首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fresh water snail Biomphalaria glabrata (2n = 36) belongs to the taxonomic class Gastropoda (family Planorbidae) and is integral to the spread of the human parasitic disease schistosomiasis. The importance of this mollusc is such that it has been selected as a model molluscan organism for whole genome sequencing. In order to understand the structure and organisation of the B. glabrata’s genome it is important that gene mapping studies are established. Thus, we have studied the genomes of two B. glabrata embryonic (Bge) cell line isolates 1 and 2 grown in separate laboratories, but both derived from Eder L. Hansen’s original culture from the 1970s. This cell line continues to be an important tool and model system for schistosomiasis and B. glabrata. Using these cell line isolates, we have investigated the genome content and established a revised karyotype based on chromosome size and centromere position for these cells. Unlike the original karyotype (2n = 36) established for the cell line, our investigations now show the existence of extensive aneuploidy in both cell line isolates to the extent that the total complement of chromosomes in both greatly exceeds the original cell line’s diploid number of 36 chromosomes. The isolates, designated Bge 1 and 2, had modal chromosome complements of 64 and 67, respectively (calculated from 50 metaphases). We found that the aneuploidy was most pronounced, for both isolates, amongst chromosomes of medium metacentric morphology. We also report, to our knowledge for the first time using Bge cells, the mapping of single-copy genes peroxiredoxin (BgPrx4) and P-element induced wimpy testis (piwi) onto Bge chromosomes. These B. glabrata genes were mapped onto pairs of homologous chromosomes using fluorescence in situ hybridization (FISH). Thus, we have now established a FISH mapping technique that can eventually be utilized for physical mapping of the snail genome.  相似文献   

2.
In the present study, we examined the effect of amphotericin B on larval stages (miracidia and primary sporocyst) of the helminth Schistosoma mansoni, the causative agent of human schistosomiasis. Amphotericin B (AmB) is a polyene macrolide that disturbs the function of the cell membrane; it is widely used as prophylactic antimycotic agent in in vitro culture. We show for the first time that S. mansoni miracidia infectivity is considerably reduced after AmB treatment. Moreover we demonstrate that AmB does not affect the development, growth, viability, and behavior of miracidia and primary sporocysts. Our data indicate that AmB effects on S. mansoni sporocyst prevalence are linked to the oxidative properties of AmB. These may alter the capacity of sporocysts to respond to the oxidative stress generated by the snail immune defence system.  相似文献   

3.
Biomphalaria glabrata is a major intermediate host for the parasitic trematode Schistosoma mansoni, a causative agent of human schistosomiasis. To decipher the molecular basis of this host-parasite interaction, the Bge embryonic cell line provides a unique in vitro model system to assess whether interactions between the snail and parasite affect the cell and genome biology in either organism. The organization of the B. glabrata genome in Bge cells was studied using image analysis through positioning territories of differently sized chromosomes within cell nuclei. The snail chromosome territories are similar in morphology as well as in non-random radial positioning as those found in other derived protostome and deuterostome organisms. Specific monitoring of four gene loci, piwi, BgPrx, actin and ferritin, revealed non-random radial positioning of the genome. This indicates that specific parts of the snail genome reside in reproducible nuclear addresses. To determine whether exposure to parasite is reflected in genome organization, the interphase spatial positioning of genes was assessed after co-culturing Bge cells with either normal or irradiation attenuated miracidia for 30 min to 24 h. The loci of actin and ferritin, genes that are up-regulated in the snail when subjected to infection, were visualized by fluorescence in situ hybridisation (FISH) and their radial nuclear positions i.e. their position in the interphase nucleus with respect to the nuclear edge/envelope, mapped. Interestingly, large scale gene repositioning correlated to temporal kinetics of gene expression levels in Bge cells co-cultured with normal miracidia while irradiated parasites failed to elicit similar gene expression or gene loci repositioning as demonstrated using the ferritin gene. This indicates that normal but not attenuated schistosomes provide stimuli that evoke host responses that are reflected in the host’s nuclear architecture. We believe that this is not only the first time that gene-repositioning studies have been attempted in a mollusc but also demonstrates a parasite influencing the interphase genome organization of its host.  相似文献   

