首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using polarized UV fluorescent microscopy it has been shown that phallotoxins (phalloidin-sulfone, phalloidin-sulfoxide-B, phalloidin-sulfoxide-A and dithio-phalloidin) cause an increase in tryptophan fluorescence anisotropy of F-actin myofilaments in myosin-free ghost muscle fibres of rabbit. The results obtained are considered to be evidence of conformational changes in F-actin, induced by phallotoxins. These changes are irreversible to a significant extent, which points to a high degree of actin binding to both toxic and nontoxic phallotoxins.  相似文献   

2.
F-actin in a glycerinated muscle fiber was specifically labeled with fluorescent phalloidin-(fluorescein isothiocyanate) FITC complex at 1:1 molar ratio. Binding of phalloidin-FITC to F-actin affected neither contraction of the fiber nor its regulation by Ca2+. Comparison of polarized fluorescence from phalloidin-FITC bound to F-actin in the relaxed state, rigor, and during isometric contraction of the fiber revealed that the changes in polarization accompanying activation are quantitatively as well as qualitatively different from those accompanying transition of the fiber from the relaxed state to rigor. The extent of the changes of polarized fluorescence during isometric contraction increased with decreasing ionic strength, in parallel with increase in isometric tension. On the other hand, polarized fluorescence was not affected by addition of ADP or by stretching of the fiber in rigor solution. It is concluded from these observations that conformational changes in F-actin are involved in the process of active tension development.  相似文献   

3.
Y Ishii  S S Lehrer 《Biochemistry》1985,24(23):6631-6638
The fluorescence of pyrene-TM [rabbit skeletal tropomyosin (TM) labeled at Cys with N-(1-pyrenyl)maleimide] consists of monomer and excimer bands [Betcher-Lange, S., & Lehrer, S.S. (1978) J. Biol. Chem. 253, 3757-3760]; an increase in excimer fluorescence with temperature is due to a shift in equilibrium from a chain-closed state (N) to a chain-open state (X) associated with a helix pretransition [Graceffa, P., & Lehrer, S.S. (1980) J. Biol. Chem. 255, 11296-11300]. In this study, we show that the presence of appreciable excimer fluorescence at temperatures below the N----X pretransition (initial excimer) is due to perturbation of the TM chain-chain interaction by the pyrenes at Cys-190. Fluorescence and ATPase titrations indicated that the label caused a decrease in TM binding to F-actin primarily due to reduced end to end TM interactions on the actin filament. Under conditions where pyrene-TM was bound to F-actin, however, the excimer fluorescence did not increase with temperature, indicating that F-actin stabilizes tropomyosin by inhibiting the N----X transition. The binding of myosin subfragment 1 (S1) to pyrene-TM-F-actin at low ratios to actin caused time-dependent changes in fluorescence. After equilibrium was reached, the initial excimer fluorescence was markedly reduced and remained constant over the pretransition temperature range. Further stabilization of tropomyosin conformation on F-actin is therefore associated with S1 binding. Effects of the binding of S1 to the F-actin-tropomyosin thin filament on the state of tropomyosin were studied by monitoring the monomer fluorescence of pyrene-TM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Muscle fibres, free of myosin, troponin and tropomyosin, containing thin filaments reconstructed from G-actin and modified by fluorescent label 1,5-IAEDANS were used for polarized microfluorimetric studies of the effect of tropomyosin (TM) from smooth muscles, and of subfragment 1 (S1) from skeletal muscles on the structural state of F-actin. TM and S1 were shown to initiate different changes in polarized fluorescence of 1,5-IAEDANS of F-actin: TM increases, whereas S1 decreases fluorescent anisotropy. It was suggested that the structural state of F-actin may differ in the C-terminal of polypeptide chain of actin.  相似文献   

5.
The structural state of tropomyosin (TM) modified by 5-(iodoacetamidoethyl)-aminonaphthalene-1-sulfonate (1.5-IAEDANS) upon F-actin decoration with myosin subfragment 1 (S1) and heavy meromyosin (HMM) in glycerinated myosin- and troponin-free muscle fibers was studied. HMM preparations contained native phosphorylated myosin light chains, while S1 preparations did not. The changes in the polarized fluorescence of 1.5-IAEDANS-TM during the F-actin interaction with S1 were independent of light chains phosphorylation and Ca2+ concentration, but were dependent on these factors during the F-actin interaction with HMM. The binding of myosin heads to F-actin is supposed to initiate conformational changes in TM which are accompanied by changes in the flexibility and molecular arrangement of TM. In the presence of light chains, the structural changes in TM depend on light chains phosphorylation and Ca2+ concentration. The conformational changes in TM seem to be responsible for the mechanisms of coupling of the myosin and tropomyosin modulation system during the actin-myosin interaction in skeletal muscles.  相似文献   

