首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ad2++ HEY and Ad2++ LEY are two adenovirus 2(Ad2)-simian virus 40 (SV40) hybrids distinguished by differences in the efficiency with which they produce SV40 progeny in lytically infected African green monkey kidney cells. These virus populations are composed of nonhybrid Ad2 and hybrid virions, the majority of which contain more than 1 unit of SV40 DNA. The Ad2++ HEY and LEY populations also differ in their ability to induce SV40 transplantation immunity in rodents. Only Ad2++ HEY induces SV40 transplantation immunity in hamsters, whereas both viruses induce significant SV40 transplantation immunity in adult BALB/c mice.  相似文献   

2.
The Ad2++hey hybrid virus population produces simian virus 40 (SV40) efficiently during lytic infection, whereas Ad2++ley does not, although both hybrids contain a complete SV40 genome. In this report, we demonstrate the synthesis of nonhydrid SV40 DNA in Ad2++HEY-infected Vero cells, but only early SV40 RNA is transcribed efficiently in Ad2++LEY-infected cells. Ad2++HEY induces SV40 U, T, and V antigens during lytic infection of African green monkey kidney cells, whereas Ad2++LEY induces only SV40 U and T antigens. These variations in the behavior of Ad2++HEY and Ad2++LEY regarding expression of SV40 functions probably reflect differences in the rate of SV40 excision from the hybrid genomes.  相似文献   

3.
Two defective adenovirus-simian virus 40 hybrids which contain the entire SV40 genome (Ad2++HEY and Ad2++LEY)2 have been isolated. Upon infection of cells permissive for SV40 both hybrids give rise to infectious SV40 virions, but with markedly different efficiencies. In the case of Ad2++HEY nearly all cells infected with a hybrid particle yield SV40 progeny, whereas in the case of Ad2++LEY infectious SV40 is produced in only about one in 104 cells infected with hybrid particles. The structures of the DNA molecules in the Ad2++HEY and Ad2++LEY populations were examined using electron microscope heteroduplex methods. Both populations were found to be heterogeneous. Ad2++HEY contained three hybrids (HEY-I, HEY-II, and HEY-III) whose genomes differed only in their content of SV40 DNA (0.45 ± 0.02, 1.43 ± 0.04, and 2.39 ± 0.09 SV40 genomes, respectively). Ad2++LEY contained two hybrids (LEY-I and LEY-II), which also differed only in their content of SV40 DNA (0.03 ± 0.01 and 1.05 ± 0.01 SV40 genomes, respectively). In those hybrids which contained more than one complete SV40 genome (HEY-II, HEY-III, LEY-II) the excess SV40 DNA was shown to be organized as a tandem repetition. These data suggest that the various hybrid genomes within each population are interconvertible by recombination events, which insert or excise an SV40 genome. It is proposed that HEY-II and HEY-III yield infectious SV40 with higher efficiency than LEY-II because their SV40 DNA segments contain longer tandem repetitions; thus, the probability of an intramolecular recombination event which results in excision of an SV40 genome is greater.  相似文献   

4.
Palindromic adenovirus type 5-simian virus 40 hybrid.   总被引:6,自引:1,他引:5  
A family of novel adenovirus type 5-simian virus 40 (Ad5-SV40) recombinants (Ad5++D1) whose genomes consist of symmetrically inverted structures was isolated. Particles of Ad5++D1 could contain one of several recombinant genomes that differed incrementally from one another by a full-length copy of linear SV40 DNA. The members of the Ad5++D1 family appeared to be in genetic equilibrium with one another. In all probability this equilibrium was maintained by homologous recombination, resulting in the loss or gain of one or two unit length copies of the SV40 genome. The genome of the most abundant recombinant from consisted of a giant inverted repeat which was some 35,000 nucleotide pairs in length. Beginning from one end, the recombinant genome consisted of 3,534 nucleotides derived from the left end of the adenovirus type 5 genome; these nucleotides were joined to 2.7 copies of SV40 DNA arranged as head-to-tail tandems. This entire structure was then repeated in the opposite orientation, thereby forming a large inverted repeat whose structure was Ad5-SV40-SV40-04VS-04VS-5dA. The population of hybrid genomes was stable and was maintained through serial rounds of infection.  相似文献   

