首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When blood contacts foreign material surfaces, platelets usually adhere and form aggregates on those surfaces, generating mural thrombi. The mechanism of mural thrombogenesis is not completely understood, but one hypothesis states that the local release of certain platelet-active substances from the platelets composing an initial small thrombus stimulates additional platelet recruitment to that thrombus, resulting in growth of the cell aggregate. The purpose of this paper is to investigate the feasibility of this hypothesis. Concentration profiles of adenosine diphosphate (ADP), thromboxane A2 (TxA2), and thrombin were computed in the vicinity of growing model thrombi 10 and 20 micron long. Wall shear rates of 100, 500, and 1,500 s-1 were considered for blood flowing through a thin rectangular slit 200 micron wide coated with collagen, a predominant subendothelial protein. The local concentrations of ADP and TxA2 were marginally large enough to stimulate platelet activation individually, while local thrombin levels can be much greater than required for stimulation. Antithrombin III, a natural thrombin inhibitor, did not significantly reduce the thrombin concentrations, but antithrombin III accelerated by heparin greatly reduced the local thrombin concentrations. The reduced thrombin levels may, however, still be large enough to activate platelets.  相似文献   

2.
A previous analysis (Basmadjian, J. Biomechanics 17, 287-298, 1984) of the embolizing forces acting on thrombi in steady Poiseuille flow has been extended to pulsatile blood flow conditions in the major blood vessels. We show that for incipient and small compact thrombi up to 0.1 mm height, the maximum embolizing stresses can be calculated from the corresponding 'quasi-steady' viscous drag forces and measured maximum wall shear. Their magnitude is from 5 to 30 times (tau w)Max, the maximum wall shear stress during the cardiac cycle in the absence of thrombi. For larger thrombi, inertial and 'history' effects have to be taken into account, leading to embolizing stresses in excess of 100 Pa (1000 dyn cm-2).  相似文献   

3.
4.
A population balance equation (PBE) mathematical model for analyzing platelet aggregation kinetics was developed in Part I (Huang, P. Y., and J. D. Hellums. 1993. Biophys. J. 65: 334-343) of a set of three papers. In this paper, Part II, platelet aggregation and related reactions are studied in the uniform, known shear stress field of a rotational viscometer, and interpreted by means of the model. Experimental determinations are made of the platelet-aggregate particle size distributions as they evolve in time under the aggregating influence of shear stress. The PBE model is shown to give good agreement with experimental determinations when either a reversible (aggregation and disaggregation) or an irreversible (no disaggregation) form of the model is used. This finding suggests that for the experimental conditions studied disaggregation processes are of only secondary importance. During shear-induced platelet aggregation, only a small fraction of platelet collisions result in the binding together of the involved platelets. The modified collision efficiency is approximately zero for shear rates below 3000 s-1. It increases with shear rates above 3000 s-1 to about 0.01 for a shear rate of 8000 s-1. Addition of platelet chemical agonists yields order of magnitude increases in collision efficiency. The collision efficiency for shear-induced platelet aggregation is about an order of magnitude less at 37 degrees C than at 24 degrees C. The PBE model gives a much more accurate representation of aggregation kinetics than an earlier model based on a monodispersed particle size distribution.  相似文献   

5.
The role of Rac family proteins in platelet spreading on matrix proteins under static and flow conditions has been investigated by using Rac-deficient platelets. Murine platelets form filopodia and undergo limited spreading on fibrinogen independent of Rac1 and Rac2. In the presence of thrombin, marked lamellipodia formation is observed on fibrinogen, which is abrogated in the absence of Rac1. However, Rac1 is not required for thrombin-induced aggregation or elevation of F-actin levels. Formation of lamellipodia on collagen and laminin is also Rac1-dependent. Analysis of platelet adhesion dynamics on collagen under flow conditions in vitro revealed that Rac1 is required for platelet aggregate stability at arterial rates of shear, as evidenced by a dramatic increase in platelet embolization. Furthermore, studies employing intravital microscopy demonstrated that Rac1 plays a critical role in the development of stable thrombi at sites of vascular injury in vivo. Thus, our data demonstrated that Rac1 is essential for lamellipodia formation in platelets and indicated that Rac1 is required for aggregate integrity leading to thrombus formation under physiologically relevant levels of shear both in vitro and in vivo.  相似文献   

