首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present an approximation scheme for deriving reaction rate equations of genetic regulatory networks. This scheme predicts the timescales of transient dynamics of such networks more accurately than does standard quasi-steady state analysis by introducing prefactors to the ODEs that govern the dynamics of the protein concentrations. These prefactors render the ODE systems slower than their quasi-steady state approximation counterparts. We introduce the method by examining a positive feedback gene regulatory network, and show how the transient dynamics of this network are more accurately modeled when the prefactor is included. Next, we examine the repressilator, a genetic oscillator, and show that the period, amplitude, and bifurcation diagram defining the onset of the oscillations are better estimated by the prefactor method. Finally, we examine the consequences of the method to the dynamics of reduced models of the phage lambda switch, and show that the switching times between the two states is slowed by the presence of the prefactor that arises from protein multimerization and DNA binding.  相似文献   

3.
4.
Modeling and simulation of genetic regulatory systems: a literature review.   总被引:22,自引:0,他引:22  
In order to understand the functioning of organisms on the molecular level, we need to know which genes are expressed, when and where in the organism, and to which extent. The regulation of gene expression is achieved through genetic regulatory systems structured by networks of interactions between DNA, RNA, proteins, and small molecules. As most genetic regulatory networks of interest involve many components connected through interlocking positive and negative feedback loops, an intuitive understanding of their dynamics is hard to obtain. As a consequence, formal methods and computer tools for the modeling and simulation of genetic regulatory networks will be indispensable. This paper reviews formalisms that have been employed in mathematical biology and bioinformatics to describe genetic regulatory systems, in particular directed graphs, Bayesian networks, Boolean networks and their generalizations, ordinary and partial differential equations, qualitative differential equations, stochastic equations, and rule-based formalisms. In addition, the paper discusses how these formalisms have been used in the simulation of the behavior of actual regulatory systems.  相似文献   

5.
6.
Regulatory T-cells (Tregs) are a subset of CD4(+) T-cells that have been found to suppress the immune response. During HIV viral infection, Treg activity has been observed to have both beneficial and deleterious effects on patient recovery; however, the extent to which this is regulated is poorly understood. We hypothesize that this dichotomy in behavior is attributed to Treg dynamics changing over the course of infection through the proliferation of an 'adaptive' Treg population which targets HIV-specific immune responses. To investigate the role Tregs play in HIV infection, a delay differatial equation model was constructed to examine (1) the possible existence of two distinct Treg populations, normal (nTregs) and adaptive (aTregs), and (2) their respective effects in limiting viral load. Sensitivity analysis was performed to test parameter regimes that show the proportionality of viral load with adaptive regulatory populations and also gave insight into the importance of downregulation of CD4(+) cells by normal Tregs on viral loads. Through the inclusion of Treg populations in the model, a diverse array of viral dynamics was found. Specifically, oscillatory and steady state behaviors were both witnessed and it was seen that the model provided a more accurate depiction of the effector cell population as compared with previous models. Through further studies of adaptive and normal Tregs, improved treatments for HIV can be constructed for patients and the viral mechanisms of infection can be further elucidated.  相似文献   

7.
In systems biology, a number of detailed genetic regulatory networks models have been proposed that are capable of modeling the fine-scale dynamics of gene expression. However, limitations on the type and sampling frequency of experimental data often prevent the parameter estimation of the detailed models. Furthermore, the high computational complexity involved in the simulation of a detailed model restricts its use. In such a scenario, reduced-order models capturing the coarse-scale behavior of the network are frequently applied. In this paper, we analyze the dynamics of a reduced-order Markov Chain model approximating a detailed Stochastic Master Equation model. Utilizing a reduction mapping that maintains the aggregated steady-state probability distribution of stochastic master equation models, we provide bounds on the deviation of the Markov Chain transient distribution from the transient aggregated distributions of the stochastic master equation model.  相似文献   

8.
9.
10.
In this paper, we are looking for mathematical modeling of mouse embryonic melanoblast proliferation dynamics, taking into account, the expression level of β‐catenin. This protein plays an important role into the whole signal pathway process. Different assumptions on some unobservable features lead to different candidate models. From real data measured, from biological experiments and from a priori biological knowledge, it was able to validate or invalidate some of the candidate models. Data assimilation and parameter identification allowed us to derive a mathematical model that is in very good agreement with biological data. As a result, the produced model can give tracks for biologists into their biological investigations and experimental evidence. Another interest is the use of this model for robust hidden parameter identification like double times or number of founder melanoblasts.  相似文献   

11.
12.
MOTIVATION: Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this article we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. RESULTS: We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our method first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation-inhibition networks to match the discretized data. Finally, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

13.
14.
15.
Genetic regulatory network inference is critically important for revealing fundamental cellular processes, investigating gene functions, and understanding their relations. The availability of time series gene expression data makes it possible to investigate the gene activities of whole genomes, rather than those of only a pair of genes or among several genes. However, current computational methods do not sufficiently consider the temporal behavior of this type of data and lack the capability to capture the complex nonlinear system dynamics. We propose a recurrent neural network (RNN) and particle swarm optimization (PSO) approach to infer genetic regulatory networks from time series gene expression data. Under this framework, gene interaction is explained through a connection weight matrix. Based on the fact that the measured time points are limited and the assumption that the genetic networks are usually sparsely connected, we present a PSO-based search algorithm to unveil potential genetic network constructions that fit well with the time series data and explore possible gene interactions. Furthermore, PSO is used to train the RNN and determine the network parameters. Our approach has been applied to both synthetic and real data sets. The results demonstrate that the RNN/PSO can provide meaningful insights in understanding the nonlinear dynamics of the gene expression time series and revealing potential regulatory interactions between genes.  相似文献   

16.
17.
Eriksson R  Olsson B 《Bio Systems》2004,76(1-3):217-227
In this paper, we focus on the task of adapting genetic regulatory models based on gene expression data from microarrays. Our approach aims at automatic revision of qualitative regulatory models to improve their fit to expression data. We describe a type of regulatory model designed for this purpose, a method for predicting the quality of such models, and a method for adapting the models by means of genetic programming. We also report experimental results highlighting the ability of the methods to infer models on a number of artificial data sets. In closing, we contrast our results with those of alternative methods, after which we give some suggestions for future work.  相似文献   

18.
19.
20.
Liu B  Yan S  Wang Q 《Molecular bioSystems》2011,7(2):457-463
We explore one of the best-studied protein circuits in human cells, the negative feedback loop between the tumor suppressor p53 and the oncogene Mdm2 following nuclear irradiation. Using stochastic delay differential equations and the Gillespie algorithm, we illustrate the distinct oscillatory dynamics at the single-cell and population-cell levels which were found in the recent experiments. The oscillatory dynamics of p53-Mdm2 interaction appears as coherent resonance with delay and noise in individual cells. Dephasing mechanisms provide the origin of damped oscillation at the population level out of the sustained one at the single-cell level. The non-Gaussian nature of distributions of protein populations results from the interplay between time delay and nonlinearity of reaction processes. Our findings may lead to new insights related to the effects of noise and cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号