6.
The nucleotide binding site in actin was occupied with the fluorescent analogue formycin A 5' triphosphate which acted as a fluorescent donor for the acceptor chromophore dansyl chloride attached to Tyr-69. The distance separating the two chromophores was calculated to be 2.1 nm from the fluorescence energy transfer measurements. Similar measurements were made of the distances separating dansyl chloride, acting as donor, on Tyr-69 from Co2+ occupying the metal binding site. A distance of 2.1 nm was similarly obtained.  相似文献   

7.
Conformational changes in pure and tropomyosin-containing F-actin during interaction with heavy meromyosin in the absence and presence of deoxy-ATP, were studied by measurements of the changes in fluorescence intensity of e-ADP2 incorporated into the F-actin instead of ADP. The actin filaments were found to be stabilized by tropomyosin and were more stable at pH 7 than at pH 8. The rigor binding of HMM to F-actin caused an increase in the fluorescence intensity. The increase with F-actin containing TM was higher than that with pure F-actin at each HMM concentration. A linear relation between the fluoresence change and moles of HMM per actin was found regardless of the presence of TM, with a maximum value of 0.5 moles of HMM per actin. In the presence of deoxy-ATP, (which is a substrate for acto-HMM but cannot bind to actin) no changes in fluorescence intensity of e-ADP bound to pure F-actin were observed. In the case of F-actin containing TM, the fluorescence intensity increased with increasing HMM concentration, although the light scattering intensity of the acto-HMM solutions indicated that almost all the HMM was dissociated from the F-actin. This suggests that the conformational change in F-actin-TM induced by the interaction with HMM in the presence of deoxy-ATP has a long lifetime which continues for some time even after the detachment of the HMM.  相似文献   

8.
G Marriott  K Zechel  T M Jovin 《Biochemistry》1988,27(17):6214-6220
Rabbit skeletal muscle F-actin has been selectively labeled at a cysteine residue with the environmentally sensitive fluorophore 6-acryloyl-2-(dimethylamino)naphthalene. The fluorescent actin conjugate behaves similarly to native actin with respect to the polymerization kinetics, critical monomer concentration, and ability to form F-actin paracrystals. Upon polymerization to F-actin, the absorption of the actin conjugate is red-shifted, whereas the fluorescence emission is blue-shifted 740 wavenumbers and is accompanied by a decrease in the fluorescence bandwidth of 470 wavenumbers. These large shifts in the spectral properties of 6-propionyl-2-(dimethylamino)naphthalene (Prodan) in actin provide a simple method for obtaining a spectral discrimination between the G- and F-actin populations during the polymerization reaction. Steady-state fluorescence techniques were used to study the environment of the fluorophore in the monomeric and polymeric forms of actin. Fluorescence emission spectral analysis and quenching and polarization studies of G-actin-Prodan indicated that the fluorophore lies immobile on the protein surface but with one of its faces in full contact with the solvent. In F-actin, the fluorophore has a limited exposure to the solvent and is located in a dielectric environment similar to those seen for Prodan in polar, aprotic solvents or buried within a protein matrix [Macgregor, R. B., Jr., & Weber, G. (1986) Nature (London) 318, 70-73]. Additionally, our results demonstrate that the Prodan molecule conjugated to F-actin is completely immobile during its fluorescence lifetime, exhibits an increase in the resonance energy transfer (RET) from tryptophan residues compared to that observed in G-actin, and shows evidence of homologous RET within the polymer.  相似文献   

9.
Methods for the determination of carbonyl compounds of biological origin by high-performance liquid chromatography were improved by the use of new fluorescent derivatizing agents. Eight fluorescent hydrazides were either synthesized or obtained commercially and compared to dansyl hydrazine (1-dimethylaminonaphthalene-5-sulfonylohydrazide). Four of the compounds yielded carbonyl hydrazones with a higher relative fluorescence quantum yield than dansyl hydrazine in acetonitrile:water mixtures. Darpsyl hydrazide [(3-phenylpyrazoline-1-yl)-4-phenylsulfonylohydrazide] and apmayl hydrazide [N-(2-aminophenyl-6-methylbenzthiazole)-acetylohydrazide] both yielded an increase of greater than 20-fold in sensitivity over dansyl hydrazine in determinations of abscisic acid and jasmonic acid from plant tissues. Different hydrazides and derivatizing conditions were found to be optimum for the determination of different carbonyl compounds. Also, a simple method for precolumn purification of the hydrazones of acidic carbonyls was developed to remove contaminants arising during derivatization and from the tissue source.  相似文献   