5.
The Ad2+ND4 virus is an adenovirus type 2 (Ad2)-simian virus 40 (SV40) recombination. The Ad2 genome of this recombinant has a rearrangement within early region 3; Ad2 DNA sequences between map positions 81.3 and 85.5 have been deleted, and the SV40 DNA sequences between map positions 0.11 and 0.626 have been inserted into the deletion in an 81.3-0.626 orientation. Nonhybrid Ad2 is defective in monkey cells; however, the Ad2+ND4 virus can replicate in monkey cells due to the expression of the SV40-enhancing function encoded by the DNA insert. Stocks of the Ad2+ND4 hybrid were produced in primary monkey cells by using the progeny of a three-step plaque purification procedure and were considered to be homogeneous populations of Ad2+ND4 virions because they induced plaques in primary monkey cells by first-order kinetics. By studying the kinetics of plaque induction in continuous lines (BSC-1 and CV-1) of monkey cells, we have found that stocks (prepared with virions before and after plaque purification) of Ad2+ND4 are actually heterogeneous populations of Ad2+ND4 virions and Ad2+ND4 deletion variants that lack SV40 and frequently Ad2 DNA sequences at the left Ad2-SV40 junction. Due to the defectiveness of the Ad2+ND4 virus, the production of progeny in BSC-1 and CV-1 cells requires complementation between the Ad2+ND4 genome and the genome of an Ad2+ND4 deletion variant. Since the deletion variants that have been obtained from Ad2+ND4 stocks do not express the SV40-enhancing function in that they cannot produce progeny in monkey cells, we conclude that they are providing an Ad2 component that is essential for the production of Ad2+ND4 progeny. These data imply that the Ad2+ND4 virus is incapable of replicating in singly infected primary monkey cells without generating deletion variants that are missing various amounts of DNA around the left Ad2-SV40 junction in the hybrid genome. As the deletion variants that arise from the Ad2+ND4 virus are created by nonhomologous DNA recombination, the generation of deletion variants in monkey cells infected with Ad2+ND4 may be a useful model for studying this process.  相似文献   

6.
The deoxyribonucleic acid (DNA) from the adenovirus-encapsidated particles of the adenovirus type 2 (Ad2)-simian virus 40 (SV40) hybrid population plaque variant (Ad2(++) HEY), known to yield SV40 virus with high efficiency, was studied by equilibrium density centrifugation followed by ribonucleic acid-DNA hybridization employing virus-specific complementary ribonucleic acids synthesized in vitro. These techniques establish linkage between the Ad2 and SV40 components in the adenovirus-encapsidated particles of this population. The linkage is alkali-resistant and presumably covalent; thus, the Ad2 DNA and SV40 DNA are present in a hybrid molecule. Velocity centrifugation studies in alkaline sucrose gradients eliminated the possibility that supercoiled circular SV40 DNA is present in the adenovirus capsids. The DNA obtained from the adenovirus-encapsidated particles of the Ad2(++) HEY population appears to consist of nonhybrid Ad2 DNA and Ad2-SV40 hybrid DNA molecules.  相似文献   

