首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Migration is an important event in the life history of many animals, but there is considerable variation within populations in the timing and final destination. Such differential migration at the population level can be strongly determined by individuals showing different consistencies in migratory traits. By tagging individual cyprinid fish with uniquely coded electronic tags, and recording their winter migrations from lakes to streams for 6 consecutive years, we obtained highly detailed long-term information on the differential migration patterns of individuals. We found that individual migrants showed consistent site fidelities for over-wintering streams over multiple migratory seasons and that they were also consistent in their seasonal timing of migration. Our data also suggest that consistency itself can be considered as an individual trait, with migrants that exhibit consistent site fidelity also showing consistency in migratory timing. The finding of a mixture of both consistent and inconsistent individuals within a population furthers our understanding of intrapopulation variability in migration strategies, and we hypothesize that environmental variation can maintain such different strategies.  相似文献   

2.
Knowledge about migratory connectivity, the degree to which individuals from the same breeding site migrate to the same wintering site, is essential to understand processes affecting populations of migrants throughout the annual cycle. Here, we study the migration system of a long-distance migratory bird, the Montagu''s harrier Circus pygargus, by tracking individuals from different breeding populations throughout northern Europe. We identified three main migration routes towards wintering areas in sub-Saharan Africa. Wintering areas and migration routes of different breeding populations overlapped, a pattern best described by ‘weak (diffuse) connectivity’. Migratory performance, i.e. timing, duration, distance and speed of migration, was surprisingly similar for the three routes despite differences in habitat characteristics. This study provides, to our knowledge, a first comprehensive overview of the migration system of a Palaearctic-African long-distance migrant. We emphasize the importance of spatial scale (e.g. distances between breeding populations) in defining patterns of connectivity and suggest that knowledge about fundamental aspects determining distribution patterns, such as the among-individual variation in mean migration directions, is required to ultimately understand migratory connectivity. Furthermore, we stress that for conservation purposes it is pivotal to consider wintering areas as well as migration routes and in particular stopover sites.  相似文献   

3.
Bird migration times, climate change, and changing population sizes   总被引:1,自引:0,他引:1  
Past studies of bird migration times have shown great variation in migratory responses to climate change. We used 33 years of bird capture data (1970–2002) from Manomet, Massachusetts to examine variation in spring migration times for 32 species of North American passerines. We found that changes in first arrival dates – the unit of observation used in most studies of bird migration times – often differ dramatically from changes in the mean arrival date of the migration cohort as a whole. In our study, the earliest recorded springtime arrival date for each species occurred 0.20 days later each decade. In contrast, the mean arrival dates for birds of each species occurred 0.78 days earlier each decade. The difference in the two trends was largely explained by declining migration cohort sizes, a factor not examined in many previous studies. We found that changes in migration cohort or population sizes may account for a substantial amount of the variation in previously documented changes in migration times. After controlling for changes in migration cohort size, we found that climate variables, migration distance, and date of migration explained portions of the variation in migratory changes over time. In particular, short-distance migrants appeared to respond to changes in temperature, while mid-distance migrants responded particularly strongly to changes in the Southern Oscillation Index. The migration times of long-distance migrants tended not to change over time. Our findings suggest that previously reported changes in migration times may need to be reinterpreted to incorporate changes in migration cohort sizes.  相似文献   

4.
The knowledge of migration systems in long-distance regular migrants is in many cases extensive. Our understanding of the migratory characteristics of partial migrants, on the other hand, is far more rudimentary. We investigated migratory characteristics of partially migratory Blue Tits Cyanistes caeruleus using ringing recoveries of Swedish birds, to answer questions about geographic migration patterns, age-specific migrations, migration speeds and synchrony of movements. Median migration distance of Swedish Blue Tits was 82 km, with a main autumn direction in the sector between S and W (large directional scatter). Northerly and southerly populations did not differ in migration directions or distances, suggesting chain migration to be the general pattern. A larger proportion of adult Blue Tits remained near the breeding grounds during winter than was the case for juveniles. Some of the migrating birds (17%) seemed not to return in spring but stayed to breed closer to the winter area. Swedish Blue Tits show an exceptionally slow migration speed (median 13 km/day), among the slowest speeds recorded for any migrant bird. The Blue Tit represents an extreme case of diffuse, short and slow bird migration.  相似文献   