10.
F-actin has been specifically labeled with a fluorescent probe, dansyl aziridine, at cysteine-373 of the protein. The fluorescence property of the conjugated probe serves as a spectroscopic indicator of several processes in which actin participates. The sulfhydryl modification does not impair the G-F transformation of actin, nor does it affect the complex formation of actin and myosin or the dissociation of the complex by ATP as judged by viscosity measurements. However, both labeled actin and actin modified by N-ethylmaleimide, which also reacts at cysteine-373, stimulate the Mg2+-ATPase of myosin only about 75% as well as unmodified actin. The probe attached to actin exhibits a 65-nm blue shift of its emission maximum from 560 to 495 nm and a sixfold fluorescence enhancement indicating that it is located in a hydrophobic environment. The excitation spectrum of labeled actin indicates that a tryptophan and a tyrosine residue are close to the probe and transfer excitation energy to the dansyl fluorophore. Upon depolymerization of F-actin, the fluorescence intensity of labeled actin increases about 20%. The fluorescence of labeled actin is also enhanced by the addition of EDTA, ATP, and pyrophosphate, but Mg2+ antagonizes this effect reversibly. However, in the presence of 10 mm orthophosphate buffer (pH 7.4) these effects disappear. When labeled F-actin binds with myosin subfragment-1 (SF-1) or heavy meromyosin (HMM), the fluorescence of the actin adduct is enhanced. The fluorescence properties of labeled acto-SF-1 and acto-HMM become insensitive to EDTA and polyphosphates even in the absence of orthophosphate. These results suggest that the two-stranded helical structure of the F-actin filament is stabilized by the presence of phosphate and/or the binding of the myosin “head”.  相似文献   

11.
We report an enzymatic end-point modification and immobilization of recombinant human thrombomodulin (TM), a cofactor for activation of anticoagulant protein C pathway via thrombin. First, a truncated TM mutant consisting of epidermal growth factor-like domains 4-6 (TM(456)) with a conserved pentapeptide LPETG motif at its C-terminal was expressed and purified in E. coli. Next, the truncated TM(456) derivative was site-specifically modified with N-terminal diglycine containing molecules such as biotin and the fluorescent probe dansyl via sortase A (SrtA) mediated ligation (SML). The successful ligations were confirmed by SDS-PAGE and fluorescence imaging. Finally, the truncated TM(456) was immobilized onto an N-terminal diglycine-functionalized glass slide surface via SML directly. Alternatively, the truncated TM(456) was biotinylated via SML and then immobilized onto a streptavidin-functionalized glass slide surface indirectly. The successful immobilizations were confirmed by fluorescence imaging. The bioactivity of the immobilized truncated TM(456) was further confirmed by protein C activation assay, in which enhanced activation of protein C by immobilized recombinant TM was observed. The sortase A-catalyzed surface ligation took place under mild conditions and occurs rapidly in a single step without prior chemical modification of the target protein. This site-specific covalent modification leads to molecules being arranged in a definitively ordered fashion and facilitating the preservation of the protein's biological activity.  相似文献   

12.
R Takashi 《Biochemistry》1988,27(3):938-943
By peptide isolation and analysis, it has been shown that the dansyl fluorophore of dansylcadaverine [N-(5-aminopentyl)-5-(dimethylamino)naphthalene-1-sulfonamide] transfers to Gln-41 of actin from rabbit skeletal muscle when the reaction is catalyzed by guinea pig liver transglutaminase. As a function of time, the degree of labeling asymptotically approaches 1 mol of dansyl/l mol of actin. About 80-85% of the attached dansyl fluorophore was found at Gln-41. Such labeled G-actin polymerizes to the same extent as control actin, but the polymerization rate is greater and the critical concentration is less than for control actin. Complete polymerization is accompanied by a 1.5-2.0-fold increase in the emission intensity of the attached fluorophore. Labeled F-actin thus obtained activates myosin subfragment 1 (S-1) Mg2+-ATPase activity with the same Kapp, and to the same Vmax, as control actin; moreover, when such labeled F-actin is cross-linked to S-1 by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide, the resulting superactivation of Mg2+-ATPase is the same as that attained with control actin. The attributes of this label thus make it an ideal reporter of events in the N-terminal 10-kilodalton region of actin, and a new topological point for proximity mapping.  相似文献   

