首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.  相似文献   

2.
Rising prices for fossil-based raw materials suggest that sooner or later renewable raw materials will, in principle, become economically viable. This paper examines this widespread paradigm. Price linkages like those seen for decades particularly in connection with petrochemical raw materials are now increasingly affecting renewable raw materials. The main driving force is the competing utilisation as an energy source because both fossil-based and renewable raw materials are used primarily for heat, electrical power and mobility. As a result, prices are determined by energy utilisation. Simple observations show how prices for renewable carbon sources are becoming linked to the crude oil price. Whether the application calls for sugar, starch, virgin oils or lignocellulose, the price for the raw material rises with the oil price. Consequently, expectations regarding price trends for fossil-based energy sources can also be utilised for the valuation of alternative processes. However, this seriously calls into question the assumption that a rising crude oil price will favour the economic viability of alternative products and processes based on renewable raw materials. Conversely, it follows that these products and processes must demonstrate economic viability today. Especially in connection with new approaches in white biotechnology, it is evident that, under realistic assumptions, particularly in terms of achievable yields and the optimisation potential of the underlying processes, the route to utilisation is economically viable. This makes the paradigm mentioned at the outset at least very questionable.  相似文献   

3.
Although biofuels such as biodiesel and bioethanol represent a secure, renewable and environmentally safe alternative to fossil fuels, their economic viability is a major concern. The implementation of biorefineries that co-produce higher value products along with biofuels has been proposed as a solution to this problem. The biorefinery model would be especially advantageous if the conversion of byproducts or waste streams generated during biofuel production were considered. Glycerol-rich streams generated in large amounts by the biofuels industry, especially during the production of biodiesel, present an excellent opportunity to establish biorefineries. Once considered a valuable 'co-product', crude glycerol is rapidly becoming a 'waste product' with a disposal cost attributed to it. Given the highly reduced nature of carbon in glycerol and the cost advantage of anaerobic processes, fermentative metabolism of glycerol is of special interest. This review covers the anaerobic fermentation of glycerol in microbes and the harnessing of this metabolic process to convert abundant and low-priced glycerol streams into higher value products, thus creating a path to viability for the biofuels industry. Special attention is given to products whose synthesis from glycerol would be advantageous when compared with their production from common sugars.  相似文献   

4.
Under the European Commission's European Climate Change Programme, a group of experts studied the possibilities of using more renewable raw materials as chemical feedstock and assessed the related potential for greenhouse gas (GHG) emission reduction. Surfactants were among the products studied. Surfactants are currently produced from both petro-chemical feedstocks and renewable resources (oleochemical surfactants). Assuming, in a first step, that total surfactant production in the European Union remains constant until 2010, it was estimated that the amount of oleochemical surfactants could be increased from about 880 kilotons (kt) in 1998 to approximately 1, 100 kt in 2010 (an increase of 24%). This substitution reduces the life-cycle CO2 emissions from surfactants by 8%; the theoretical maximum potential for total substitution is 37%. Because the surfactant market is expected to grow, the avoided emissions will probably exceed 8% of the current life-cycle CO2 emissions from surfactants. If compared to the CO2 emissions from the total industrial sector and, even more so, if compared to the total economy, the relative savings are much lower (0.02% to 0.09%). This leads to the conclusion that the increased production and use of biobased surfactants should be part of an overall GHG emission reduction strategy consisting of a whole range of measures addressing both energy demand and supply. This article also discusses policies and measures designed to increase the use of biobased surfactants.  相似文献   

5.
Biomass pretreatment: fundamentals toward application   总被引:3,自引:0,他引:3  
Development of sustainable energy systems based on renewable biomass feedstocks is now a global effort. Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Liquid biofuels, such as ethanol, can be made from biomass via fermentation of sugars derived from the cellulose and hemicellulose within lignocellulosic materials, but the biomass must be subjected to pretreatment processes to liberate the sugars needed for fermentation. Production of value-added co-products along-side biofuels through integrated biorefinery processes creates the need for selectivity during pretreatment. This paper presents a survey of biomass pretreatment technologies with emphasis on concepts, mechanism of action and practicability. The advantages and disadvantages, and the potential for industrial applications of different pretreatment technologies are the highlights of this paper.  相似文献   