6.
Hemodynamic shear is known to stimulate blood and endothelial cells and induce platelet activation. Many studies of shear-induced platelet stimulation have employed rotational viscometers in which secondary flow effects are assumed to be negligible. Shear induced platelet activation occurs at elevated shear rates where secondary flows may contribute a significant percentage of the total hydrodynamic force experienced by the sample. Elongational stress, one component of this secondary flow, has been shown to alter transmembrane ion flux in intact cell and the permeability of synthetic membrane preparations. Elongational flow also occurs in the vasculature at sites of elevated shear stress. Secondary flow components may contribute to platelet activation induced during shear stress application in rotational viscometry. A unique 'constrained convergence' elongational flow chamber was designed and fabricated to study platelet response to elongational stress exposure. The elongational flow chamber was capable of producing an elongation rate of 2.1 s-1 with a corresponding volume averaged shear rate of 58.33 s-1. Significant changes were observed in the total platelet volume distribution and measured response to added chemical antagonists after elongational stress exposure. The total platelet volume histogram shifted toward larger particle sizes, suggesting the formation of large aggregates as a result of elongational stress exposure. Platelets exposed to elongational stress demonstrated a dose dependent decrease in added ADP-induced aggregation rate and extent of aggregation.  相似文献   

7.
Liu Q  Mirc D  Fu BM 《Journal of biomechanics》2008,41(12):2726-2734
The hypothesis that thrombus can be induced by localized shear stresses/rates, such as in the bent/stretched microvessels, was tested both experimentally and computationally. Our newly designed in vivo experiments were performed on the microvessels (post-capillary venules, 20-50mum diameter) of rat mesentery. These microvessels were bent/stretched with no/minimum injuries. In less than 60min after the microvessels were bent/stretched, thrombi were formed in 19 out of 61 bent locations (31.1%). Interestingly, thrombi were found to be initiated at the inner wall of the curvature in these bent/stretched vessels. To investigate the mechanical mechanisms of thrombus induction, we performed a 3-D computational simulation using commercial software, FLUENT. To simulate the bending and stretching, we considered the vessels with different curvatures (0 degrees , 90 degrees and 180 degrees ) as well as different shaped cross-sections (circular and elliptic). Computational results demonstrated that the highest shear stress/rate and shear stress/rate gradient are located at the inner wall of the curved circular-shaped vessels. They are located at the two apexes of the wall with shorter axis for the 0 degrees (straight) elliptic-shaped vessel and towards the inner side when the vessels are bent. The differences of the shear stresses/rates and of the shear stress/rate gradients between the inner and outer walls become larger in more bent and elliptic-shaped microvessels. Comparison of our experimental and numerical simulation results suggests that the higher shear stress/rate and the higher shear stress/rate gradient at the inner wall are responsible for initiating the thrombosis in bent post-capillary venules.  相似文献   

8.
The effect of shear rate on the adenosine diphosphate-induced aggregation of human platelets in Poiseuille flow was studied using the method described in part I (Bell, D.N., S. Spain, and H.L. Goldsmith. 1989. Biophys. J. 56:817-828). The rate and extent of aggregation in citrated platelet-rich plasma were measured over a range of mean transit time from 0.2 to 8.6 s and mean tube shear rate, G, from 41.9 to 1,920 s-1. At 0.2 microM ADP, changes in the single platelet concentration with time suggest that more than one type of platelet-platelet bond mediates platelet aggregation at physiological shear rates. At low G, a high initial rate of aggregation reflects the formation of a weak bond of high affinity, the strength of which diminishes with time. Here, the fraction of collisions yielding stable doublets, the collision efficiency, reached a maximum of 26%. The collision efficiency decreased with increasing G and was accompanied by a progressive delay in the onset of aggregation. However, the gradual expression of a more shear rate-resistant bond at high shear rates and long mean transit times produced a subsequent increase in collision efficiency and a corresponding increase in the rate of aggregation. Although the collision efficiencies here were less than 1%, the high collision frequencies were able to sustain a high rate of aggregation. At 0.2 microM ADP, aggregate size generally decreased with increasing G. At 1.0 microM ADP, aggregate size was still limited at high shear rates even though the rate of single platelet aggregation was much higher than at 0.2 microM ADP. Platelet aggregation was greater for female than for male donors, an effect related to differences in the hematocrit of donors before preparing platelet-rich plasma.  相似文献   

