首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
Sequence analysis of the chromosomal Tn5lacZ flanking regions of the Pseudomonas fluorescens WCS365 competitive root colonization mutant PCL1206 showed that the Tn5lacZ is inserted between genes homologous to bioA and potF. The latter gene is the first gene of the potF1F2GHI operon, which codes for a putrescine transport system in Escherichia coli. The position of the Tn5lacZ suggests an effect on the expression of the pot operon. A mutation in the potF1 gene as constructed in PCL1270, however, had no effect on competitive root colonization. The rate of uptake of [1,4-14C]putrescine by cells of mutant PCL1206 appeared to be increased, whereas cells of strain PCL1270 were strongly impaired in the uptake of putrescine. Dansylation of tomato root exudate and subsequent thin-layer chromatography showed the presence of a component with the same Rf value as dansyl-putrescine, which was identified as dansyl-putrescine by mass spectrometric analyses. Other polyamines such as spermine and spermidine were not detected in the root exudate. Growth of mutant strains, either alone or in competition with the wild type, was tested in media containing putrescine, spermine, or spermidine as the sole nitrogen source. The results show that mutant PCL1206 is strongly impaired in growth on putrescine and slightly impaired on spermine and spermidine. The presence of the polyamines had a similar effect on the growth rate of strain PCL1270 in the presence of putrescine but a less severe effect in the presence of spermine and spermidine. We conclude that an increased rate of putrescine uptake has a bacteriostatic effect on Pseudomonas spp. cells. We have shown that putrescine is an important tomato root exudate component and that root-colonizing pseudomonads must carefully regulate their rate of uptake because increased uptake causes a decreased growth rate and, therefore, a decreased competitive colonization ability.  相似文献   

2.
The Escherichia coli mutant speE deficient in the gene encoding for spermidine synthase has no absolute requirement for spermidine but shows a retarded growth rate. This growth retardation could be unspecifically restored to the respective wild type level by exogenously supplied polyamines such as spermidine, spermine and homospermidine as well as the diamines putrescine and cadaverine. In comparison to the respective wild type, the mutant shows a two-fold increased level of endogenous putrescine but displays a reduced ability to accumulate the diamines putrescine and cadaverine. The ability to accumulate polyamines is not affected. The deleted spermidine synthase gene of the mutant was substituted by heterologous expression of the hss gene from Rhodopseudomonas viridis encoding homospermidine synthase.  相似文献   

3.
Owing in part to their interactions with membrane proteins, polyamines (e.g., spermine, spermidine, and putrescine) have been identified as potential modulators of membrane excitability and Ca(2+) homeostasis in cardiac myocytes. To investigate whether polyamines also affect cardiac myofilament proteins, we assessed the effects of polyamines on contractility using rat myocytes and trabeculae that had been permeabilized with Triton X-100. Spermine, spermidine, and putrescine reversibly increased the [Ca(2+)] required for half-maximal tension (i.e., right-shifted tension pCa curves), with the following order of efficacy: spermine (+4) > spermidine (+3) > putrescine (+2). However, synthetic analogs that differed from spermine in charge distribution were not as effective as spermine in altering isometric tension. None of the polyamines had a significant effect on maximal tension, except at high concentrations. After flash photolysis of DM-Nitrophen (a caged Ca(2+) chelator), spermine accelerated the rate of tension development at low and intermediate but not high [Ca(2+)]. These results indicate that polyamines, especially spermine, interact with myofilament proteins to reduce apparent Ca(2+) binding affinity and speed cross-bridge cycling kinetics at submaximal [Ca(2+)].  相似文献   

4.
Uptake of exogenous polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effects on polyamine metabolism were investigated. Our data show that, in contrast to mammalian cells, Chlamydomonas reinhardtii does not contain short-living, high-affinity polyamine transporters whose cellular level is dependent on the polyamine concentration. However, exogenous polyamines affect polyamine metabolism in Chlamydomonas cells. Exogenous putrescine caused a slow increase of both putrescine and spermidine and, vice versa, exogenous spermidine also led to an increase of the intracellular levels of both spermidine and putrescine. No intracellular spermine was detected under any conditions. Exogenous spermine was taken up by the cells and caused a decrease in their putrescine and spermidine levels. As in other organisms, exogenous polyamines led to a decrease in the activity of ornithine decarboxylase, a key enzyme of polyamine synthesis. In contrast to mammalian cells, this polyamine-induced decrease in ornithine decarboxylase activity is not mediated by a polyamine-dependent degradation or inactivation, but exclusively due to a decreased synthesis of ornithine decarboxylase. Translation of ornithine decarboxylase mRNA, but not overall protein biosynthesis is slowed by increased polyamine levels.  相似文献   

