共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sir2 proteins are NAD(+)-dependant protein deactylases that have been implicated in playing roles in gene silencing, DNA repair, genome stability, longevity, metabolism, and cell physiology. To define the mechanism of Sir2 activity, we report the 1.5 A crystal structure of the yeast Hst2 (yHst2) Sir2 protein in ternary complex with 2'-O-acetyl ADP ribose and an acetylated histone H4 peptide. The structure captures both ligands meeting within an enclosed tunnel between the small and large domains of the catalytic protein core and permits the assignment of a detailed catalytic mechanism for the Sir2 proteins that is consistent with solution and enzymatic studies. Comparison of the ternary complex with the yHst2/NAD(+) complex, also reported here, and nascent yHst2 structure also reveals that NAD(+) binding accompanies intramolecular loop rearrangement for more stable NAD(+) and acetyl-lysine binding, and that acetyl-lysine peptide binding induces a trimer-monomer protein transition involving nonconserved Sir2 residues. 相似文献
3.
Durand-Dubief M Sinha I Fagerström-Billai F Bonilla C Wright A Grunstein M Ekwall K 《The EMBO journal》2007,26(10):2477-2488
Expression profiling, ChiP-CHIP and phenotypic analysis were used to investigate the functional relationships of class III NAD(+)-dependent HDACs (Sirtuins) in fission yeast. We detected significant histone acetylation increases in Sirtuin mutants at their specific genomic binding targets and were thus able to identify an in vivo substrate preference for each Sirtuin. At heterochromatic loci, we demonstrate that although Hst2 is mainly cytoplasmic, a nuclear pool of Hst2 colocalizes with the other Sirtuins at silent regions (cen, mat, tel, rDNA), and that like the other Sirtuins, Hst2 is required for rDNA and centromeric silencing. Interestingly we found specific functions for the fission yeast Sirtuins Hst2 and Hst4 in gene regulation. Hst2 directly represses genes involved in transport and membrane function, whereas Hst4 represses amino-acid biosynthesis genes and Tf2 retrotransposons. A specific role for Hst4 in Tf2 5' mRNA processing was revealed. Thus, Sirtuins share functions at many genomic targets, but Hst2 and Hst4 have also evolved unique functions in gene regulation. 相似文献
4.
5.
6.
The DNA glycosylase MutY homolog (Myh1) excises adenines misincorporated opposite guanines or 7,8-dihydro-8-oxo-guanines on DNA by base excision repair thereby preventing G:C to T:A mutations. Schizosaccharomyces pombe (Sp) Hst4 is an NAD+-dependent histone/protein deacetylase involved in gene silencing and maintaining genomic integrity. Hst4 regulates deacetylation of histone 3 Lys56 at the entry and exit points of the nucleosome core particle. Here, we demonstrate that the hst4 mutant is more sensitive to H2O2 than wild-type cells. H2O2 treatment results in an SpMyh1-dependent decrease in SpHst4 protein level and hyperacetylation of histone 3 Lys56. Furthermore, SpHst4 interacts with SpMyh1 and the cell cycle checkpoint Rad9-Rad1-Hus1 (9-1-1) complex. SpHst4, SpMyh1, and SpHus1 are physically bound to telomeres. Following oxidative stress, there is an increase in the telomeric association of SpMyh1. Conversely, the telomeric association of spHst4 is decreased. Deletion of SpMyh1 strongly abrogated telomeric association of SpHst4 and SpHus1. However, telomeric association of SpMyh1 is enhanced in hst4Δ cells in the presence of chronic DNA damage. These results suggest that SpMyh1 repair regulates the functions of SpHst4 and the 9-1-1 complex in maintaining genomic stability. 相似文献
7.
Sirtuins are NAD+-dependent protein deacetylase enzymes that are broadly conserved from bacteria to human, and have been implicated to play important roles in gene regulation, metabolism and longevity. cobB is a bacterial sirtuin that deacetylates acetyl-CoA synthetase (Acs) at an active site lysine to stimulate its enzymatic activity. Here, we report the structure of cobB bound to an acetyl-lysine containing non-cognate histone H4 substrate. A comparison with the previously reported archaeal and eukaryotic sirtuin structures reveals the greatest variability in a small zinc-binding domain implicated to play a particularly important role in substrate-specific binding by the sirtuin proteins. Comparison of the cobB/histone H4 complex with other sirtuin proteins in complex with acetyl-lysine containing substrates, further suggests that contacts to the acetyl-lysine side-chain and beta-sheet interactions with residues directly C-terminal to the acetyl-lysine represent conserved features of sirtuin-substrate recognition. Isothermal titration calorimetry studies were used to compare the affinity of cobB for a variety of cognate and non-cognate acetyl-lysine-bearing peptides revealing an exothermic reaction with relatively little discrimination between substrates. In contrast, similar studies employing intact acetylated Acs protein as a substrate reveal a binding reaction that is endothermic, suggesting that cobB recognition of substrate involves a burial of hydrophobic surface and/or structural rearrangement involving substrate regions distal to the acetyl-lysine-binding site. Together, these studies suggest that substrate-specific binding by sirtuin proteins involves contributions from the zinc-binding domain of the enzyme and substrate regions distal to the acetyl-lysine-binding site. 相似文献
8.
Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase 总被引:1,自引:0,他引:1
Members of the Sir2 family of NAD-dependent protein deacetylases regulate diverse cellular processes including aging, gene silencing, and cellular differentiation. Here, we report that the distant mammalian Sir2 homolog SIRT6 is a broadly expressed, predominantly nuclear protein. Northern analysis of embryonic samples and multiple adult tissues revealed mouse SIRT6 (mSIRT6) mRNA peaks at day E11, persisting into adulthood in all eight tissues examined. At the protein level, mSIRT6 was readily detectable in the same eight tissue types, with the highest levels in muscle, brain, and heart. Subcellular localization studies using both C- and N-terminal green fluorescent protein fusion proteins showed mSIRT6-green fluorescent protein to be a predominantly nuclear protein. Indirect immunofluorescence using antibodies to two different mSIRT6 epitopes confirmed that endogenous mSIRT6 is also largely nuclear. Consistent with previous findings, we did not observe any NAD+-dependent protein deacetylase activity in preparations of mSIRT6. However, purified recombinant mSIRT6 did catalyze the robust transfer of radiolabel from [32P]NAD to mSIRT6. Two highly conserved residues within the catalytic core of the protein were required for this reaction. This reaction is most likely mono-ADP-ribosylation because only the modified form of the protein was recognized by an antibody specific to mono-ADP-ribose. Surprisingly, we observed that the catalytic mechanism of this reaction is intra-molecular, with individual molecules of mSIRT6 directing their own modification. These results provide the first characterization of a Sir2 protein from phylogenetic class IV. 相似文献
9.
Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation 总被引:9,自引:1,他引:8 下载免费PDF全文
Lombard DB Alt FW Cheng HL Bunkenborg J Streeper RS Mostoslavsky R Kim J Yancopoulos G Valenzuela D Murphy A Yang Y Chen Y Hirschey MD Bronson RT Haigis M Guarente LP Farese RV Weissman S Verdin E Schwer B 《Molecular and cellular biology》2007,27(24):8807-8814
Homologs of the Saccharomyces cerevisiae Sir2 protein, sirtuins, promote longevity in many organisms. Studies of the sirtuin SIRT3 have so far been limited to cell culture systems. Here, we investigate the localization and function of SIRT3 in vivo. We show that endogenous mouse SIRT3 is a soluble mitochondrial protein. To address the function and relevance of SIRT3 in the regulation of energy metabolism, we generated and phenotypically characterized SIRT3 knockout mice. SIRT3-deficient animals exhibit striking mitochondrial protein hyperacetylation, suggesting that SIRT3 is a major mitochondrial deacetylase. In contrast, no mitochondrial hyperacetylation was detectable in mice lacking the two other mitochondrial sirtuins, SIRT4 and SIRT5. Surprisingly, despite this biochemical phenotype, SIRT3-deficient mice are metabolically unremarkable under basal conditions and show normal adaptive thermogenesis, a process previously suggested to involve SIRT3. Overall, our results extend the recent finding of lysine acetylation of mitochondrial proteins and demonstrate that SIRT3 has evolved to control reversible lysine acetylation in this organelle. 相似文献
10.
How duplicate genes provide genetic robustness remains an unresolved question. We have examined the duplicated histone deacetylases Sir2p and Hst1p in Saccharomyces cerevisiae and find that these paralogs with non-overlapping functions can provide genetic robustness against null mutations through a substitution mechanism. Hst1p is an NAD+-dependent histone deacetylase that acts with Sum1p to repress a subset of midsporulation genes. However, hst1Δ mutants show much weaker derepression of target loci than sum1Δ mutants. We show that this modest derepression of target loci in hst1Δ strains occurs in part because Sir2p substitutes for Hst1p. Sir2p contributes to repression of the midsporulation genes only in the absence of Hst1p and is recruited to target promoters by a physical interaction with the Sum1 complex. Furthermore, when Sir2p associates with the Sum1 complex, the complex continues to repress in a promoter-specific manner and does not spread. Our results imply that after the duplication, SIR2 and HST1 subfunctionalized. The single SIR2/HST1 gene from Kluyveromyces lactis, a closely related species that diverged prior to the duplication, can suppress an hst1Δ mutation in S. cerevisiae as well as interact with Sir4p in S. cerevisiae. In addition, the existence of two distinct protein interaction domains for the Sir and Sum1 complexes was revealed through the analysis of a chimeric Sir2–Hst1 molecule. Therefore, the ability of Sir2p to substitute for Hst1p probably results from a retained but reduced affinity for the Sum1 complex that is a consequence of subfunctionalization via the duplication, degeneration, and complementation mechanism. These results suggest that the evolutionary path of duplicate gene preservation may be an important indicator for the ability of duplicated genes to contribute to genetic robustness. 相似文献
11.