4.
Mammalian mannose 6-phosphate (M6P) receptors function in transport of lysosomal enzymes. To understand the structural and functional significance of the chicken cation dependent mannose 6-phosphate receptor (MPR) (Mr 46kDa), a full-length cDNA for the chicken protein was cloned and expressed in mpr((-/-)) MEF cells devoid of both the receptors. The stably transfected cells express the receptor that could be affinity purified by phosphomannan chromatography. The authenticity of the receptor was confirmed by its immuno-reactivity with mammalian MPR 46 antibodies and its ability to sort cathepsin D in transfected cells (92.3%) as compared to mock transfected cells (50.2%), establishing a functional role for the chicken receptor.  相似文献   

5.
In mammals, Mannose 6-phosphate receptor proteins (MPR 300 and MPR 46) mediate transport of lysosomal enzymes to lysosomes. Both receptors have been found in non-mammalian vertebrates including fish. To investigate the presence of MPRs in invertebrates, MPR 300 protein was isolated from the mollusc unio by affinity chromatography. It was shown to exhibit biochemical and immunological properties similar to mammalian MPR 300.  相似文献   

6.
The skin is the primary interface between the body and the environment, and has a central role in host defence. In the epidermis, Langerhans’ cells form an interconnecting network of dendritic cells, that play a central role within inflammatory and immune responses of terrestrial and aquatic mammals, but few studies aimed at their characterization have been carried out in cetaceans, so far. Toll-like receptors are crucial players in the innate immune response to microbial invaders. These receptors are expressed on immune cells, such as monocytes, macrophages, dendritic cells, and granulocytes.  相似文献   

7.
8.
Arylalkylamine N-acetyltransferase (AANAT; EC 2.3.1.87) catalyzes the N-acetylation of arylalkylamines. A cDNA encoding AANAT (ApAANAT) was cloned from Antheraea pernyi by PCR. The cDNA of 1966 bp encodes a 261 amino acid protein. The amino acid sequence was found to have a high homology with Bombyx mori AANAT (BmNAT) but had very low homology with vertebrate AANATs. Amino acid sequence analysis revealed that four insect AANATs cloned from three species including ApAANAT formed a distinct cluster from the vertebrate group. A recombinant ApAANAT protein was expressed in Sf9 cells using a baculovirus expression system, having AANAT activity. The transformed cell extract acetylated tryptamine, serotonin, dopamine, tyramine, octopamine and norepinephrine. The AANAT activity was inhibited at over 0.03 mM tryptamine. Although insect AANATs have been considered as a target of insecticide, this type of insecticide has never been developed. Screening a chemical library of Otsuka Chemical Co., Ltd., we found a novel compound and its derivatives that inhibited the AANAT activity of ApAANAT. This may facilitate investigation of the monoamine metabolic pathway in insects and the development of new types of insecticides and inhibitors of AANATs.  相似文献   

9.
Geometrical configuration of the polyene chain of approximately 40 mono- and di-cis carotenoids was determined from 1970 through 1990. Subsequently, the kinetic, equilibrium and thermodynamic parameters (k, K, A, EA, ΔH#, ΔG#, ΔS#) of the reversible thermal isomerization of several symmetrical and unsymmetrical carotenoids were calculated. The rate of the iodine-catalyzed photoisomerization of (all-E)-, (9Z)- and (13Z)-zeaxanthin was compared and the ‘specific rate’ (per unit light energy at given wavelengths) of the iodine-catalyzed photoisomerization for several (13Z)-carotenoids was investigated. As the missing links of the biosynthetic pathway of paprika-carotenoids, carotenoids containing new end groups were isolated; their sterically unhindered mono-cis isomers were also prepared and their geometrical configuration was determined. The investigation concentrated on the substrate specificity of the enzyme violaxanthin-deepoxidase, the light-induced formation of (13Z)-violaxanthin in green leaves, the binding of xanthophylls to the bulk light-harvesting complex (LHC) of photosystem II in higher plants, the biochemical basis of color as an aesthetic quality in Citrus-fruits and the (9Z)-epoxycarotenoid cleavage enzyme activity for ABA biosynthesis. Recently (9Z)-capsanthin-5,6-epoxide and capsoneoxanthin, two novel carotenoids have been isolated from natural sources.  相似文献   