6.
Plants, which are one of major groups of life forms, are constituted of an amazing number of molecules such as sugars, proteins, phenolic compounds etc. These molecules display multiple and complementary properties involved in various compartments of plants (structure, storage, biological activity etc.). The first uses of plants in industry were for food and feed, paper manufacturing or combustion. In the coming decades, these renewable biological materials will be the basis of a new concept: the "biorefiner" i.e. the chemical conversion of the whole plant to various products and uses. This concept, born in the 90ies, is analogous to today's petroleum refinery, which produces multiple fuels and derivative products from petroleum. Agriculture generates lots of co-products which were most often wasted. The rational use of these wasted products, which can be considered as valuable renewable materials, is now economically interesting and will contribute to the reduction of greenhouse has emissions by partially substituting for fossil fuels. Such substructures from biological waste products and transforming them into biofuels and new industrial products named "bioproducts". These compounds, such as bioplastics or biosurfactants, can replace equivalent petroleum derivatives. Towards that goal, lots of filamentous fungi, growing on a broad range of vegetable species, are able to produce enzymes adapted to the modification of these type of substrates. The best example, at least the more industrially developed to date, is the second generation biofuel technology using cellulose as a raw material. The process includes an enzymatic hydrolysis step which requires cellulases secreted from Trichoderma fungal species. This industrial development of a renewable energy will contribute to the diversification of energy sources used to transport and to the development of green chemistry which will partially substitute petrochemicals.  相似文献   

7.
Next to cellulose, starch is the most abundant hexose polymer in plants, an import food and feed source and a preferred substrate for the production of many industrial products. Efficient starch hydrolysis requires the activities of both α-1,4 and α-1,6-debranching hydrolases, such as endo-amylases, exo-amylases, debranching enzymes, and transferases. Although amylases are widely distributed in nature, only about 10?% of amylolytic enzymes are able to hydrolyse raw or unmodified starch, with a combination of α-amylases and glucoamylases as minimum requirement for the complete hydrolysis of raw starch. The cost-effective conversion of raw starch for the production of biofuels and other important by-products requires the expression of starch-hydrolysing enzymes in a fermenting yeast strain to achieve liquefaction, hydrolysis, and fermentation (Consolidated Bioprocessing, CBP) by a single organism. The status of engineering amylolytic activities into Saccharomyces cerevisiae as fermentative host is highlighted and progress as well as challenges towards a true CBP organism for raw starch is discussed. Conversion of raw starch by yeast secreting or displaying α-amylases and glucoamylases on their surface has been demonstrated, although not at high starch loading or conversion rates that will be economically viable on industrial scale. Once efficient conversion of raw starch can be demonstrated at commercial level, engineering of yeast to utilize alternative substrates and produce alternative chemicals as part of a sustainable biorefinery can be pursued to ensure the rightful place of starch converting yeasts in the envisaged bio-economy of the future.  相似文献   

8.
Industrial biotechnology involves the use of enzymes and microorganisms to produce value-added chemicals from renewable sources. Because of its association with reduced energy consumption, greenhouse gas emissions, and waste generation, industrial biotechnology is a rapidly growing field. Here we highlight a variety of important tools for industrial biotechnology, including protein engineering, metabolic engineering, synthetic biology, systems biology, and downstream processing. In addition, we show how these tools have been successfully applied in several case studies, including the production of 1, 3-propanediol, lactic acid, and biofuels. It is expected that industrial biotechnology will be increasingly adopted by chemical, pharmaceutical, food, and agricultural industries.  相似文献   

9.
赵建  曲音波 《生命科学》2014,(5):489-496
开发利用可再生性的木质纤维素资源来生产液体燃料和大宗化学品,对于解决人类发展面临的资源与环境危机具有重要的意义。然而,作为其代表性工艺的纤维素乙醇生产却因为经济上无法过关而迟迟不能真正实现产业化。采用生物精炼技术,充分利用木质纤维素材料中各种组分,生产包括部分高值产品的多种产品,是克服其转化技术产业化经济可行性问题的有效措施。综述了木质纤维素原料生物精炼技术的研究发展现状,着重阐述了玉米芯的生物精炼技术产业化进展,并对木质纤维素的生物精炼前景进行了展望。  相似文献   

10.
The International Journal of Life Cycle Assessment - Fermentable carbohydrates (FC) are raw materials from agriculture common in the production of bio-based products like biofuels and renewable...  相似文献   

