首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ravi Manjithaya 《FEBS letters》2010,584(7):1367-1373
Pexophagy is a selective autophagy process wherein damaged and/or superfluous peroxisomes undergo vacuolar degradation. In methylotropic yeasts, where pexophagy has been studied most extensively, this process occurs by either micro- or macropexophagy: processes analogous to micro- and macroautophagy. Recent studies have identified specific factors and illustrated mechanisms involved in pexophagy. Although mechanistically pexophagy relies heavily on the core autophagic machinery, the latest findings about the role of auxiliary pexophagy factors have highlighted specialized membrane structures required for micropexophagy, and shown how cargo selectivity is achieved and how cargo size dictates the requirement for these factors during pexophagy. These insights and additional observations in the literature provide a framework for an understanding of the physiological role(s) of pexophagy.  相似文献   

2.
Autophagy is a process of recycling of the intracellular constituents using vacuoles (lysosomes). General autophagy occurs due to involvement of highly conservative components found in all eukaryotes, from yeasts to higher plants and humans. Autophagy also could be a selective process and be involved in regulation of the cellular number of organelles, including that of peroxisomes. The process of specific autophagic peroxisome degradation is known as pexophagy. Yeasts appear to be convenient model for studying molecular mechanisms of pexophagy, and most known ATG genes (from the term AuTophaGy) were identified in yeast studies. This review examines characteristics of general autophagy, other types of autophagy as well as pexophagy, in particular, functions of Atg proteins in general autophagy and in macro- and micropexophagy. Special attention is given to mechanisms of phagophore assembly, the role of phosphatidylinositol-3-phosphate in pexophagy, the role of peroxines (proteins involved in peroxisome biogenesis) in pexophagy, as well as properties of Atg proteins specifically involved in micropexophagy.  相似文献   

3.
Atg26-mediated pexophagy and fungal phytopathogenicity   总被引:1,自引:0,他引:1  
《Autophagy》2013,9(7):1041-1042
Colletotrichum orbiculare is a plant pathogenic fungus that causes disease on cucumber plants. A homologue of ATG26 (CoATG26) was identified as the gene involved in pathogenesis. The peroxisomes are degraded via pexophagy during formation of an infection structure called the appressorium of C. orbiculare. The Coatg26 mutant developed appressoria but exhibited a specific defect in the subsequent host invasion step. Importantly, the autophagic degradation of peroxisomes was significantly delayed in the appressoria of the Coatg26 mutant. Domain and localization analysis of CoAtg26 also demonstrated a strong correlation of functional pexophagy with pathogenicity. Furthermore, in contrast to the Coatg26 mutant, the Coatg8 mutant, defective in the entire autophagic pathway, could not form normal appressoria in the earlier steps of morphogenesis. These results indicate that CoAtg26-mediated pexophagy plays critical roles in host plant invasion.  相似文献   

4.
5.
肿瘤发生发展的分子机理(4)   总被引:1,自引:0,他引:1  
细胞由静息状态进入到细胞增殖期并不断进展是受到十分精确调控的,一旦细胞进入到G1后期这个“限制点”,将不可逆转地进入到S期,进行DNA复制。细胞周期蛋白、细胞周期蛋白依赖激酶(cyclindependent kinases,CDKs)和Rb蛋白都是调节细胞通过“限制点”的重要成分。这些蛋白可以通过控制细胞  相似文献   

6.
Das M  Das DK 《IUBMB life》2008,60(4):199-203
During the last 20 years, since the appearance of the first publication on ischemic preconditioning (PC), our knowledge of this phenomenon has increased exponentially. PC is defined as an increased tolerance to ischemia and reperfusion induced by previous sublethal period ischemia. This is the most powerful mechanism known to date for limiting the infract size. This adaptation occurs in a biphasic pattern (i) early preconditioning (lasts for 2-3 h) and (ii) late preconditioning (starting at 24 h lasting until 72-96 h after initial ischemia). Early preconditioning is more potent than delayed preconditioning in reducing infract size. Late preconditioning attenuates myocardial stunning and requires genomic activation with de novo protein synthesis. Early preconditioning depends on adenosine, opioids and to a lesser degree, on bradykinin and prostaglandins, released during ischemia. These molecules activate G-protein-coupled receptor, initiate activation of K(ATP) channel and generate oxygen-free radicals, and stimulate a series of protein kinases, which include protein kinase C, tyrosine kinase, and members of MAP kinase family. Late preconditioning is triggered by a similar sequence of events, but in addition essentially depends on newly synthesized proteins, which comprise iNOS, COX-2, manganese superoxide dismutase, and possibly heat shock proteins. The final mechanism of PC is still not very clear. The present review focuses on the possible role signaling molecules that regulate cardiomyocyte life and death during ischemia and reperfusion.  相似文献   