10.
Three new ligands and their palladium(II) complexes of general formula [PdCl2(R2-S,S-eddp)] (R = n-propyl, n-butyl and n-pentyl) have been synthesized and characterized by microanalysis, infrared and 1H and 13C NMR spectroscopy. Antimicrobial activity of these ligands and complexes was tested by microdilution method and both minimal inhibitory and microbicidal concentration were determined. These tested complexes demonstrated the significant antifungal activity against pathogenic fungi Aspergillus flavus and Aspergillus fumigatus. On the other hand, these complexes demonstrated moderate antibacterial activity.  相似文献   

11.
To characterize the luminescence properties of nanoKAZ, a 16 amino acid substituted mutant of the catalytic 19 kDa protein (KAZ) of Oplophorus luciferase, the effects of each mutated amino acid were investigated by site-specific mutagenesis. All 16 single substituted KAZ mutants were expressed in Escherichia coli cells and their secretory expressions in CHO-K1 cells were also examined using the signal peptide sequence of Gaussia luciferase. Luminescence activity of KAZ was significantly enhanced by single amino acid substitutions at V44I, A54I, or Y138I. Further, the triple mutant KAZ-V44I/A54I/Y138I, named eKAZ, was prepared and these substitutions synergistically enhanced luminescence activity, showing 66-fold higher activity than wild-KAZ and also 7-fold higher activity than nanoKAZ using coelenterazine as a substrate. Substrate specificity of eKAZ for C2- and/or C6-modified coelenterazine analogues was different from that of nanoKAZ, indicating that three amino acid substitutions may be responsible for the substrate recognition of coelenterazine to increase luminescence activity. In contrast, these substitutions did not stimulate protein secretion from CHO-K1 cells, suggesting that the folded-protein structure of KAZ might be different from that of nanoKAZ.  相似文献   

12.
The epigenetic states of key regulatory genes must be altered to drive cell fate decisions in differentiating cells. This process must be coupled, at least transiently, to the DNA replication machinery. Only a few genes, however, have been shown to require DNA replication for their activation or repression upon induction of differentiation. We have developed a methodology for examining how gene expression is coupled to cell division during the early stages of differentiation of embryonal carcinoma (EC) cells. Using this approach, we find that the expression of the 5-hydroxytryptamine (serotonin) receptor 2C (Htr2c) is strongly increased in the second division after all-trans retinoic acid addition. We propose that the epigenetic activation of Htr2c in EC cells results from a chromatin remodeling process that requires at least two passages through S phase.  相似文献   

13.
14.
In this study, we report that a polysaccharide isolated from a Chinese medicinal herb, Zhu Ling (the sclerotium of Polyporus umbellatus (Per) Fr), induces phenotypic and functional maturation of murine bone-derived dendritic cells (BMDCs). Treatment of BMDCs with Polyporus polysaccharide (PPS) resulted in enhanced cell-surface expression of CD86, as well as enhanced production of both interleukin (IL)-12 p40 and IL-10 in a dose-dependent manner. In addition, treatment of BMDCs with PPS resulted in increased T cell-stimulatory capacity and decreased phagocytic ability. PPS-induced production of IL-12 p40 was inhibited by monoclonal antibodies to Toll-like receptor 4 (TLR4). Flow cytometric analysis showed that fluorescence-labeled PPS (f-PPS) bound specifically to BMDCs. This binding was blocked by both unlabeled PPS and anti-TLR4, but not by anti-TLR2 and anti-CR3 monoclonal antibodies. Taken together, our data show that PPS promotes the activation and maturation of murine BMDCs via TLR4.  相似文献   