Zoll WL Horton LE Komar AA Hensold JO Merrick WC 《The Journal of biological chemistry》2002,277(40):37079-37087
To begin the physical characterization of eukaryotic initiation factor (eIF) 2A, a translation initiation factor that binds Met-tRNA(i), tryptic peptides from rabbit reticulocyte eIF2A were analyzed to obtain amino acid sequence information. Sequences for 8 peptides were matched to three different expressed sequence tag clones. The sequence predicted for eIF2A is 585 amino acids. Matching of the cDNA sequence to the human genome revealed that the eIF2A mRNA is made up of 15 or 16 exons, and the gene is contained on chromosome 3. A homolog in Saccharomyces cerevisiae was identified, YGR054W, which is a non-essential gene. Hemagglutinin-tagged yeast eIF2A localizes on both 40 S and 80 S ribosomes. A knockout of both eIF2A and eIF5B yielded a "synthetically sick" yeast strain with a severe slow growth phenotype. The phenotype of this double mutant and the biochemical localization suggest that eIF2A participates in translation initiation. eIF2A does not appear to participate in re-initiation as the DeltaeIF2A strain shows the same level of GCN4 induction with amino acid starvation as seen in wild type yeast. The lack of any apparent phenotype in the DeltaeIF2A strain suggests that eIF2A functions in a minor pathway, perhaps internal initiation or in the translation of a small number of specific mRNAs. 相似文献
12.
A cytosolic NAD-dependent deacetylase, Hst2p, can modulate nucleolar and telomeric silencing in yeast 下载免费PDF全文
Perrod S Cockell MM Laroche T Renauld H Ducrest AL Bonnard C Gasser SM 《The EMBO journal》2001,20(1-2):197-209
In budding yeast, the silent information regulator Sir2p is a nuclear NAD-dependent deacetylase that is essential for both telomeric and rDNA silencing. All eukaryotic species examined to date have multiple homologues of Sir two (HSTs), which share a highly conserved globular core domain. Here we report that yeast Hst2p and a mammalian Hst2p homologue, hSirT2p, are cytoplasmic in yeast and human cells, in contrast to yHst1p and ySir2p which are exclusively nuclear. Although yHst2p cannot restore silencing in a sir2 deletion, overexpression of yHst2p influences nuclear silencing events in a SIR2 strain, derepressing subtelomeric silencing while increasing repression in the rDNA. In contrast, a form of ySir2p carrying a point mutation in the conserved core domain disrupts both telomeric position effect (TPE) and rDNA repression at low expression levels. This argues that non-nuclear yHst2p can compete for a substrate or ligand specifically required for telomeric, and not rDNA repression. 相似文献
13.
Yeast SIR2, the founding member of a conserved gene family, acts to modulate chromatin structure in three different contexts: silent (HM) mating-type loci, telomeres and rDNA. At HM loci and telomeres, Sir2p forms a complex with Sir3p and Sir4p. However, Sir2p's role in rDNA silencing is Sir3/4 independent, requiring instead an essential nucleolar protein, Net1p. We describe two novel classes of SIR2 mutations specific to either HM/telomere or rDNA silencing. Despite their opposite effects, both classes of mutations cluster in the same two regions of Sir2p, each of which borders on a conserved core domain. A surprising number of these mutations are dominant. Several rDNA silencing mutants display a Sir2p nucleolar localization defect that correlates with reduced Net1p binding. Although the molecular defect in HM/telomere-specific mutants is unclear, they mimic an age-related phenotype where Sir3p and Sir4p relocalize to the nucleolus. Artificial targeting can circumvent the silencing defect in a subset of mutants from both classes. These results define distinct functional domains of Sir2p and provide evidence for additional Sir2p-interacting factors with locus-specific silencing functions. 相似文献
14.
