p-nitrophenylphosphate. Conversion of Ins(1,4,5)P3 to Ins(4,5)P2 and Ins(1,4,5,X)P4 was inhibited by 55 micromolar Ca2+. This study demonstrates that enzymes are present in plant tissues which are capable of rapidly converting Ins(1,4,5)P3 and that pathways of inositol phosphate metabolism exist which may prove to be unique to the plant kingdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号