7.
A nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2(+)ND(1), has been plaque-isolated from an Ad2-SV40 hybrid population. This virus, unlike the defective Ad-SV40 hybrid populations previously described, replicates without the aid of nonhybrid adenovirus helper. Consequently, the hybrid virus deoxyribonucleic acid (DNA) can be obtained free of nonhybrid adenovirus DNA. The DNA of the Ad2(+)ND(1) virus was shown by ribonucleic acid (RNA)-DNA hybridization to consist of nucleotide sequences complementary to Ad2- and SV40-specific RNA. Techniques of equilibrium density and rate zonal centrifugation were employed to demonstrate that these Ad2 and SV40 nucleotide sequences were linked together in the same DNA molecules by alkali-resistant bonds. Calibration curves were established relating the amount of tritium-labeled SV40-specific RNA (prepared in vitro or in vivo) bound to given amounts of SV40 DNA in a hybridization reaction, and these curves were employed to determine the equivalent amount of SV40 DNA in the Ad2(+)ND(1) molecule. From the results obtained, it was estimated that 1% of the Ad2(+)ND(1) DNA consists of SV40 nucleotide sequences.  相似文献   

8.
Five nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses have been isolated and found to contain segments of SV40 DNA covalently linked to Ad2 DNA. The quantity of SV40 DNA present is a stable characteristic of each hybrid virus, and varies from less than 5% (in Ad2(+)ND(3)) to more than 30% (in Ad2(+)ND(4)) of the SV40 genome. We have characterized the SV40 portions of these hybrids by relating the SV40-specific RNA sequences transcribed in cells infected with each hybrid virus to those transcribed in cells infected with each of the other hybrid viruses and with SV40 itself. RNA-DNA hybridization-competition experiments indicate that the number of unique SV40 RNA sequences transcribed in infected cells is proportional to the size of the SV40 DNA segment contained within each hybrid and, in the case of the three hybrids which induce detectable SV40-specific antigens, to the number of SV40 antigens induced. Furthermore, the SV40-specific RNA sequences transcribed from any one of the hybrids are completely represented in the RNA transcribed from all other hybrids with longer SV40 segments. Thus, the SV40 DNA regions in the five hybrid viruses appear to contain some nucleotide sequences in common. The SV40-specific RNA transcribed from Ad2(+)ND(4), the hybrid containing the largest SV40 segment, is qualitatively similar to the SV40-specific RNA transcribed early (i.e., prior to viral DNA replication) in SV40 lytic infection. Thus, it appears that no significant amount of late SV40 DNA is transcribed during infection by any of the five nondefective Ad2-SV40 hybrid viruses.  相似文献   

9.
Restriction endonuclease mapping of an adenovirus-simian virus 40 hybrid virus and adenovirus-2 DNA allowed the characterization of fragments of Ad2+ND12 which contain the two junctions between simian virus (SV40) sequences and adenovirus-2 sequences. The corresponding fragments of Ad2++ DNA were also characterized. One fragment of Ad2+ND1 containing a recombination site, and the corresponding fragment of Ad2++ were analyzed by direct DNA sequence analysis. Comparison of nucleotide sequences in Ad2++, Ad2+ ND1, and SV40 DNAs precisely localized those sequences involved in the final recombination event which produced the stable hybrid virus Ad2+ND1. No sequence homology was detected between the two parent DNAs.  相似文献   

10.
11.
12.
13.
Human adenoviruses fail to multiply effectively in monkey cells. The block to the replication of these viruses can be overcome by coinfection with simian virus 40 (SV40) or when part of the SV40 genome is integrated into and expressed as part of the adenovirus type 2 (Ad2) genome, as occurs in several Ad2+SV40 hybrid viruses, such as Ad2+ND1, Ad2+ND2, and Ad2+ND4. The SV40 helper-defective Ad2+SV40 hybrid viruses Ad2+ND5 and Ad2+ND4del were analyzed to determine why they are unable to grow efficiently in monkey cells even though they contain the appropriate SV40 genetic information. Characterization of the Ad2+ND5-SV40-specific 42,000-molecular-weight (42K) protein revealed that this protein is closely related, but not identical, to the SV40-specific 42K protein of the SV40 helper-competent Ad2+ND2 hybrid virus. Although the minor differences between these proteins may be sufficient to account for the poor growth of Ad2+ND5 in monkey cells, the most striking difference between helper-competent Ad2+ND2 and helper-defective Ad2+ND5 is in the production of the SV40-specific protein after infection of monkey cells. Whereas synthesis of the SV40-specific proteins of Ad2+ND2 is very similar in human and in monkey cells, production of the 42K protein of Ad2+ND5 is dramatically reduced in monkey cells compared with human cells. Similarly, the synthesis of the SV40-specific proteins of Ad2+ND4del is markedly reduced in monkey cells. Thus, it is likely that both Ad2+ND5 and Ad2+ND4del are helper defective because of a block in the production of their SV40-specific proteins rather than because their SV40-specific proteins are nonfunctional. This block, like the block to adenovirus fiber synthesis, is overcome by coinfection with SV40, with helper-competent hybrid viruses, or with host range mutants of adenoviruses. This suggests that the synthesis of fiber and the synthesis of SV40-specific proteins are similarly regulated in Ad2+SV40 hybrid viruses.  相似文献   