11.
生物炼制——实现可持续发展的新型工业模式   总被引:8,自引:1,他引:8  
当前社会经济的可持续发展正面临着能源资源短缺、生态环境恶化的空前挑战。以可再生的生物质资源替代不可再生的化石资源、实现工业模式从石油炼制向生物炼制的根本转变,是转变经济增长模式、保障社会经济可持续发展的重大战略需求。对生物炼制这一新型工业模式进行了简单介绍。  相似文献   

12.
生物柴油研究进展   总被引:11,自引:0,他引:11  
介绍了国内外生物柴油的发展现状,探讨了我国发展生物柴油的原料来源途径,包括木本油料植物、转基因油料作物、废弃油脂、微生物油脂和微藻油脂等,综述了制备生物柴油的化学法、酶法、超临界法等生产技术及其进展,概括了当前生物柴油主要的品质问题与改性对策,分析了生物柴油副产物的高值化利用策略,指出了我国生物柴油产业化面临的原料、技术和生物炼制方面的主要问题。  相似文献   

13.
Replacing fossil fuels with renewable fuels derived from lignocellulosic biomass can contribute to the mitigation of global warming and the economic development of rural communities. This will require lignocellulosic biofuels to become price competitive with fossil fuels. Techno-economic analyses can provide insights into which parts of the biofuel production process need to be optimized to reduce cost or energy use. We used data obtained from a pilot biorefinery to model a commercial-scale biorefinery that processes lignocellulosic biomass to ethanol, with a focus on the minimum ethanol selling price (MESP). The process utilizes a phosphoric acid-catalyzed pre-treatment of sweet sorghum bagasse followed by liquefaction and simultaneous saccharification and co-fermentation (L+SScF) of hexose and pentose sugars by an engineered Escherichia coli strain. After validating a techno-economic model developed with the SuperPro Designer software for the conversion of sugarcane bagasse to ethanol by comparing it to a published Aspen Plus model, six different scenarios were modeled for sweet sorghum bagasse Under the most optimistic scenario, the ethanol can be produced at a cost close to the energy-equivalent price of gasoline. Aside from an increase in the price of gasoline, the gap between ethanol and gasoline prices could also be bridged by either a decrease in the cost of cellulolytic enzymes or development of value-added products from lignin.  相似文献   

14.
The global economy heads for a severe energy crisis: whereas the energy demand is going to rise, easily accessible sources of crude oil are expected to be depleted in only 10–20 years. Since a serious decline of oil supply and an associated collapse of the economy might be reality very soon, alternative energies and also biofuels that replace fossil fuels must be established. In addition, these alternatives should not further impair the environment and climate. About 90% of the biofuel market is currently captured by bioethanol and biodiesel. Biodiesel is composed of fatty acid alkyl esters (FAAE) and can be synthesized by chemical, enzymatic, or in vivo catalysis mainly from renewable resources. Biodiesel is already established as it is compatible with the existing fuel infrastructure, non-toxic, and has superior combustion characteristics than fossil diesel; and in 2008, the global production was 12.2 million tons. The biotechnological production of FAAE from low cost and abundant feedstocks like biomass will enable an appreciable substitution of petroleum diesel. To overcome high costs for immobilized enzymes, the in vivo synthesis of FAAE using bacteria represents a promising approach. This article points to the potential of different FAAE as alternative biofuels, e.g., by comparing their fuel properties. In addition to conventional production processes, this review presents natural and genetically engineered biological systems capable of in vivo FAAE synthesis.  相似文献   

15.
India is the fifth largest primary energy consumer and fourth largest petroleum consumer after USA, China, and Japan. Despite the global economic crisis, India’s economy is expected to grow at 6 to 8?%/year. There is an extreme dependence on petroleum products with considerable risks and environmental issues. Petroleum-derived transport fuels are of limited availability and contribute to global warming, making renewable biofuel as the best alternative. The focus on biogas and biomass-based energy, such as bioethanol and biohydrogen, will enhance cost-effectiveness and provide an opportunity for the rural community. Among all energy sources, microalgae have received, so far, more attention due to their facile adaptability to grow in the photobioreactors or open ponds, high yields, and multiple applications. Microalgae can produce a substantial amount of triacylglycerols as a storage lipid under photooxidative stress or other adverse environmental conditions. In addition to renewable biofuels, they can provide different types of high-value bioproducts added to their advantages, such as higher photosynthetic efficiency, higher biomass production, and faster growth compared to any other energy crops. The viability of first-generation biofuels production is, however, questionable because of the conflict with food supply. In the future, biofuels should ideally create the environmental, economic, and social benefits to the communities and reflect energy efficiency so as to plan a road map for the industry to produce third-generation biofuels.  相似文献   