7.
8.
过氧化物酶体吞噬是生物体的一种重要自我调控方式。过氧化物酶体吞噬是多种吞噬相关蛋白的共同作用,而且吞噬相关蛋白质之间的作用具有严格的时序性。由于毕赤酵母有两种吞噬方式、全基因组序列已知、基因操作技术成熟,所以毕赤酵母是研究过氧化物酶体吞噬的良好素材,也是目前研究的热点。本文对近年来毕赤酵母过氧化物酶体吞噬的启动、两种吞噬类型的形成、过氧化物酶体在液泡中降解的研究进行梳理,为毕赤酵母过氧化物酶体吞噬的进一步研究奠定基础。  相似文献   

9.
10.
神经元发育过程中轴突和树突的分化和形成是神经元极化建立的标志,也是建立神经信号转导的基础.近年来,神经元极化的分子机制有了重大突破,发现神经元细胞骨架微丝和微管的结构和功能的改变最终调节着极化的建立.其中,细胞内信号转导途径以及一些激酶参与了调节细胞骨架微丝和微管的结构和功能,最终使神经元极化建立.  相似文献   

11.
12.
13.
14.
15.
Molecular mechanism of alpha-tocopherol action   总被引:1,自引:0,他引:1  
  相似文献   

16.
王蔚  章晓波 《生命科学》2010,(11):1102-1106
白斑综合征病毒(white spot syndrome virus,WSSV)是危害对虾的主要病原,给全球水产养殖业带来了巨大经济损失,但至今仍未发现有效的防治方法。过去10年来,国内外学者在WSSV侵染和对虾抗病毒免疫的研究方面取得了长足的进展,该文主要介绍这方面的研究进展。  相似文献   

17.
The probable cross talk among large numbers of inflammatory and angiogenic parameters in indomethacin (IND)-induced gastropathy and the associated signaling mechanism were studied in a mouse model. A single dose of IND (18 mg/kg, po) produced robust gastric ulceration in mice without any mortality, which peaked on the third day, but started healing from the fifth day onward. The ulceration was associated with increased myeloperoxidase activity and expression of proinflammatory (TNF-α, adhesion molecules, COX-2) and antiangiogenic (endostatin) parameters. The levels of proangiogenic factors such as COX-1, prostaglandin E, VEGF, and von Willebrand factor VIII were downregulated by IND. Our results revealed that although the maximal and minimal levels of these parameters were attained sequentially at different time points, TNF-α upregulation was the primary event to initiate and induce gastric ulceration. IND also activated NF-κB and all the MAP kinases, but only the inhibitors of TNF-α, NF-κB, and JNK MAP kinase could abrogate the IND-induced damages. Further TNF-α inhibition also reduced the IND-mediated activation of NF-κB and JNK MAP kinase. All this evidence strongly suggests that mitigation of TNF-α may offer a potential solution to IND-mediated gastropathy.  相似文献   

18.
19.
Free fatty acids are known to play a key role in promoting loss of insulin sensitivity, thereby causing insulin resistance and type 2 diabetes. However, the underlying mechanism involved is still unclear. In searching for the cause of the mechanism, it has been found that palmitate inhibits insulin receptor (IR) gene expression, leading to a reduced amount of IR protein in insulin target cells. PDK1-independent phosphorylation of PKCε causes this reduction in insulin receptor gene expression. One of the pathways through which fatty acid can induce insulin resistance in insulin target cells is suggested by these studies. We provide an overview of this important area, emphasizing the current status.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号