5.
We have studied the enzymes and genes involved in the biosynthesis of putrescine, spermidine, and spermine in Saccharomyces cerevisiae. Mutants have been isolated with defects in the biosynthetic pathway as follows: spe10 mutants, deficient in ornithine decarboxylase, cannot make putrescine, spermidine, or spermine; spe2 mutants, lacking S-adenosylmethionine decarboxylase, cannot make spermidine or spermine; spe3 mutants, lacking putrescine aminopropyltransferase, cannot make spermidine or spermine; and spe4 and spe40 mutants, lacking spermidine aminopropyltransferase, contain no spermine and permit growth of spe10 mutants. Studies with these mutants have shown that in yeast: 1) polyamines are absolutely required for growth; 2) putrescine is formed only by decarboxylation or ornithine; 3) two separate aminopropyltransferases are required for spermidine and spermine synthesis; 4) spermine and spermidine are important in the regulation of ornithine decarboxylase and the amines exert this control by a posttranslational modification of the enzyme; and 5) spermidine or spermine is essential for sporulation of yeast and for the maintenance of the double-stranded RNA killer plasmid. Recent studies in amine-deficient mutants of Escherichia coli have shown an important role of the polyamines in protein synthesis in vivo.  相似文献   

6.
Sodium arsenite at a non-toxic concentration was found to inhibit strongly mutagenesis induced by ultraviolet light (UV), 4-nitroquinoline-1-oxide (4NQO), furylfuramide (AF-2) and methyl methane-sulfonate (MMS) as well as spontaneous mutation in the reversion assay of E. coli WP2uvrA/pKM101. The effect was not, however, seen in the case of the mutagenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). In order to elucidate the mechanism of the mutation-inhibitory effect of sodium arsenite, its action on umuC gene expression and DNA-repair systems was investigated. It was found that sodium arsenite depressed beta-galactosidase induction, corresponding to the umuC gene expression. For UV-irradiated E. coli strains possessing different DNA-repair capacities, sodium arsenite decreased the UV survival rates of WP2, WP2uvrA[uvrA] and WP67[uvrA polA], increased those of SOS-uninducible strains having either the recA+ or uvrA+ such as CM571 [recA], CM561 [lexA(Ind-)] and CM611[uvrA lexA (Ind-)], and did not affect that of the uvrA recA double mutant, WP100. From these results, we assume that sodium arsenite may have at least two roles in its antimutagenesis: as an inhibitor of umuC gene expression, and as an enhancer of the error-free repairs depending on the uvrA and recA genes.  相似文献   

7.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

8.
We have generated mouse embryonic stem cells with targeted disruption of spermidine/spermine N(1)-acetyltransferase (SSAT) gene. The targeted cells did not contain any inducible SSAT activity, and the SSAT protein was not present. The SSAT-deficient cells proliferated normally and appeared to maintain otherwise similar polyamine pools as did the wild-type cells, with the possible exception of constantly elevated (about 30%) cellular spermidine. As expected, the mutated cells were significantly more resistant toward the growth-inhibitory action of polyamine analogues, such as N(1),N(11)-diethylnorspermine. However, this resistance was not directly attributable to cellular depletion of the higher polyamines spermidine and spermine, as the analogue depleted the polyamine pools almost equally effectively in both wild-type and SSAT-deficient cells. Tracer experiments with [C(14)]-labeled spermidine revealed that SSAT activity is essential for the back-conversion of spermidine to putrescine as radioactive N(1)-acetylspermidine and putrescine were readily detectable in N(1),N(11)-diethylnorspermine-exposed wild-type cells but not in SSAT-deficient cells. Similar experiments with [C(14)]spermine indicated that the latter polyamine was converted to spermidine in both cell lines and, unexpectedly, more effectively in the targeted cells than in the parental cells. This back-conversion was only partly inhibited by MDL72527, an inhibitor of polyamine oxidase. These results indicated that SSAT does not play a major role in the maintenance of polyamine homeostasis, and the toxicity exerted by polyamine analogues is largely not based on SSAT-induced depletion of the natural polyamines. Moreover, embryonic stem cells appear to operate an SSAT-independent system for the back-conversion of spermine to spermidine.  相似文献   