5.
The ability to control infections is a key trait for migrants that must be balanced against other costly features of the migratory life. In this study we explored the links between migration and disease ecology by examining natural variation in parasite exposure and immunity in several populations of Lesser Black-backed Gulls (Larus fuscus) with different migratory strategies. We found higher activity of natural antibodies in long distance migrants from the nominate subspecies L.f.fuscus. Circulating levels of IgY showed large variation at the population level, while immune parameters associated with antimicrobial activity showed extensive variation at the individual level irrespective of population or migratory strategy. Pathogen prevalence showed large geographical variation. However, the seroprevalence of one of the gull-specific subtypes of avian influenza (H16) was associated to the migratory strategy, with lower prevalence among the long-distance migrants, suggesting that migration may play a role in disease dynamics of certain pathogens at the population level.  相似文献   

6.
Quantifying the timing and intensity of migratory movements is imperative for understanding impacts of changing landscapes and climates on migratory bird populations. Billions of birds migrate in the Western Hemisphere, but accurately estimating the population size of one migratory species, let alone hundreds, presents numerous obstacles. Here, we quantify the timing, intensity, and distribution of bird migration through one of the largest migration corridors in the Western Hemisphere, the Gulf of Mexico (the Gulf). We further assess whether there have been changes in migration timing or intensity through the Gulf. To achieve this, we integrate citizen science (eBird) observations with 21 years of weather surveillance radar data (1995–2015). We predicted no change in migration timing and a decline in migration intensity across the time series. We estimate that an average of 2.1 billion birds pass through this region each spring en route to Nearctic breeding grounds. Annually, half of these individuals pass through the region in just 18 days, between April 19 and May 7. The western region of the Gulf showed a mean rate of passage 5.4 times higher than the central and eastern regions. We did not detect an overall change in the annual numbers of migrants (2007–2015) or the annual timing of peak migration (1995–2015). However, we found that the earliest seasonal movements through the region occurred significantly earlier over time (1.6 days decade?1). Additionally, body mass and migration distance explained the magnitude of phenological changes, with the most rapid advances occurring with an assemblage of larger‐bodied shorter‐distance migrants. Our results provide baseline information that can be used to advance our understanding of the developing implications of climate change, urbanization, and energy development for migratory bird populations in North America.  相似文献   

7.
Seasonal migration is a complex and variable behaviour with the potential to promote reproductive isolation. In Eurasian blackcaps (Sylvia atricapilla), a migratory divide in central Europe separating populations with southwest (SW) and southeast (SE) autumn routes may facilitate isolation, and individuals using new wintering areas in Britain show divergence from Mediterranean winterers. We tracked 100 blackcaps in the wild to characterize these strategies. Blackcaps to the west and east of the divide used predominantly SW and SE directions, respectively, but close to the contact zone many individuals took intermediate (S) routes. At 14.0° E, we documented a sharp transition from SW to SE migratory directions across only 27 (10–86) km, implying a strong selection gradient across the divide. Blackcaps wintering in Britain took northwesterly migration routes from continental European breeding grounds. They originated from a surprisingly extensive area, spanning 2000 km of the breeding range. British winterers bred in sympatry with SW-bound migrants but arrived 9.8 days earlier on the breeding grounds, suggesting some potential for assortative mating by timing. Overall, our data reveal complex variation in songbird migration and suggest that selection can maintain variation in migration direction across short distances while enabling the spread of a novel strategy across a wide range.  相似文献   