14.
Adenovirus type 2 (Ad2) grows 1,000 times less well in monkey cells than in human cells. This defect can be overcome, not only upon co-infection of cells with simian virus 40 (SV40), but also when the relevant part of the SV40 genome is integrated into the adenovirus genome to form an adenovirus-SV40 hybrid virus. We have used the nondefective Ad2-SV40 hybrid virus Ad2+ND1, which contains an insertion of 17% of the SV40 genome, to isolate host-range mutants which are defective in growth on monkey cells although they grow normally on human cells. Like Ad2, these mutants are defective in the synthesis of late proteins in monkey cells. A 30,000-molecular-weight protein (30K), unique to Ad2+ND1-infected cells, can be synthesized in vitro, using Ad2+ND1 mRNA that contains SV40 sequences. 30K is not seen in cells infected with those host-range mutants that are most defective in growth on monkey cells, and translation in vitro of SV40-specific mRNA from these cells produces new unique polypeptides, instead of 30K. Genetic and biochemical analyses indicate that these mutants carry point mutations rather than deletions.  相似文献   

15.
Mapping of Simian Virus 40 Early Functions on the Viral Chromosome   总被引:40,自引:35,他引:5       下载免费PDF全文
The simian virus 40 (SV40) DNA segment in the nondefective adenovirus 2-SV40 hybrid, Ad2(+)ND(4), is colinear with the segment between 0.11 and 0.59 SV40 fractional length from the site at which the R(1) restriction endonuclease cleaves SV40 DNA. This specifies the region of the SV40 DNA molecule which induces the early SV40 antigens: U antigen, tumor specific transplantation antigen, and T antigen. A variant of Ad2(+)ND(4), called Ad2(+)ND(4del), was found which has a deletion of the DNA segment between 0.50 and 0.57 SV40 fractional length from the R(1) endonuclease cleavage point.  相似文献   

16.
The genomes of the two nondefective adenovirus 2/simian virus 40 (Ad2/SV 40) hybrid viruses, nondefective Ad2/SV 40 hybrid virus 1 (Ad2+ND1) and nondefective hybrid virus 3 (Ad2+ND3), WERE FORMED BY A DELETION OF ABOUT 5% OF Ad2 DNA and insertion of part of the SV40 genome. We have compared the cytoplasmic RNA synthesized during both the early and late stages of lytic infection of human cells by these hybrid viruses to that expressed in Ad2-infected and SV40-infected cells. Separated strands of the six fragments of 32P-labeled Ad2 DNA produced by cleavage with the restriction endonuclease EcoRI (isolated from Escherichia coli) and the four fragments of 32P-labeled SV40 DNA produced by cleavage with both a restriction nuclease isolated from Haemophilus parainfluenzae, Hpa1, and EcoRI were prepared by electrophoresis of denatured DNA in agarose gels. The fraction of each fragment strand expressed as cytoplasmic RNA was determined by annealing fragmented 32P-labeled strands to an excess of cellular RNA extracted from infected cells. The segment of Ad2 DNA deleted from both hybrid virus genomes is transcribed into cytoplasmic mRNA during the early phase of Ad2 infection. Hence, we suggest that Ad2 codes for at least one "early" gene product which is nonessential for virus growth in cell culture. In both early Ad2+ND1 and Ad2+ND3-infected cells, 1,000 bases of Ad2 DNA adjacent to the integrated SV40 sequences are expressed as cytoplasmic RNA but are not similarly expressed in early Ad2-infected cells. The 3' termini of this early hybrid virus RNA maps in the vicinity of 0.18 on the conventional SV40 map and probably terminates at the same position as early lytic SV40 cytoplasmic RNA. Therefore, the base sequence in this region of SV40 DNA specifies the 3' termini of early messenger RNA present in both hybrid virus and SV40-infected cells.  相似文献   