13.
Chemotactic peptide-induced changes in neutrophil actin conformation   总被引:27,自引:16,他引:11       下载免费PDF全文
The effect of the chemotatic peptide, N- formylmethionylleucylphenylalanine (FMLP), on actin conformation in human neutrophils (PMN) was studied by flow cytometry using fluorescent 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin to quantitate cellular F-actin content. Uptake of NBD-phallacidin by fixed PMN was saturable and inhibited by fluid phase F-actin but not G-actin. Stimulation of PMN by greater than 1 nM FMLP resulted in a dose-dependent and reversible increase in F-actin in 70-95% of PMN by 30 s. The induced increase in F-actin was blocked by 30 microM cytochalasin B or by a t- BOC peptide that competitively inhibits FMLP binding. Under fluorescence microscopy, NBD-phallacidin stained, unstimulated PMN had faint homogeneous cytoplasmic fluorescence while cells exposed to FMLP for 30 s prior to NBD-phallacidin staining had accentuated subcortical fluorescence. In the continued presence of an initial stimulatory dose of FMLP, PMN could respond with increased F-actin content to the addition of an increased concentration of FMLP. Thus, FMLP binding to PMN induces a rapid transient conversion of unpolymerized actin to subcortical F-actin and repetitive stimulation of F-actin formation can be induced by increasing chemoattractant concentration. The directed movement of PMN in response to chemoattractant gradients may require similar rapid reversible changes in actin conformation.  相似文献   

14.
The actin cytoskeleton is locally regulated for functional specializations for cell motility. Using quantitative fluorescent speckle microscopy (qFSM) of migrating epithelial cells, we previously defined two distinct F-actin networks based on their F-actin-binding proteins and distinct patterns of F-actin turnover and movement. The lamellipodium consists of a treadmilling F-actin array with rapid polymerization-dependent retrograde flow and contains high concentrations of Arp2/3 and ADF/cofilin, whereas the lamella exhibits spatially random punctae of F-actin assembly and disassembly with slow myosin-mediated retrograde flow and contains myosin II and tropomyosin (TM). In this paper, we microinjected skeletal muscle alphaTM into epithelial cells, and using qFSM, electron microscopy, and immunolocalization show that this inhibits functional lamellipodium formation. Cells with inhibited lamellipodia exhibit persistent leading edge protrusion and rapid cell migration. Inhibition of endogenous long TM isoforms alters protrusion persistence. Thus, cells can migrate with inhibited lamellipodia, and we suggest that TM is a major regulator of F-actin functional specialization in migrating cells.  相似文献   

15.
Structural effects of yeast cofilin on skeletal muscle and yeast actin were examined in solution. Cofilin binding to native actin was non-cooperative and saturated at a 1:1 molar ratio, with K(d)相似文献   

16.
Sulfate transport across the red cell membrane is enhanced by the newly synthesised, water-soluble and nonpenetrating dansyl chloride derivative 2-(N-piperidine)ethylamine-1-naphthyl-5-sulfonylchloride (PENS-Cl). The transport is only enhanced if the potentiating agent 2-(4-aminophenyl-3-sulfonic acid)-6-methylbenzothiazol-7-sulfonic acid (APMB) is present during incubation with PENS-Cl. The enhanced flux is reduced by the anion-transport inhibitor 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate (H2DIDS) to about the same low level as in untreated controls. In contrast to dansyl chloride, PENS-Cl does not increase cation leakage from the red cells. The effects of PENS-Cl on sulfate transport resemble those produced by dansyl chloride. However, it can be shown that PENS-Cl only reacts with one subset of sites that are modified by dansyl chloride and involved in bringing about the enhancement of sulfate transport. This subset does not include the sites accessible to dansyl chloride in the absence of APMB. It comprises only a fraction of the sites exposed to dansyl chloride in the presence of APMB. Very little labelling of proteins of the red cell membrane can be seen after exposure of ghosts to the PENS-Cl, while dansyl chloride labels all major proteins.  相似文献   