8.
Birds moult to maintain plumage function through life, but the factors that determine moult duration are poorly understood. In temperate areas, variation in moult duration could be largely associated with between-species differences in migratory behaviour (migrants have less time for moulting after breeding), and body mass (because the aerodynamic cost of rapid moult increases allometrically with body size). Moreover, if the energetic cost of transport favours a smaller body size in migratory species, then the effects of migratory behaviour and body mass on moult duration could be confounded. We conducted a comparative study of the duration of adult complete moult in 48 European passerine species, in relation to body mass and migratory behaviour (sedentary, short-distance migrants and long-distance migrants). Lighter and more migratory species moulted faster than heavier and more sedentary species, but migration was not associated with body mass. If accelerated moult compromises the success of migration, changes in the physiology or phenology of moult in migratory birds are better interpreted as adaptive responses to compensate for such costs.  相似文献   

9.
River discharge and water temperature are frequently cited as controlling the upstream migration of adult salmonids to their spawning areas. The results of earlier studies on the effect of these environmental factors were examined. The statistical methods employed in some of these studies failed to consider the serial correlation often found in migration time series. To assess the effects of discharge and temperature on the migratory activity of the landlocked Atlantic salmon (ouananiche, Salmo salar ), 12 years of data on spawning migrations in the Mistassini R., Quebec, Canada, were analysed and the results obtained by ordinary least squares regression and time series regression were compared. In six of the 12 years, upstream migratory movement was related negatively to changes in river flow, suggesting that fish favour falling water phases for ascent. Water temperature appeared to have little effect on migratory movement. The mean body size of migrating fish decreased significantly throughout the summer; early migrants were on average 11.4% larger (mean fork length 522mm) than late migrants (469 mm). Larger, 3-lake-year salmon migrated 7.2 days earlier than 2-lake-year salmon. Because the residuals from ordinary regression exhibited strong autocorrelation, time series regression was more appropriate than ordinary regression for the analysis of migration time Series.  相似文献   

10.
Animal migration has been the subject of intensive research for more than a century, but most research has focused on long‐distance rather than short‐distance migration. Altitudinal migration is a form of short‐distance migration in which individuals perform seasonal elevational movements. Despite its geographic and taxonomic ubiquity, there is relatively little information about the intrinsic and extrinsic factors that influence altitudinal migratory behaviour. Without this information, it is difficult to predict how rapid environmental changes will affect population viability of altitudinal migrants. To synthesize current knowledge, we compiled literature on altitudinal migration for all studied taxa, and identified the leading hypotheses explaining this behaviour. Studies of animal altitudinal migration cover many taxonomic lineages, with birds being the most commonly studied group. Altitudinal migration occurs in all continents except for Antarctica, but about a third of the literature focused on altitudinal migration in North America. Most research suggests that food and weather are the primary extrinsic drivers of altitudinal migration. In addition, substantial individual‐level variation in migratory propensity exists. Individual characteristics that are associated with sex, dominance rank, and body size explain much of the variation in migratory propensity in partially migratory populations, but individual‐level correlates are poorly known for most taxa. More research is needed to quantify the effects of habitat loss, habitat fragmentation, and climate change on altitudinal migrants. Demographic studies of individually marked populations would be particularly valuable for advancing knowledge of the cascading effects of environmental change on migratory propensity, movement patterns, and population viability. We conclude our review with recommendations for study designs and modelling approaches that could be used to narrow existing knowledge gaps, which currently hinder effective conservation of altitudinal migratory species.  相似文献   

11.
Studies of partial migrants provide an opportunity to assess the cost and benefits of migration. Previous work has demonstrated that sedentary American dippers (residents) have higher annual productivity than altitudinal migrants that move to higher elevations to breed. Here we use a ten-year (30 period) mark-recapture dataset to evaluate whether migrants offset their lower productivity with higher survival during the migration-breeding period when they occupy different habitat, or early and late-winter periods when they coexist with residents. Mark-recapture models provide no evidence that apparent monthly survival of migrants is higher than that of residents at any time of the year. The best-supported model suggests that monthly survival is higher in the migration-breeding period than winter periods. Another well-supported model suggested that residency conferred a survival benefit, and annual apparent survival (calculated from model weighted monthly apparent survival estimates using the Delta method) of residents (0.511 ± 0.038SE) was slightly higher than that of migrants (0.487 ± 0.032). Winter survival of American dippers was influenced by environmental conditions; monthly apparent survival increased as maximum daily flow rates increased and declined as winter temperatures became colder. However, we found no evidence that environmental conditions altered differences in winter survival of residents and migrants. Since migratory American dippers have lower productivity and slightly lower survival than residents our data suggests that partial migration is likely an outcome of competition for limited nest sites at low elevations, with less competitive individuals being forced to migrate to higher elevations in order to breed.  相似文献   