15.
Serous goblet cells in the oral epithelium of Rita rita are characterized by the presence of distinct eosinophilic granules occupying large parts of the cytoplasm. In R. rita, a range of histochemical results reveal that these cells are involved in proteinaceous secretions, and thus likely contribute to various functions analogous to those of mammalian saliva. The secretions of these cells have also been associated with specific functions and are discussed in relation to their physiological importance with special reference to their roles in lubrication, alteration in viscosity, various functions of mucus such as handling, maneuvering and driving of food items toward the esophagus, maintaining taste sensitivity and protection of the oral epithelium. In addition, the serous goblet cells may also be considered as the primary defensive cell of the oral epithelium of R. rita. The results significantly add to very limited set of literature on the serous goblet cells and provide noteworthy information on the mucous secretions in the oral cavity of fish.  相似文献   

16.
施加角担子菌B6对连作西瓜土壤微环境和西瓜生长的影响   总被引:1,自引:0,他引:1  
在盆栽条件下,研究了施加角担子菌B6的菌丝对连作西瓜的土壤微生物区系以及产量的影响,以探索西瓜连作障碍的生物防治措施。施加B6的活菌丝(C)显著减少土壤中真菌的数量、增加细菌/放线菌的比例,在西瓜成熟期,与对照(A)和施加灭活的B6菌丝(B)相比,土壤中尖孢镰刀菌(FO)的数量分别减少了29.9%和63.3%。相比对照(A),在成熟期,C处理中土壤脲酶、蔗糖酶和多酚氧化酶的活力分别提高了19.0%、159.0%和31.3%;西瓜超氧化物岐化酶(SOD)和过氧化物酶(POD)活性分别增加32.7%和4.6%,西瓜根系活力(TTC法)增强46.2%,丙二醛(MDA)含量减少51.4%。与对照(A)和施加灭活B6菌(B)相比,施加B6菌(C)后,西瓜单果重分别增加44.8%和40.9%,总产量分别增加103.8%和64.9%,可溶性糖含量分别增加35.1%和10.0%。施加B6的活菌丝能够通过改善土壤微环境,提高西瓜植株的抵抗力,进而增加产量。  相似文献   

17.
Glycyrrhiza glabra and its phytoconstituents have been known to possess widespread pharmacological properties as an anti-inflammatory, anti-viral, antitumour and hepatoprotective drug. In this study, we examined the inhibitory potential of extract of G. glabra (GutGard™) root and its phytoconstituents (glabridin, glycyrrhizin, and isoliquiritigenin) on both cyclooxygenase (COX) and lipoxygenase (LOX) products in order to understand the mechanism of its anti-inflammatory action. Inhibitory effect of GutGard™ and its phytoconstituents on lipopolysaccharide (LPS) induced prostaglandin E2 (PGE2), calcimycin (A23187) induced thromboxane (TXB2), and leukotriene (LTB4) release was studied using murine macrophages (J774A.1) and human neutrophil (HL-60) cells. Results revealed that, G. glabra and glabridin significantly inhibited PGE2, TXB2 (COX) and LTB4 (LOX), while, isoliquiritigenin exerted inhibitory effect only against COX products but failed to suppress LOX product. However, glycyrrhizin at the tested concentrations failed to exhibit inhibitory effect on both COX and LOX products. Here, we report for the first time that G. glabra (almost devoid of glycyrrhizin) exhibits anti-inflammatory property likely through the inhibition of PGE2, TXB2 and LTB4 in mammalian cell assay system, which could be influenced in part by glabridin and isoliquiritigenin.  相似文献   

18.
To compare the cytotoxicities and the DNA-binding properties in tetranuclear complexes with different bridging ligands, two tetracopper(II) complexes with formulae of [Cu4(oxbe)2Cl2(bpy)2]·4H2O (1) and [Cu4(oxbm)2Cl2(bpy)2]·2H2O (2) were synthesized, where H3oxbe and H3oxbm stand for N-benzoato-N′-(2-aminoethyl)oxamide and N-benzoato-N′-(1,2-propanediamine)oxamide, respectively, and bpy is 2,2′-bipyridine. Complex 1 was characterized by elemental analyses, IR and electronic spectra and single-crystal X-ray diffraction. The crystal structure reveals the presence of the circular tetranuclear copper(II) cations which are assembled by a pair of cis-oxamido-bridged dinuclear copper(II) units through carboxyl bridges. The crystal structure of complex 2 has been reported in our previous paper. However, the bioactivities were not studied. Cytotoxicities experiments reveal that both the two complexes exhibit cytotoxic effects against human hepatocellular carcinoma cell SMMC-7721 and human lung adenocarcinoma cell A549, and complex 1 has the better activities than those of complex 2. The results of the interactions between the two complexes and herring sperm DNA (HS-DNA) suggest that the two complexes interact with HS-DNA in the mode of intercalation with the intrinsic binding constants of 3.93 × 104 M−1 (1) and 2.48 × 104 M−1 (2). These results indicated that the bridging ligands may play an important role in the cytotoxicities and the DNA-binding properties of tetranuclear complexes.  相似文献   

