首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure of the O-specific polysaccharide chain of the Shigella dysenteriae type 7 lipopolysaccharide has been established mainly by 13C NMR analysis of the intact and modified (acetylated and de-O-acetylated) polymers, as well as of products of its solvolysis with anhydrous hydrogen fluoride. The polysaccharide contains two unusual sugar derivatives. N-acetyl-D-galactosaminuronamide and 4-(N-acetylglycyl)amido-4,6-dideoxy-D-glucose (GalNAcAN and Qui4N----GlyAc, respectively) and is built up of tetrasaccharide repeating units of the following structure: (Formula: see text). Serological cross-reaction of S. dysenteriae type 7 and Pseudomonas aeruginosa O4 (Lányl) is accounted for by the similarity of their O-specific polysaccharides.  相似文献   

2.
The O-specific polysaccharide obtained from the lipopolysaccharide of Shigella dysenteriae type 1 (Shigella shiga) by mild acid hydrolysis followed by fractionation on Sephadex G-50 was found to be identical to that desribed by Morgan's group and was composed of L-rhamnose, D-galactose and N-acetyl-D-glycosamine in a ratio 2:1:1. On the basis of methylation analysis data the polysaccharide was proved to be a linear chain of monosaccharide residues in pyranose forms substituted at position 3, except for that of galactose substituted at position 2. Selective cleavage, based on the N-deacetylation reaction of the polymer, together with determination of linkage configurations by chromic anhydride oxidation showed that the O-specific polysaccharide is built up of repeating tetrasaccharide units whose proposed structure is given below -3)-alpha-L-Rhap (1-3)-alpha-L-Rhap(1-2)-alpha-D-Galp(1-3)-alphapD-GlcNAcp(1- where RHAP = rhamnopyranose, Galp = galactopyranose, and GlcNAcp = N-acetyl-glucosamine. The present findings confirmed the considerations of Heidelberger on the substitution patterns of L-rhamnose and D-galactose residues from the results of serological studies.  相似文献   

3.
As part of a program for the development of synthetic vaccines against the pathogen Shigella flexneri, we used a combination of NMR and molecular modeling methods to study the conformations of the O-specific polysaccharide (O-SP) of S. flexneri 5a and of four related synthetic pentasaccharide fragments. The NMR study, based on the analysis of 1H and 13C chemical shifts, the evaluation of inter-residue distances, and the measurement of one- and three-bond heteronuclear coupling constants, showed that the conformation of one of the four pentasaccharides is similar to that of the native O-SP in solution. Interestingly, inhibition enzyme-linked immunosorbent assay demonstrated that a protective monoclonal antibody specific for S. flexneri 5a has a greater affinity for this pentasaccharide than for the others. We carried out a complete conformational search on the pentasaccharides using the CICADA algorithm interfaced with MM3 force field. We calculated Boltzmann-averaged inter-residue distances and 3JC,H coupling constants for the different conformational families and compared the results with NMR data for all pentasaccharides. Our experimental data are consistent with only one conformational family. We also used molecular modeling data to build models of the O-SP with the molecular builder program POLYS. The models that are in agreement with NMR data adopt right-handed 3-fold helical structures in which the branched glucosyl residue points outwards.  相似文献   

4.
5.
The O-specific polysaccharide obtained from Shigella dysenteriae type-2 lipopolysaccharide by mild acid hydrolysis consisted of N-acetylgalactosamine, N-acetylglucosamine, D-galactose, D-glucose, and O-acetyl group in the ratio of 2:1:1:1:1. A number of oligosaccharides were obtained by deamination of the N-deacetylated polysaccharide and by Smith degradation of the both native and O-deacetylated polysaccharides. The identification of oligosaccharides along with methylation analysis and chromic anhydride oxidation showed that the polysaccharide was built up of the repeating pentasaccharide units whose proposed structure is given below: (see article) Serological properties of Sh. dysenteriae O-specific polysaccharides are discussed.  相似文献   