12.
Population migration has played an important role in human evolutionary history and in the patterning of human genetic variation. A deeper and empirically-based understanding of human migration dynamics is needed in order to interpret genetic and archaeological evidence and to accurately reconstruct the prehistoric processes that comprise human evolutionary history. Current empirical estimates of migration include either short time frames (i.e. within one generation) or partial knowledge about migration, such as proportion of migrants or distance of migration. An analysis of migration that includes both proportion of migrants and distance, and direction over multiple generations would better inform prehistoric reconstructions. To evaluate human migration, we use GPS coordinates from the place of residence of the Yemeni individuals sampled in our study, their birthplaces and their parents'' and grandparents'' birthplaces to calculate the proportion of migrants, as well as the distance and direction of migration events between each generation. We test for differences in these values between the generations and identify factors that influence the probability of migration. Our results show that the proportion and distance of migration between females and males is similar within generations. In contrast, the proportion and distance of migration is significantly lower in the grandparents'' generation, most likely reflecting the decreasing effect of technology. Based on our results, we calculate the proportion of migration events (0.102) and mean and median distances of migration (96 km and 26 km) for the grandparent''s generation to represent early times in human evolution. These estimates can serve to set parameter values of demographic models in model-based methods of prehistoric reconstruction, such as approximate Bayesian computation. Our study provides the first empirically-based estimates of human migration over multiple generations in a developing country and these estimates are intended to enable more precise reconstruction of the demographic processes that characterized human evolution.  相似文献   

13.
Understanding what drives or prevents long‐distance migrants to respond to environmental change requires basic knowledge about the wintering and breeding grounds, and the timing of movements between them. Both strong and weak migratory connectivity have been reported for Palearctic passerines wintering in Africa, but this remains unknown for most species. We investigated whether pied flycatchers Ficedula hypoleuca from different breeding populations also differ in wintering locations in west‐Africa. Light‐level geolocator data revealed that flycatchers from different breeding populations travelled to different wintering sites, despite similarity in routes during most of the autumn migration. We found support for strong migratory connectivity showing an unexpected pattern: individuals breeding in Fennoscandia (S‐Finland and S‐Norway) wintered further west compared to individuals breeding at more southern latitudes in the Netherlands and SW‐United Kingdom. The same pattern was found in ring recovery data from sub‐Saharan Africa of individuals with confirmed breeding origin. Furthermore, population‐specific migratory connectivity was associated with geographical variation in breeding and migration phenology: birds from populations which breed and migrate earlier wintered further east than birds from ‘late’ populations. There was no indication that wintering locations were affected by geolocation deployment, as we found high repeatability and consistency in δ13C and δ15N stable isotope ratios of winter grown feathers of individuals with and without a geolocator. We discuss the potential ecological factors causing such an unexpected pattern of migratory connectivity. We hypothesise that population differences in wintering longitudes of pied flycatchers result from geographical variation in breeding phenology and the timing of fuelling for spring migration at the wintering grounds. Future research should aim at describing how temporal dynamics in food availability across the wintering range affects migration, wintering distribution and populations’ capacity to respond to environmental changes.  相似文献   