9.
Regulation of expression of the colicin gene of I1 group plasmid TP110.   总被引:2,自引:1,他引:1  
The control of expression of the colicin Ib gene of the I1 group plasmid TP110 has been investigated. The colicin promoter was fused to the structural gene for beta-galactosidase, using the Mu d(Aprlac) phage, and the plasmid carrying this fusion was introduced into a variety of bacterial strains defective in genes involved in the "SOS" response. Colicin Ib belongs to that group of genes directly controlled by the repressor produced by the lexA gene, and expression was inducible by DNA-damaging agents. Mutations in uvrA, -B, and -C reduced the efficiency of induction by mitomycin C, as did mutations in recB. Mutations in recA and recF effectively prevented induction by mitomycin C, whereas mutations in lexA had contrasting effects, depending upon their effect on the properties of lexA protein. The spr-51 mutation (which inactivates lexA protein) led to constitutive expression, whereas the lexA3 mutation (which makes lexA protein refractory to cleavage by recA protein) completely inhibited inducible expression. In addition to lexA control, a TP110-coded function was identified which appeared able to inhibit colicin expression when the gene responsible was present in high copy number.  相似文献   

10.
The properties of the protein encoded by YKL174c (TPO5) were studied. It was found that TPO5 excretes putrescine effectively and spermidine less effectively. Gamma-aminobutyric acid slightly inhibited the excretion of putrescine, but basic amino acids did not affect excretion, suggesting that TPO5 preferentially recognizes polyamines. Accordingly, yeast cells transformed with the plasmid encoding YKL174c (TPO5) were resistant to toxicity caused by 120 mm putrescine or by 3 mm spermidine, and a mutant with a disrupted YKL174c (TPO5) gene was sensitive to toxicity by 90 mm putrescine. The growth of this mutant was faster than that of the wild-type strain. In parallel, there was an increase in putrescine and spermidine content of the YKL174c (TPO5) mutant compared with wild-type. It is noted that TPO5 functions as a suppressor of cell growth by excreting polyamines. The level of YKL174c (TPO5) mRNA was increased by the addition of polyamines to the medium. The degree of induction of the mRNA was spermine > spermidine > putrescine. The subcellular localization of TPO5 was determined by immunostaining of hemagglutinin-tagged TPO5, and it was found on Golgi or post-Golgi secretory vesicles. Excretion of putrescine and spermidine by TPO5 was reduced in cells that have mutations in the secretory or endocytic pathways, indicating that both processes are involved in the excretion of polyamines.  相似文献   

11.
12.
Polyamines are small ubiquitous molecules that have been involved in nearly all developmental processes, including the stress response. Nevertheless, no direct evidence of a role of polyamines in the wound response has been described. We have studied the expression of genes involved in polyamine biosynthesis in response to mechanical injury. An increase in the expression of the arginine decarboxylase 2 (ADC2) gene in response to mechanical wounding and methyl jasmonate (JA) treatment in Arabidopsis was detected by using DNA microarray and RNA gel-blot analysis. No induction was observed for the ADC1 gene or other genes coding for spermidine and spermine synthases, suggesting that ADC2 is the only gene of polyamine biosynthesis involved in the wounding response mediated by JA. A transient increase in the level of free putrescine followed the increase in the mRNA level for ADC2. A decrease in the level of free spermine, coincident with the increase in putrescine after wounding, was also observed. Abscisic acid effected a strong induction on ADC2 expression and had no effect on ADC1 expression. Wound-induction of ADC2 mRNA was not prevented in the JA-insensitive coi1 mutant. The different pattern of expression of ADC2 gene in wild-type and coi1 mutant might be due to the dual regulation of ADC2 by abscisic acid and JA signaling pathways. This is the first direct evidence of a function of polyamines in the wound-response, and it opens a new aspect of polyamines in plant biology.  相似文献   

13.
14.
Treatment of rats with spermidine, spermine or sym-norspermidine led to a substantial induction of spermidine/spermine N1-acetyltransferase activity in liver, kidney and lung. The increase in this enzyme, which was determined independently of other acetylases by using a specific antiserum, accounted for all of the increased acetylase activity in extracts from rats treated with these polyamines. Spermine was the most active inducer, and the greatest effect was seen in liver. Liver spermidine/spermine N1-acetyltransferase activity was increased about 300-fold within 6 h of treatment with 0.3 mmol/kg doses of spermine; activity in kidney increased 30-fold and activity in the lung 15-fold under these conditions. The increased spermidine/spermine N1-acetyltransferase activity led to a large increase in the liver putrescine content and a decline in spermidine. These changes are due to the oxidation by polyamine oxidase of the N1-acetylspermidine formed by the acetyltransferase. Our results indicated that spermidine was the preferred substrate in vivo of the acetylase/oxidase pathway for the conversion of the higher polyamines into putrescine. The induction of the spermidine/spermine N1-acetyltransferase by polyamines may provide a mechanism by which excess polyamines can be removed.  相似文献   