9.
Homotypic adhesion o2 neutrophils stimulated with chemoattractant is analogous to capture on vascular endothelium in that both processes depend on L-selectin and beta 2-integrin adhesion receptors. Under hydrodynamic shear, cell adhesion requires that receptors bind sufficient ligand over the duration of intercellular contact to withstand hydrodynamic stresses. Using cone-plate viscometry to apply a uniform linear shear field to suspensions of neutrophils, we conducted a detailed examination of the effect of shear rate and shear stress on the kinetics of cell aggregation. A collisional analysis based on Smoluchowski's flocculation theory was employed to fit the kinetics of aggregation with an adhesion efficiency. Adhesion efficiency increased with shear rate from approximately 20% at 100 s-1 to approximately 80% at 400 s-1. The increase in adhesion efficiency. Adhesion efficiency increased with shear rate from approximately 20% at 100 s-1 to approximately 80% at 400 s-1. The increase in adhesion efficiency with shear was dependent on L-selectin, and peak efficiency was maintained over a relatively narrow range of shear rates (400-800 s-1) and shear stresses (4-7 dyn/cm2). When L-selectin was blocked with antibody, beta 2-integrin (CD11a, b) supported adhesion at low shear rates (< 400 s-1). The binding kinetics of selectin and integrin appear to be optimized to function within discrete ranges of shear rate and stress, providing an intrinsic mechanism for the transition from neutrophil tethering to stable adhesion.  相似文献   

10.
Protein kinase C (PKC) isoforms regulate many platelet responses in a still incompletely understood manner. Here we investigated the roles of PKC in the platelet reactions implicated in thrombus formation as follows: secretion aggregate formation and coagulation-stimulating activity, using inhibitors with proven activity in plasma. In human and mouse platelets, PKC regulated aggregation by mediating secretion and contributing to alphaIIbbeta3 activation. Strikingly, PKC suppressed Ca(2+) signal generation and Ca(2+)-dependent exposure of procoagulant phosphatidylserine. Furthermore, under coagulant conditions, PKC suppressed the thrombin-generating capacity of platelets. In flowing human and mouse blood, PKC contributed to platelet adhesion and controlled secretion-dependent thrombus formation, whereas it down-regulated Ca(2+) signaling and procoagulant activity. In murine platelets lacking G(q)alpha, where secretion reactions were reduced in comparison with wild type mice, PKC still positively regulated platelet aggregation and down-regulated procoagulant activity. We conclude that platelet PKC isoforms have a dual controlling role in thrombus formation as follows: (i) by mediating secretion and integrin activation required for platelet aggregation under flow, and (ii) by suppressing Ca(2+)-dependent phosphatidylserine exposure, and consequently thrombin generation and coagulation. This platelet signaling protein is the first one identified to balance the pro-aggregatory and procoagulant functions of thrombi.  相似文献   

11.

Background

The generation of thrombin is a critical process in the formation of venous thrombi. In isolated plasma under static conditions, phosphatidylserine (PS)-exposing platelets support coagulation factor activation and thrombin generation; however, their role in supporting coagulation factor binding under shear conditions remains unclear. We sought to determine where activated factor X (FXa), (pro)thrombin, and fibrin(ogen) are localized in thrombi formed under venous shear.