14.
Ecologists often estimate population trends of animals in time series of counts using linear regression to estimate parameters in a linear transformation of multiplicative growth models, where logarithms of rates of change in counts in time intervals are used as response variables. We present quantile regression estimates for the median (0.50) and interquartile (0.25, 0.75) relationships as an alternative to mean regression estimates for common density-dependent and density-independent population growth models. We demonstrate that the quantile regression estimates are more robust to outliers and require fewer distributional assumptions than conventional mean regression estimates and can provide information on heterogeneous rates of change ignored by mean regression. We provide quantile regression trend estimates for 2 populations of greater sage-grouse (Centrocercus urophasianus) in Wyoming, USA, and for the Crawford population of Gunnison sage-grouse (Centrocercus minimus) in southwestern Colorado, USA. Our selected Gompertz models of density dependence for both populations of greater sage-grouse had smaller negative estimates of density-dependence terms and less variation in corresponding predicted growth rates (λ) for quantile than mean regression models. In contrast, our selected Gompertz models of density dependence with piecewise linear effects of years for the Crawford population of Gunnison sage-grouse had predicted changes in λ across years from quantile regressions that varied more than those from mean regression because of heterogeneity in estimated λs that were both less and greater than mean estimates. Our results add to literature establishing that quantile regression provides better behaved estimates than mean regression when there are outlying growth rates, including those induced by adjustments for zeros in the time series of counts. The 0.25 and 0.75 quantiles bracketing the median provide robust estimates of population changes (λ) for the central 50% of time series data and provide a 50% prediction interval for a single new prediction without making parametric distributional assumptions or assuming homogeneous λs. Compared to mean estimates, our quantile regression trend estimates for greater sage-grouse indicated less variation in density-dependent λs by minimizing sensitivity to outlying values, and for Gunnison sage-grouse indicated greater variation in density-dependent λs associated with heterogeneity among quantiles.  相似文献   

15.
Migratory bird populations frequently consist of individuals that overwinter variable distances from the breeding site. Seasonal changes in photoperiod, which varies with latitude, underlie seasonal changes in singing frequency in birds. Therefore, migratory populations that consist of individuals that overwinter at different latitudes with large overwintering ranges could experience within‐population variation in seasonal production of song. To test the influence of overwintering latitude on intrapopulation variance in song production in the spring, we subjected two groups of Eastern Song Sparrows (Melospiza melodia melodia) from the same partially migratory breeding population to different photoperiodic schedules associated with a 1,300‐km difference in overwintering location. One group remained on the natural photoperiodic schedule of the breeding site (resident group) while the other group experienced a nonbreeding photoperiod that mimicked a southern migration in the fall followed by a northern migration back to the breeding site in the spring (migratory group). We compared song output between the two groups in three different stages (nonbreeding, prebreeding, and breeding). Little singing occurred during nonbreeding stage sample dates (20 November, 6 December) for the resident group, and no singing occurred for the migrant group. During the prebreeding stage (27 January, 7 February), significantly more singing occurred in the resident group than in the migrant group. During the breeding stage (21 March, 4 April), after a simulated migration for the migrants, song output was similar in both groups. These results suggest that within‐population variation in wintering latitude may contribute to variation in seasonal changes in singing behavior, which may covary with readiness to breed. Studies utilizing confirmed migrants and residents, rather than merely simulated migrants and residents, are also needed to better understand these processes.  相似文献   

16.
Variations in the geometry of the external flight apparatus of birds are beneficial for different behaviors. Long-distance flight is less costly with more pointed wings and shorter tails; however these traits decrease maneuverability at low speeds. Selection has led to interspecific differences in these and other flight apparatuses in relation to migration distance. If these principles are general, how are the external flight apparatus within a partially migratory bird species shaped in which individuals either migrate or stay at their breeding grounds? We resolved this question by comparing the wing pointedness and tail length (relative to wing length) of migrant and resident European blackbirds (Turdus merula) breeding in the same population. We predicted that migrant blackbirds would have more pointed wings and shorter tails than residents. Contrary to our predictions, there were no differences between migrants and residents in either measure. Our results indicate that morphological differences between migrants and residents in this partially migratory population may be constrained.  相似文献   