17.
Sulfate transport across the red cell membrane is enhanced by the newly synthesised, water-soluble and nonpenetrating dansyl chloride derivative 2-(N-piperidine)ethylamine-1-napththyl-5-sulfonylchloride (PENS-Cl). The transport is only enhanced if the potentiating agent 2-(4-aminophenyl-3-sulfonic acid)-6-methylbenzothiazol-7-sulfonic acid (APMB)is present during incubation with PENS-Cl. The enhanced flux is reduced by the anion-transport inhibitor 4,4′-diisothiocyanatodihydrostilbene-2,2′-disulfonate (H2 DIDS) to about the same low level as in untreated controls. In contrast to dansyl chloride, PENS-Cl does not increase cation leakage from the red cells. The effects of PENS-Cl on sulfate transport resemble those produced by dansyl chloride. However, it can be shown that PENS-Cl only reacts with one subset of sites that are modified by dansyl chloride and involved in bringing about the enhancement of sulfate transport. This subset does not include the sites accessible to dansyl chloride in the absence of APMB. It comprises only a fraction of the sites exposed to dansyl chloride in the presence of APMB. Very little labelling of proteins of the red cell membrane can be seen after exposure of ghosts to the PENS-Cl, while dansyl chloride labels all major proteins.  相似文献   

18.
New fluorescent rotor molecules having hydrophilic functional groups, which are derivatives of p-(N,N-dialkylamino)benzylidenemalononitrile, were synthesized. Their properties as fluorescent rotors were confirmed by an observation of solvent viscosity-dependent fluorescence. Incorporation of hydrophilic groups into the molecules increased the solubility of fluorescent rotors in aqueous media; the application of the compounds to biochemical systems became feasible as a consequence. To demonstrate this applicability, we attempted to monitor the G-F transformation of rabbit skeletal muscle actin with these newly synthesized compounds. All the compounds carrying a malononitrile moiety showed greater fluorescence in F-actin. Among them, 1-(2-hydroxyethyl)-6-[(2,2-dicyano)vinyl]-2,3,4-trihydroquinoli ne gave the best result by the criteria of the difference in fluorescence quantum yield for G- and F-actin, solubility, and stability of the compound. The method has the major advantage of not requiring covalent modification of actin.  相似文献   

19.
This study investigated the effect of peroxynitrite (OONO(-))-induced nitrosylation of filamentous (F)-actin on myogenic tone in isolated and pressurized posterior cerebral arteries (PCAs). Immunohistochemical staining was used to determine 3-nitrotyrosine (NT) and F-actin content in vascular smooth muscle after exposure to 10(-7) M or 10(-4) M OONO(-) for 5 or 60 min in isolated third-order PCAs (n = 37) from male Wistar rats pressurized to 75 mmHg in an arteriograph chamber, quantified with confocal microscopy. Additionally, the role of K(+) channels in OONO(-)-induced dilation was investigated with 3 microM glibenclamide or 10 mM tetraethylammonium chloride before OONO(-) exposure. OONO(-) (10(-4) M) induced a 40% dilation of tone (P < 0.05) while diminishing F-actin content by half (P < 0.05) and causing a 60-fold increase in NT (P < 0.05) in the vascular smooth muscle of PCAs. Additionally, F-actin was inversely correlated with both diameter and NT content (P < 0.05) and was significantly colocalized in the vascular smooth muscle with NT (overlap coefficient = 0.8). The dilation to ONOO(-) was independent of K(+) channel activity and thiol oxidation as glibenclamide, tetraethylammonium chloride, and dithiothreitol had no effect on OONO(-)-induced dilation or F-actin or NT content in PCAs. Because NT was colocalized with F-actin, we hypothesize that OONO(-) induces nitrosylation of F-actin in vascular smooth muscle leading to depolymerization and the subsequent loss of myogenic tone, which may promote vascular damage during oxidative stress such as in ischemia and reperfusion injury.  相似文献   

20.
When chromosomes containing both BrdU-substituted and unsubstituted regions were treated with hot NaH2PO4 at high or low pH and then stained with dansyl chloride, brightly fluorescent nucleolar organizer regions (NORs) and core-like structures were apparent in the chromosomes. These structures closely parallel the appearance of the same structures in silver-stained chromosomes. Since dansyl chloride is a protein-specific fluorochrome, the distribution of fluorescence suggests that the NORs and central zone of each chromatid contain higher concentrations of protein relative to other chromosome regions. The fluorescent core structures are interpreted to be artefacts of the NaH2PO4 pretreatment induced by changes in the concentration of chromatin (including protein) between the chromatin-dense center and more dispersed peripheral region of each chromatid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号