Methodology/Principal Findings

Fluorescence microscopy was used to study the accumulation of platelets, FXa, (pro)thrombin, and fibrin(ogen) in thrombi formed in vitro and in vivo. Co-perfusion of human blood with tissue factor resulted in formation of visible fibrin at low, but not at high shear rate. At low shear, platelets demonstrated increased Ca2+ signaling and PS exposure, and supported binding of FXa and prothrombin. However, once cleaved, (pro)thrombin was observed on fibrin fibers, covering the whole thrombus. In vivo, wild-type mice were injected with fluorescently labeled coagulation factors and venous thrombus formation was monitored in mesenteric veins treated with FeCl3. Thrombi formed in vivo consisted of platelet aggregates, focal spots of platelets binding FXa, and large areas binding (pro)thrombin and fibrin(ogen).

Conclusions/Significance

FXa bound in a punctate manner to thrombi under shear, while thrombin and fibrin(ogen) distributed ubiquitously over platelet-fibrin thrombi. During thrombus formation under venous shear, thrombin may relocate from focal sites of formation (on FXa-binding platelets) to dispersed sites of action (on fibrin fibers).  相似文献   

12.
Computational results of laminar incompressible blood-particle flow analyses in an axisymmetric artery segment with a smooth local area constriction of 75 percent have been presented. The flow input waveform was sinusoidal with a nonzero average. The non-Newtonian behavior of blood was simulated with a modified Quemada model, platelet concentrations were calculated with a drift-flux model, and monocyte trajectories were described and compared for both Newtonian and Quemada rheologies. Indicators of "disturbed flow" included the time-averaged wall shear stress (WSS), the oscillatory shear index (OSI), and the wall shear stress gradient (WSSG). Implications of the vortical flow patterns behind the primary stenosis to the formation of microemboli and downstream stenoses are as follows. Elevated platelet concentrations due to accumulation in recirculation zones mixed with thrombin and ADP complexes assumed to be released upstream in high wall shear stress regions, could form microemboli, which are convected downstream. Distinct near-wall vortices causing a local increase in the WSSG and OSI as well as blood-particle entrainment with possible wall deposition, indicate sites susceptible to the onset of an additional stenosis proximal to the initial geometric disturbance.  相似文献   

13.
Pulmonary embolism (PE) is a significant medical problem that results in over 300,000 fatalities per year. A common preventative treatment for PE is the insertion of a metallic filter into the inferior vena cava that traps thrombi before they reach the lungs. The goal of this work is to use methods of mathematical modeling and design optimization to determine the configuration of trapped thrombi that minimizes the hemodynamic disruption. The resulting configuration has implications for constructing an optimally designed vena cava filter. Computational fluid dynamics is coupled with a nonlinear optimization algorithm to determine the optimal configuration of a trapped model thrombus in the inferior vena cava. The location and shape of the thrombus are parametrized, and an objective function, based on wall shear stresses, determines the worthiness of a given configuration. The methods are fully automated and demonstrate the capabilities of a design optimization framework that is broadly applicable. Changes to thrombus location and shape alter the velocity contours and wall shear stress profiles significantly. For vena cava filters that trap two thrombi simultaneously, the undesirable flow dynamics past one thrombus can be mitigated by leveraging the flow past the other thrombus. Streamlining the shape of the thrombus trapped along the cava wall reduces the disruption to the flow but increases the area exposed to low wall shear stress. Computer-based design optimization is a useful tool for developing vena cava filters. Characterizing and parametrizing the design requirements and constraints is essential for constructing devices that address clinical complications. In addition, formulating a well-defined objective function that quantifies clinical risks and benefits is needed for designing devices that are clinically viable.  相似文献   