17.
Bird migration is one of the most spectacular and best-studied phenomena in behavioural biology. Yet, while the patterns of variation in migratory behaviour and its ecological causes have been intensively studied, its genetic, physiological and neurological control remains poorly understood. The lack of knowledge of the molecular basis of migration is currently not only limiting our insight into the proximate control of migration, but also into its evolution. We investigated polymorphisms in the exons of six candidate genes for key behavioural traits potentially linked to migration, which had previously been identified in several bird species, and eight control loci in 14 populations of blackcaps (Sylvia atricapilla), representing the whole range of geographical variation in migration patterns found in this species, with the aim of identifying genes controlling variation in migration. We found a consistent association between a microsatellite polymorphism and migratory behaviour only at one candidate locus: the ADCYAP1 gene. This polymorphism explained about 2.6 per cent of the variation in migratory tendency among populations, and 2.7-3.5% of variation in migratory restlessness among individuals within two independent populations. In all tests, longer alleles were associated with higher migratory activity. The consistency of results among different populations and levels of analysis suggests that ADCYAP1 is one of the genes controlling the expression of migratory behaviour. Moreover, the multiple described functions of the gene product indicate that this gene might act at multiple levels modifying the shift between migratory and non-migratory states.  相似文献   

18.
Declines in migratory species are a pressing concern worldwide, but the mechanisms underpinning these declines are not fully understood. We hypothesised that species with greater within‐population variability in migratory movements and destinations, here termed ‘migratory diversity’, might be more resilient to environmental change. To test this, we related map‐based metrics of migratory diversity to recent population trends for 340 European breeding birds. Species that occupy larger non‐breeding ranges relative to breeding, a characteristic we term ‘migratory dispersion’, were less likely to be declining than those with more restricted non‐breeding ranges. Species with partial migration strategies (i.e. overlapping breeding and non‐breeding ranges) were also less likely to be declining than full migrants or full residents, an effect that was independent of migration distance. Recent rates of advancement in Europe‐wide spring arrival date were greater for partial migrants than full migrants, suggesting that migratory diversity may also help facilitate species responses to climate change.  相似文献   

19.
ROLAND SANDBERG 《Ibis》1996,138(3):514-524
Mist-net capture data taken during 6 years (1988–1990 and 1992–1994) of field work were used to describe the arrival sequences and fat loads of nine species of migratory passerines which breed in a near-Arctic environment in Swedish Lapland. Long-distance migrants arrived with significantly larger mean fat reserves than did medium- and short-distance migrants. Long-distance migrants carried fat loads at arrival which corresponded to potential remaining flight distances between 242 and 500 km. When females and males arrived on the breeding grounds simultaneously, females carried significantly larger energy reserves than did males in seven out of nine species. In contrast, when the sexes showed a significant difference in median arrival date (two out of nine species), there was no difference in mean fat load carried into the breeding area. A relationship was found between the migratory habits and foraging ecology of each species and the amount of fat reserves at arrival, suggesting that species-specific migratory distances and feeding habits determine the amount of fat that is needed during the transition period between migration and onset of breeding. The short growing season in the study area restricts the time available for breeding and moult, and large energy reserves at arrival may speed up the breeding schedule to counteract possible time constraints. Overloading at the last stopover site during spring migration may be an adaptation allowing birds to cope with a restricted time frame for breeding and moult at high latitudes.  相似文献   

20.
Although adaptation and environmental conditions can easily predict demographic variation in most savannah ungulates, no study on demographic consequences arising from natural and anthropogenic factors among Serengeti wildebeest (Connochaetes taurinus) sub‐populations in Tanzania has been carried out. Here, I report estimates of annual sex ratio, calf and yearling survival rate and birth seasonality between resident and migratory sub‐populations to explore demographic patterns arising from the different age and sex structure. The results indicate significantly higher female‐biased sex ratios in the resident and almost even sex ratios among individual migrants. The calf recruitment estimated as mother: offspring ratios indicate a more synchronous birth in the migrant than the resident sub‐population. Also, birth seasonality in the migratory sub‐population coincided with seasonal variability of rainfall and the timing of the birth peak was more variable in the migrants than the resident sub‐population. The migratory sub‐population had a higher annual proportional mean calf survival estimate (0.84) than that of the residents (0.44) probably due to higher mortality resulting from predation in the western corridor. However, the proportion of yearling survival estimates was much lower (0.31) in the migrants and relatively higher (0.39) in the residents. Different demographic outcomes resulting from environment, predation, movements and ecological factors including resource competition have conservation implications for the two sub‐populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号