19.
Hatchlings cuttlefish were reared in the laboratory from hatching until 30 days old, fed with live shrimp, frozen shrimp or fish oil-enriched frozen shrimp. Survival of cuttlefish fed with oil-enriched frozen shrimp was better than in animals receiving live shrimp. However, there was no difference with cuttlefish fed with frozen shrimp, even if survival of those receiving oil-enriched frozen shrimp was always higher all along the experiment. Lower survival in animals fed with live shrimp represented the problem of using such food and confirms the necessity to elaborate an artificial food. Utilization of artemia was detrimental to growth and induced low values of instantaneous growth rate (IGR) and conversion rate even after feeding cuttlefish with shrimp. Nevertheless, growth parameters evolutions generally corresponded to those observed by other researchers. The profile noticed at the end of the experiment is typically observed when cuttlefish acquire their adult digestive system. Main differences were observed between groups fed with live shrimp or oil-enriched frozen shrimp. Enrichment did not induce same growth as in cuttlefish receiving live prey. However, at 20 and 25 days after hatching (DAH), in cuttlefish fed with oil-enriched frozen shrimp, ration was lower for the same growth than in other groups.These data showed capacity of juvenile cuttlefish to adjust their digestive enzyme activities according to the diet and the stage of development. Indeed, chymotrypsin was strongly influenced by enrichment, while other enzymes showed difference between live and frozen preys. Trypsin exhibited regulation by diet after 20 DAH. Freezing seemed to delay development as acid phosphatases, characteristic of first stages of cuttlefish, had lower activity in cuttlefish fed with live shrimp at 10 DAH. Moreover, influence of the stage of development was strong as activities between 20 and 30 DAH were different in all groups. This was in relation with evolution of the digestive system. These data illustrated the difficulty to elaborate optimal diet as digestive system evolves.  相似文献   

20.
Of the various risk factors contributing to osteoporosis, dietary/lifestyle factors are important. In a clinical study we reported that women with caffeine intakes >300 mg/day had higher bone loss and women with vitamin D receptor (VDR) variant, tt were at a greater risk for this deleterious effect of caffeine. However, the mechanism of how caffeine effects bone metabolism is not clear. 1,25-Dihydroxy vitamin D3 (1,25(OH)2D3) plays a critical role in regulating bone metabolism. The receptor for 1,25(OH)2D3, VDR has been demonstrated in osteoblast cells and it belongs to the superfamily of nuclear hormone receptors. To understand the molecular mechanism of the role of caffeine in relation to bone, we tested the effect of caffeine on VDR expression and 1,25(OH)2D3 mediated actions in bone. We therefore examined the effect of different doses of caffeine (0.2, 0.5, 1.0 and 10 mM) on 1,25(OH)2D3 induced VDR protein expression in human osteoblast cells. We also tested the effect of different doses of caffeine on 1,25(OH)2D3 induced alkaline phosphatase (ALP) activity, a widely used marker of osteoblastic activity. Caffeine dose dependently decreased the 1,25(OH)2D3 induced VDR expression and at concentrations of 1 and 10 mM, VDR expression was decreased by about 50–70%, respectively. In addition, the 1,25(OH)2D3 induced alkaline phosphatase activity was also reduced at similar doses thus affecting the osteoblastic function. The basal ALP activity was not affected with increasing doses of caffeine. Overall, our results suggest that caffeine affects 1,25(OH)2D3 stimulated VDR protein expression and 1,25(OH)2D3 mediated actions in human osteoblast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号