14.
15.
To delineate the critical features of platelets required for formation and stability of thrombi, thromboelastography and platelet aggregation measurements were employed on whole blood of normal patients and of those with Bernard-Soulier Syndrome (BSS) and Glanzmann’s Thrombasthenia (GT). We found that separation of platelet activation, as assessed by platelet aggregation, from that needed to form viscoelastic stable whole blood thrombi, occurred. In normal human blood, ristocetin and collagen aggregated platelets, but did not induce strong viscoelastic thrombi. However, ADP, arachidonic acid, thrombin, and protease-activated-receptor-1 and -4 agonists, stimulated both processes. During this study, we identified the genetic basis of a very rare double heterozygous GP1b deficiency in a BSS patient, along with a new homozygous GP1b inactivating mutation in another BSS patient. In BSS whole blood, ADP responsiveness, as measured by thrombus strength, was diminished, while ADP-induced platelet aggregation was normal. Further, the platelets of 3 additional GT patients showed very weak whole blood platelet aggregation toward the above agonists and provided whole blood thrombi of very low viscoelastic strength. These results indicate that measurements of platelet counts and platelet aggregability do not necessarily correlate with generation of stable thrombi, a potentially significant feature in patient clinical outcomes.  相似文献   

16.
Diabetes mellitus (DM) is accompanied by several cardiovascular complications such as coronary artery disease, atherosclerosis, hypertension, cerebral and myocardial infarction, etc. DM induces the alteration of platelet functions including activation, hyperaggregation, adhesiveness, and formation of thrombi. Release of AA from phospholipids of the PM, synthesis of TxA(2),PGE(2), activity of PLA(2), and PLC are increased in the platelets of the DM patients. Stimulation of PLA(2) activity and accumulation of bioactive metabolites such as AA, its oxygenated derivatives, prostaglandins and PAF can evoke glucose production, also. In this study we explored the effect of the 1,4-dihydropyridine compound cerebrocrast at a low concentration (10(-6)-10(-8)M) on the level of intracellular calcium in unstimulated human platelets and those stimulated with thrombin as well as release of [(3)H] AA from phospholipids of platelet PM. Cerebrocrast at a concentration of 10(-6) M decreased the basal level of intracellular calcium concentration (platelets were loaded with Fura-2) in unstimulated as well as in thrombin stimulated platelets. Cerebrocrast at concentrations of 10(-6), 10(-7), 10(-8) M inhibited release of [(3)H] AA from phospholipids of platelet PM. We conclude that blockade of human platelet activation with cerebrocrast can prevent aggregation, adhesion and formation of thrombi. The inhibition of [(3)H] AA release from phospholipids of platelet PM can prevent formation of eicosanoids such as TxA(2), PGG(2), and PGH(2) plus AA oxygenated derivatives. These effects of cerebrocrast are very significant in the treatment of DM-evoked cardiovascular complications.  相似文献   

17.
Platelets can become activated in response to changes in flow-induced shear; however, the underlying molecular mechanisms are not clearly understood. Here we present new techniques for experimentally measuring the flow-induced shear rate experienced by platelets prior to adhering to a thrombus. We examined the dynamics of blood flow around experimentally grown thrombus geometries using a novel combination of experimental (ex vivo) and numerical (in silico) methodologies. Using a microcapillary system, platelet aggregate formation was analysed at elevated shear rates in the presence of coagulation inhibitors, where thrombus formation is predominantly platelet-dependent. These approaches permit the resolution and quantification of thrombus parameters at the scale of individual platelets (2 μm) in order to quantify real time thrombus development. Using our new techniques we can correlate the shear rate experienced by platelets with the extent of platelet adhesion and aggregation. The techniques presented offer the unique capacity to determine the flow properties for a temporally evolving thrombus field in real time.  相似文献   