6.
Conformational analyses of the branched repeating unit of the O-antigenic polysaccharide of Shigella dysenteriae type 2 have been performed with molecular mechanics MM3. A filtered systematic search on the trisaccharide alpha-D-GalNAc-(1-->3)-[alpha-D-GlcNAc-(1-->4)]-alpha-D-GalNAc forming the branch, shows essentially a single favored conformation. Also, the downstream alpha-D-GalNAc-(1-->4)-alpha-D-Glc linkage is sterically constrained. The alpha-D-Glc-(1-->4)-beta-D-Gal moiety, however, forms a more flexible link region between the branch points, and shows a 90 degrees bend similar to what is known for the galabiose moiety occurring in globo-glycolipids. The calculations indicate that consecutive repeating units in their minimum energy conformation arrange in a helical structure with three repeating units per turn. This helix is very compact and appears to be stabilized by hydrophobic interactions involving the N-acetyl groups at the branch points. Random conformational search suggests the existence of another helical structure with four repeating units per turn. It appears possible that the alpha-D-Glc-(1-->4)-beta-D-Gal moiety, which is exposed on the surface of the helical structures, can evade recognition by the immune system of the host by the mimicry of globo structures.  相似文献   

7.
The O-specific polysaccharide of Shigella dysenteriae type 1, which has the repeating tetrasaccharide unit -->3)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-D-Galp-(1-->3)-alpha-D-GlcNAcp-(1--> (A-B-C-D), is a major virulence factor, and it is believed that antibodies against this polysaccharide confer protection to the host. The conformational properties of fragments of this O-antigen were explored using systematic search with a modified HSEA method (GLYCAN) and with molecular mechanics MM3(96). The results show that the alpha-D-Gal-(1-->3)-alpha-D-GlcNAc linkage adopts two favored conformations, phi/psi approximately equal to -40 degrees /-30 degrees (I) and approximately 15 degrees /30 degrees (II), whereas the other glycosidic linkages only have a single favored phi/psi conformational range. MM3 indicates that the trisaccharide B-C-D and tetrasaccharides containing the B-C-D moiety exist as two different conformers, distinguished by the conformations I and II of the C-D linkage. For the pentasaccharide A-B-C-D-A' and longer fragments, the calculations show preference for the C-D conformation II. These results can explain previously reported nuclear magnetic resonance data. The pentasaccharide in its favored conformation II is sharply bent, with the galactose residue exposed at the vertex. This hairpin conformation of the pentasaccharide was successfully docked with the binding site of a monoclonal IgM antibody (E3707 E9) that had been homology modeled from known crystal structures. For fragments made of repetitive tetrasaccharide units, the hairpin conformation leads to a left-handed helical structure with the galactose residues protruding radially at the helix surface. This arrangement results in a pronounced exposure of the galactose and also the adjacent rhamnose in each repeating unit, which is consistent with the known role of the as alpha-L-Rhap-(1-->2)-alpha-D-Galp moiety as a major antigenic epitope of this O-specific polysaccharide.  相似文献   

8.
The earlier established structures of the acidic O-specific polysaccharides from two typical strains of the Shigella dysenteriae bacterium were revised using modern NMR spectroscopy techniques. In particular, the configurations of the glycosidic linkages of GlcNAc (S. dysenteriae type 4) and mannose (S. dysenteriae type 5) residues were corrected. In addition, the location of the sites of nonstoichiometric O-acetylation in S. dysenteriae type 4 was determined: the lateral fucose residue was shown to be occasionally O-acetylated; also, the position of the O-acetyl group present at the stoichiometric quantity in S. dysenteriae type 5 was corrected. The revised structures of the polysaccharides studied are shown below. The known identity of the O-specific polysaccharide structures of S. dysenteriae type 5 and Escherichia coli O58 was confirmed by 13C NMR spectroscopy and, hence, the structure of the E. coli O58 polysaccharide should be revised in the same manner. [Formula: see text].  相似文献   