Abdul Hannan Neethu Maria Abraham Siddharth Goyal Imlitoshi Jamir U. Deva Priyakumar Krishnaveni Mishra 《Nucleic acids research》2015,43(21):10213-10226
Silent information regulator 2 (Sir2), the founding member of the conserved sirtuin family of NAD+-dependent histone deacetylase, regulates several physiological processes including genome stability, gene silencing, metabolism and life span in yeast. Within the nucleus, Sir2 is associated with telomere clusters in the nuclear periphery and rDNA in the nucleolus and regulates gene silencing at these genomic sites. How distribution of Sir2 between telomere and rDNA is regulated is not known. Here we show that Sir2 is sumoylated and this modification modulates the intra-nuclear distribution of Sir2. We identify Siz2 as the key SUMO ligase and show that multiple lysines in Sir2 are subject to this sumoylation activity. Mutating K215 alone counteracts the inhibitory effect of Siz2 on telomeric silencing. SUMO modification of Sir2 impairs interaction with Sir4 but not Net1 and, furthermore, SUMO modified Sir2 shows predominant nucleolar localization. Our findings demonstrate that sumoylation of Sir2 modulates distribution between telomeres and rDNA and this is likely to have implications for Sir2 function in other loci as well. 相似文献
15.
16.
The yeast Sir2 gene encodes a protein (Sir2p) that plays an essential role in silencing regulation at mating-type loci, rDNA, and telomeres. Recent studies have also shown that the protein participates in cell cycle regulation, DNA double-strand break repair, meiotic checkpoint control, and histone deacetylation. Overexpression of wildtype Sir2p in yeast resulted in an extended life span but mutant Sir2p shortened the life span, suggesting its function in aging processes. Sir2p is evolutionarily conserved from prokaryotes to higher eukaryotes. However, its function(s) in mammals remains unknown. To investigate Sir2p function(s) in mice, we cloned and characterized two mouse Sir2-like genes. Our results revealed that the two mouse Sir2-like proteins (mSIR2L2 and mSIR2L3) are most similar to the human Sir2-like proteins SIR2L2 and SIR2L3, respectively. Sir2 core domains are highly conserved in the two proteins and yeast Sir2p; however, the intracellular localizations of both mSIR2L2 and mSIR2L3 differ from that of yeast Sir2p and from one another. The two mouse genes have completely different genomic structures but were mapped on the same chromosome. It seems that the two mouse proteins, though they have Sir2 conserved domains, may function differently than yeast Sir2p. 相似文献
17.
Tanny JC Kirkpatrick DS Gerber SA Gygi SP Moazed D 《Molecular and cellular biology》2004,24(16):6931-6946
Gene silencing in the budding yeast Saccharomyces cerevisiae requires the enzymatic activity of the Sir2 protein, a highly conserved NAD-dependent deacetylase. In order to study the activity of native Sir2, we purified and characterized two budding yeast Sir2 complexes: the Sir2/Sir4 complex, which mediates silencing at mating-type loci and at telomeres, and the RENT complex, which mediates silencing at the ribosomal DNA repeats. Analyses of the protein compositions of these complexes confirmed previously described interactions. We show that the assembly of Sir2 into native silencing complexes does not alter its selectivity for acetylated substrates, nor does it allow the deacetylation of nucleosomal histones. The inability of Sir2 complexes to deacetylate nucleosomes suggests that additional factors influence Sir2 activity in vivo. In contrast, Sir2 complexes show significant enhancement in their affinities for acetylated substrates and their sensitivities to the physiological inhibitor nicotinamide relative to recombinant Sir2. Reconstitution experiments showed that, for the Sir2/Sir4 complex, these differences stem from the physical interaction of Sir2 with Sir4. Finally, we provide evidence that the different nicotinamide sensitivities of Sir2/Sir4 and RENT in vitro could contribute to locus-specific differences in how Sir2 activity is regulated in vivo. 相似文献
18.
Calorie restriction slows aging and increases life span in many organisms. In yeast, a mechanistic explanation has been proposed whereby calorie restriction slows aging by activating Sir2. Here we report the identification of a Sir2-independent pathway responsible for a majority of the longevity benefit associated with calorie restriction. Deletion of FOB1 and overexpression of SIR2 have been previously found to increase life span by reducing the levels of toxic rDNA circles in aged mother cells. We find that combining calorie restriction with either of these genetic interventions dramatically enhances longevity, resulting in the longest-lived yeast strain reported thus far. Further, calorie restriction results in a greater life span extension in cells lacking both Sir2 and Fob1 than in cells where Sir2 is present. These findings indicate that Sir2 and calorie restriction act in parallel pathways to promote longevity in yeast and, perhaps, higher eukaryotes. 相似文献
19.
Mayur Nimbadas Devare Yeong Hyeock Kim Joohye Jung Woo Kyu Kang Ki‐Sun Kwon Jeong‐Yoon Kim 《Aging cell》2020,19(6)
Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+‐dependent protein deacetylase, which regulates the expression of the ATP‐dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho‐mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)‐like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2–Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast. 相似文献