17.
The nondefective adenovirus type 2 (Ad2)-simian virus 40 (SV40) hybrid viruses, Ad2+ND2 and Ad2+ND4, have been used to determine which regions of the SV40 genome coding for the large tumor (T) antigen are involved in specific and nonspecific DNA binding. Ad2+ND2 encodes 45,000 M4 (45K) and 56,000 Mr (56K) T antigen-related polypeptides. The 45K polypeptide did not bind to DNA, but the 56K polypeptide bound nonspecifically to calf thymus DNA, Ad2+ND4 encodes 50,000 Mr (60K), 66,000 Mr (66K), 70,000 Mr (70K), 74,000 Mr (74K), and 90,000 Mr (90K) T antigen-related polypeptides, all of which bound nonspecifically to calf thymus DNA. However, in more stringent assays, where tight binding to viral origin sequences was tested, only the 90K protein specified by Ad2A+ND4 showed specific high affinity for sequences at the viral origin of replication. From these results and previously published experiments describing the SV40 DNA integrated into these hybrid viruses, it was concluded that SV40 early gene sequences located between 0.39 and 0.44 SV40 map units contribute to nonspecific DNA binding, whereas sequences located between 0.50 and 0.63 SV40 map units are necessary for specific binding to the viral origin of replication.  相似文献   

18.
The binding site on SV40 DNA for a T antigen-related protein.   总被引:191,自引:0,他引:191  
R Tjian 《Cell》1978,13(1):165-179
A protein closely related to SV40 T antigen was purified in a biologically active form from cells infected with the defective adenovirus-SV40 hybrid, Ad2+D2. This 107,000 dalton hybrid protein binds and protects a specific portion of SV40 DNA from digestion by pancreatic DNAase I. Hybridization, endonuclease cleavage and pyrimidine tract analysis of the protected fragments reveal that the D2 hybrid protein binds in a sequential manner to tandem recognition sites which lie within a sequence of 120 nucleotides at position 67 near the origin of SV40 replication.  相似文献   

19.
Certain biophysical characteristics of the DNA from each of the five nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses (Ad2(+)ND(1), Ad2(+)ND(2), Ad2(+)ND(3), Ad2(+)ND(4), Ad2(+)ND(5)) have been determined. The guanine plus cytosine content varied from 55 to 57% and was not significantly different from that of nonhybrid Ad2 (56%), and the hybrid DNA molecules had mean molecular lengths which were similar to that of the standard, Ad2. The Ad2 and SV40 components of each hybrid were linked by alkali-resistant, presumably covalent bonds. The percentage of SV40 DNA in each hybrid virus was determined by hybridization with SV40 complementary RNA in a calibrated system. The results indicate that each hybrid virus DNA contains a different percentage of SV40 nucleotide sequences. The estimated size of the SV40 DNA component varies from 48,000 daltons for Ad2(+)ND(3) to 840,000 daltons for Ad2(+)ND(4), the latter being equivalent to between one-fourth and one-third of the SV40 genome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号