9.
The chemo-enzymatic synthesis is described of tetrasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (1) and octasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (2), representing one and two tetrasaccharide repeating units of Streptococcus pneumoniae serotype 14 capsular polysaccharide. In a chemical approach, the intermediate linear trisaccharide 3 and hexasaccharide 4 were synthesized. Galactose residues were beta-(1-->4)-connected to the internal N-acetyl-beta-D-glucosamine residues by using bovine milk beta-1,4-galactosyltransferase. Both title oligosaccharides will be conjugated to carrier proteins to be tested as potential vaccines in animal models.  相似文献   

10.
Abstract A cell-associated hemagglutinin (HA) was isolated and purified from a clinical isolate of Shigella dysenteriae type 1 by affinity chromatography on a fetuin-agarose column. The purified hemagglutinin produced a single-stained protein band of around 66 kDa in sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). In an immunodiffusion test, HA-antisera produced a single precipitin band against the purified HA without exhibiting any reactivity towards lipopolysaccharide (LPS) of S. dysenteriae type 1 strain. Inhibition of the hemagglutination by the glycoproteins fetuin, asialofetuin and a sugar derivative N -acetyl-neuraminic acid but not by simple sugars, suggested the specific requirement of complex carbohydrate for binding. Electron micrographs of the purified HA revealed a morphology typical of globular protein.  相似文献   

11.
1H-NMR and molecular dynamics simulations in vacuo and in water of (1 → 4)-α-D -galacturono-disaccharide were performed. The results of the molecular dynamics simulations showed that the molecule fluctuates between two conformations characterized by different values of torsion angles around the glycosidic linkage and two different intramolecular hydrogen bonds. When these conformations are extrapolated to a regular polymeric structure, they generate pectic acid compatible with a 21- or a right-handed 31-helix. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
The reported structures of O-specific polysaccharides from three standard strains of Shigella bacteria were corrected by modern NMR techniques. The revisions concerned the configuration of the O-glycoside linkage (S. dysenteriae type 3, structure 1), the positions of monosaccharide residue glycosylation and acetylation by pyruvic acid (S. dysenteriae type 9, structure 2), and the attachment position of the side monosaccharide chain (S. boydii type 4, structure 3) [struxture in text].  相似文献   

13.
The structure of the O-specific polysaccharide of the somatic antigen (lipopolysaccharide) of Shigella boydii, type 12, was established by 1H- and 13C-NMR, methylation analysis and partial acid hydrolysis methods. The polysaccharide consists of pentasaccharide repeating units of the following structure: (formula; see text) The amount of O-acetyl groups was far less than stoichiometric, only about 2 for 3-4 repeating units. Nevertheless, the results of serological studies revealed 3-O-acetyl-alpha-L-rhamnose residue to be the major immunodominant group. In spite of the presence of similar trisaccharide fragments, the lipopolysaccharide and polysaccharide from Shigella boydii type 12 gave no crossreaction with lipopolysaccharide and polysaccharide from Escherichia coli 07. The possible reasons of the absence of serological relatedness between the Sh. boydii, type 12, and E. coli 07 cells were discussed.  相似文献   

14.
Shigella flexneri causes diarrheal diseases especially in infants and children in developing countries. Modifications of the lipopolysaccharide (LPS) molecule, like bacteriophage-mediated glucosylation and acetylation of the O-specific chain (O-SP), are important for the LPS antigenicity and consequently for the immunogenicity of the polysaccharide-based vaccines against shigellosis. Here, we report the degree of O-acetylation and the localisation of O-acetyl groups and side-chain glucose substitution in the O-SP (scheme) in different preparations of S. flexneri type 2a LPS. [structure: see text]  相似文献   