18.
The formation of wall-adherent platelet aggregates is a critical process in arterial thrombosis. A growing aggregate experiences frictional drag forces exerted on it by fluid moving over or through the aggregate. The magnitude of these forces is strongly influenced by the permeability of the developing aggregate; the permeability depends on the aggregate’s porosity. Aggregation is mediated by formation of ensembles of molecular bonds; each bond involves a plasma protein bridging the gap between specific receptors on the surfaces of two different platelets. The ability of the bonds existing at any time to sustain the drag forces on the aggregate determines whether it remains intact or sheds individual platelets or larger fragments (emboli). We investigate platelet aggregation in coronary-sized arteries using both computational simulations and in vitro experiments. The computational model tracks the formation and breaking of bonds between platelets and treats the thrombus as an evolving porous, viscoelastic material, which moves differently from the background fluid. This relative motion generates drag forces which the fluid and thrombus exert on one another. These forces are computed from a permeability-porosity relation parameterized from experimental measurements. Basing this relation on measurements from occlusive thrombi formed in our flow chamber experiments, along with other physiological parameter values, the model produced stable dense thrombi on a similar timescale to the experiments. When we parameterized the permeability-porosity relation using lower permeabilities reported by others, bond formation was insufficient to balance drag forces on an early thrombus and keep it intact. Under high shear flow, soluble agonist released by platelets was limited to the thrombus and a boundary layer downstream, thus restricting thrombus growth into the vessel lumen. Adding to the model binding and activation of unactivated platelets through von Willebrand-factor-mediated processes allowed greater growth and made agonist-induced activation more effective.  相似文献   

19.
Platelet lysis and aggregation in shear fields.   总被引:2,自引:0,他引:2  
A rotational viscometer was used to study the effects of shear stress on platelets in human platelet-rich plasma (PRP). For 5-min exposure times, shear stresses above 160 dynes/cm2 induced platelet lysis (as determined by release of platelet lactic dehydrogenase). For 30-s exposure times, shear stresses greater than 600 dynes/cm2 were required to induce platelet lysis. The platelet counts of sheared PRP were decreased to as low as one-fifth the original count due largely to shear-induced aggregation. The count is a minimum at intermediate stress levels (200-400 dynes/cm2). Higher stresses induce disaggregation as well as lysis. The diminution in the counts was partially reversed in 2 h incubation after cessation of shearing. Experiments were carried out with three different viscometer configurations so that the shear stress and the solid surface area access could be varied independently. Surface access was not a significant variable in the conditions of the experiments. Thus aggregation and lysis may be induced by stress effects alone as well as by solid surface effects. The results also show that the response of platelets to shear stress is strongly dependent on exposure time. Platelets are much less resistant to shear stress than red cells for relatively long exposure times. However, the converse is true for very short exposure times.  相似文献   

20.
Yang Y  Shi Z  Reheman A  Jin JW  Li C  Wang Y  Andrews MC  Chen P  Zhu G  Ling W  Ni H 《PloS one》2012,7(5):e37323
Delphinidin-3-glucoside (Dp-3-g) is one of the predominant bioactive compounds of anthocyanins in many plant foods. Although several anthocyanin compounds have been reported to be protective against cardiovascular diseases (CVDs), the direct effect of anthocyanins on platelets, the key players in atherothrombosis, has not been studied. The roles of Dp-3-g in platelet function are completely unknown. The present study investigated the effects of Dp-3-g on platelet activation and several thrombosis models in vitro and in vivo. We found that Dp-3-g significantly inhibited human and murine platelet aggregation in both platelet-rich plasma and purified platelets. It also markedly reduced thrombus growth in human and murine blood in perfusion chambers at both low and high shear rates. Using intravital microscopy, we observed that Dp-3-g decreased platelet deposition, destabilized thrombi, and prolonged the time required for vessel occlusion. Dp-3-g also significantly inhibited thrombus growth in a carotid artery thrombosis model. To elucidate the mechanisms, we examined platelet activation markers via flow cytometry and found that Dp-3-g significantly inhibited the expression of P-selectin, CD63, CD40L, which reflect platelet α- and δ-granule release, and cytosol protein secretion, respectively. We further demonstrated that Dp-3-g downregulated the expression of active integrin αIIbβ3 on platelets, and attenuated fibrinogen binding to platelets following agonist treatment, without interfering with the direct interaction between fibrinogen and integrin αIIbβ3. We found that Dp-3-g reduced phosphorylation of adenosine monophosphate-activated protein kinase, which may contribute to the observed inhibitory effects on platelet activation. Thus, Dp-3-g significantly inhibits platelet activation and attenuates thrombus growth at both arterial and venous shear stresses, which likely contributes to its protective roles against thrombosis and CVDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号