15.
Putrescine, spermidine and spermine were transported into the rat lens against a concentration gradient. This process appeared to be energy-dependent and involved a carrier system different from those for amino acids. Competition experiments suggested that the three polyamines were transported by the same system or very similar systems. Incorporated spermine was converted to spermidine and putrescine, and spermidine was converted to putrescine. In contrast, the conversion of putrescine to spermidine and spermine, or the conversion of spermidine to spermine was not observed. Furthermore, ornithine was not utilized for the synthesis of putrescine. These metabolic characteristics of the polyamines in the rat lens were correlated with the extremely low activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase. Other enzymes of polyamine metabolisms, however, were relatively active. In conclusion, the lens has a very low ability for the de novo synthesis of polyamines. The polyamines in the lens are considered to be supplied form the surrounding intraocular fluid by an active transport system specific for polyamines.  相似文献   

16.
17.
Labelled putrescine is converted to spermidine and spermine in the retina of both the goldfish and of the rat, but the bulk remains as putrescine and spermidine in the goldfish retina whereas the bulk is present as spermine in the rat retina. Labelled spermidine is converted to spermine and to putrescine in the retina of both species, most remaining as spermidine in the goldfish retina whereas most is converted to spermine in the rat retina. Labelled spermine is converted to both spermidine and putrescine in the retina of both species with a greater conversion in the goldfish retina than in the rat retina. These results provide direct evidence of the interconversion of putrescine, spermidine and spermine in neural tissue from both fish and mammals and suggest that spermine should not be regarded solely as an end-product of putrescine metabolism but also as a source of spermidine and putrescine.The pattern of distribution of putrescine and the polyamines, spermidine and spermine, in goldfish retina is the reverse of that in rat retina: Putrescine is the most abundant in goldfish retina whereas spermine is most abundant in rat retina suggesting that the individual polyamines are of different importance in the two species.  相似文献   

18.
19.
Androgenic control of polyamine concentrations in rat epididymis.   总被引:1,自引:0,他引:1  
Unilateral orchidectomy resulted in a significant decrease in tissue content of putrescine and polyamines. However, no differences were detected when the results were expressed in terms of ng g-1 tissue. At 48 h after bilateral orchidectomy, a significant decrease in putrescine content was observed, but spermidine and spermine content were unaffected. The observed decrease in putrescine was prevented by treatment with testosterone propionate, but neither spermidine nor spermine were affected. Bilateral orchidectomy resulted in a significant decrease in the tissue content of putrescine, spermidine and spermine after 7 days. Treatment with testosterone propionate increased the content of putrescine, spermidine and spermine in the epididymis by about 200%, 92% and 34%, respectively. When results were expressed as nmol g-1, a significant decrease after castration in putrescine and spermidine, but not in spermine, was observed. Treatment with testosterone propionate restored putrescine concentration, but had no effect on spermidine and spermine concentrations. In castrated rats treated with testosterone propionate, the anti-androgen flutamide abolished the effect of the androgen on putrescine and spermidine content, but there was no effect on spermine. Acetylputrescine was not detected in the epididymis, while acetylpolyamines were detected at much lower concentrations than polyamines. After bilateral orchidectomy there was a decrease in the tissue content of all acetylpolyamines and an increase in their tissue concentration. The effect of castration on acetylpolyamine content was reversed by testosterone propionate treatment. We conclude that an active synthesis of polyamines occurs in the rat epididymis, and that this process depends upon the androgen environment. Regulation of ornithine decarboxylase activity appears to be the main step that is controlled by androgens.  相似文献   

20.
The migration of IEC-6 cells is inhibited when the cells are depleted of polyamines by inhibiting ornithine decarboxylase with alpha-difluoromethylornithine (DFMO). Exogenous putrescine, spermidine, and spermine completely restore cell migration inhibited by DFMO. Because polyamines are interconverted during their synthesis and catabolism, the specific role of individual polyamines in intestinal cell migration, as well as growth, remains unclear. In this study, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone)(DEGBG), to block the synthesis of spermidine and spermine from putrescine. We found that exogenous putrescine does not restore migration and growth of IEC-6 cells treated with DFMO plus DEGBG, whereas exogenous spermine does. In addition, the normal distribution of actin filaments required for migration, which is disrupted in polyamine-deficient cells, could be achieved by adding spermine but not putrescine along with DFMO and DEGBG. These results indicate that putrescine, by itself, is not essential for migration and growth, but that it is effective because it is converted into spermidine and/or spermine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号