15.
Shigella dysenteriae type 1 and Shigella flexneri type 5b strains were isolated as causative agents of bacterial dysentery in a patient having visited South-East Asia. Both strains are a rare finding for Bulgaria. S. dysenteriae 1 strains have not been isolated since 1962, and there were only single isolates of S. flexneri 5b. The strains were of the same antibiotic resistance patterns. Conjugation experiments showed that resistance is determined by transferrable R-plasmids having identical characteristics. It is assumed that in the patient's gut transfer of an R-plasmid occurs from E. coli of the normal flora to the pathogenic shigellae.  相似文献   

16.
The conformation of the C-terminal octapeptide fragment of Substance P (SP4-11, Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2) has been investigated by 2D-NMR and MD methods. The octapeptide exists in a blend of conformations. The molecule seems to shuttle between conformations with gamma-bends either at Phe5 or Gly6 or Gln3 or Leu7 and between a nearly extended structure.  相似文献   

17.
The specific polysaccharide was released from Shigella dysenteriae type 5 lipopolysaccharide by mild acidic hydrolysis and then purified by gel chromatography on Sephadex G-50. The polysaccharide was built up of residues of D-mannose, 2-acetamido-2-deoxy-D-glucose, 3-0-(D-1-carboxyethyl)-L-rhamnose (rhamnolactylic acid) and 0-acetyl groups in a ratio 2:1:1:1. On the basis of radiospectroscopy, methylation analysis, Smith degradation, and chromium trioxide oxidation, the repeating oligosaccharide unit of the polysaccharide can be assigned the following structure: (formula: see text) where GlcNAc is 2-acetamido-2-deoxy-D-glucopyranose, Manp is mannopyranose, RhaLcA is rhammolacytic acid and Ac is an acetyl group. The serological properties of Sh. dysenteriae somatic antigens are discussed in relation to the chemical structures of their specific polysaccharides.  相似文献   

18.
19.
We examined a virulent strain of Shigella dysenteriae type 1 after induction into the viable but nonculturable (VBNC) state for its ability to (i) maintain the Shiga toxin (stx) gene; (ii) maintain biologically active Shiga toxin (ShT); and (iii) adhere to intestinal epithelial cells (Henle 407 cell line). PCR was used to amplify the stx gene from VBNC cells of S. dysenteriae type 1, thereby establishing its presence even when cells are in the VBNC state. VBNC S. dysenteriae type 1 ShT was monitored by the enzyme-linked immunosorbent assay with mouse monoclonal antibodies against the B subunit of ShT and affinity-purified rabbit polyclonal antibodies against ShT. We used the Henle 407 cell line to study the adhesive property of VBNC S. dysenteriae type 1 cells in a series of tissue culture experiments. Results showed that VBNC S. dysenteriae type 1 not only maintained the stx gene and biologically active ShT but also remained capable of adhering to Henle 407 cells. However, S. dysenteriae type 1 cells lost the ability to invade Henle 407 cells after entering the VBNC state. From results of the study, we conclude that VBNC cells of S. dysenteriae type 1 retain several virulence factors and remain potentially virulent, posing a public health problem.  相似文献   

20.
The branched O-antigens of Escherichia coli O159 and Shigella dysenteriae type 4 are structurally related and are known to show cross-reactivity with antibodies. In the present study, conformational analyses were performed on these two O-antigens using molecular mechanics MM3(96) with filtered systematic search. The results show very strong steric restrictions for the trisaccharide at the branch point of the E. coli O159 antigen, especially for the β-d-GlcNAc-(1 → 3)-β-d-GlcNAc linkage of the main chain. For the type 4 O-antigen the calculations show essentially a single conformation with respect to the α-d-GlcNAc-(1 → 3)-α-d-GlcNAc linkage of the main chain and three different favoured conformations for the fucose branch. Consecutive repeating units of the S. dysenteriae type 4 and E. coli O159 O-antigens form linear extended chains with significant flexibility between the branches. Comparative calculations carried out with the SWEET server indicate that our method of filtered systematic search is a superior method in the case of branched, constrained oligosaccharides. Based on the results of the MM3 calculations, we propose that the common epitope explaining the cross-reactivity comprises the fucose branch, the downstream GlcNAc and part of the uronic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号