16.
There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional 'first-generation' biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO(2) emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO(2) biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed.  相似文献   

17.
From biomass to renewable chemicals: while industrial biotechnology offers a clear value proposition, a number of hurdles need to be addressed to fully realize the commercial potential of bio-based products and chemicals over the coming decade. A review of an early roadmap for biological production of chemicals from renewable sugars reveals a focus on those that would provide co-products for integrated biorefineries producing biofuels and bioenergy. A growing number of companies are now focusing on specialty chemicals as an entry point to build the bio-based economy.  相似文献   

18.
Biorefinery has been suggested to provide relevant substitutes to a number of fossil products. Feedstocks and conversion technologies have, however, been the bottleneck to the realization of this concept. Herein, feedstocks and bioconversion technologies under biorefinery have been reviewed. Over the last decade, research has shown possibilities of generating tens of new products but only few industrial implementations. This is partly associated with low production yields and poor cost‐competitiveness. This review addresses the technical barriers associated with the conversion of emerging feedstocks into chemicals and bioenergy platforms and summarizes the developed biotechnological approaches including advances in metabolic engineering. This summary further suggests possible future advances that would expand the portfolio of biorefinery and speed up the realization of biofuels and biochemicals.  相似文献   

19.
Secondary agriculture plays a significant role in making a positive impact on the country’s economy. It has potential to increase the value of primary agriculture. It ensures better utilization of renewable agro-bioresources either through value addition or waste utilization. Nurseries, bio-fertilizers, bio-pesticides, compost, fruit-processed products, agro-tourism, weaving, flavours, and dyes are some of the avenues of secondary agriculture. By-products from agricultural crops like wheat and rice bran, corn gluten meal and germ, pulses meal and husk, and sugarcane bagasse, if processed appropriately for deriving industrial products could pave a way in getting better economic returns from agriculture rather using them as livestock feed. Among food crops, major post-harvest losses (30–40%) occurs in fruits and vegetables; their waste being rich in several bioactive compounds possess great potential to be added as a polyphenol rich and fibre source in food products or for the synthesis of food-grade industrial products like ethanol, citric acid and pectin etc. Wastes from floriculture industries can also be utilised for the production of several value-added products such as biofuels, bio-ethanol, compost, organic acids, pigments and dyes, incense sticks, handmade paper production, and sugar syrup. Around the world, 80% of population is dependent on traditional medicine for health care needs. The secondary metabolites from medicinal plants possess pharmaceutical properties and advancement in extraction techniques can lead to novel range of herbal products of high economic value. The market potential of agro-produce seems to be naïve but opportunistic in near future. The advancement in technologies, equipments, and processes would enable enhanced secondary agriculture practices giving range of materials of better quality, yield, nutrition, and convenience. Hence, the potential of secondary agriculture and bioprocessing could be strong boost to the economy, societal status and environmental protection. In this article we have made an effort to understand the secondary agriculture, its potential to uplift the economy and strategies for value addition in different agricultural domains such as horticulture, floriculture and medicinal plants.  相似文献   

20.
Tailor‐made microorganisms Microbial diversity provides unlimited resources for the development of novel industrial processes and products. Since the beginning of the 20th century microorganisms have been successfully applied for the large scale production of bio‐based products. In recent years, modern methods of strain development and Synthetic Biology have enabled biotech engineers to design even more sophisticated and tailor‐made microorganisms. These microbes serve industrial processes for the production of bulk chemicals, enzymes, polymers, biofuels as well as plant‐derived ingredients such as Artemisinin in an ecologically and economically sustainable and attractive fashion. In the future, production of advanced biofuels, microbial fuel cells, CO2 as feedstock and microbial cellulose are research topics as well as challenges of global importance. Continuous efforts in microbiology and biotechnology research will be pivotal for white biotechnology to gain more momentum in transforming the chemical industry towards a knowledge based bio‐economy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号