首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Induction of mammalian cell death by a plant Bax inhibitor   总被引:5,自引:0,他引:5  
Arabidopsis thaliana AtBI-1 is an orthologue of mammalian Bax inhibitor-1 capable of suppressing Bax-induced cell death in yeast as well as mammalian cells. Here we investigated whether or not AtBI-1 suppresses Bax-induced cell death using human fibrosarcoma HT1080 cells. Surprisingly, AtBI-1 did not block Bax-induced cell death, but it triggered apoptotic cell death in mammalian cells. The proapoptotic effect of AtBI-1 was blocked by the X-linked caspase inhibitor XIAP, suggesting that the cell death caused by AtBI-1 is similar to that caused by Bax.  相似文献   

3.
Programmed cell death (PCD) in many systems is controlled by relative amounts of the apoptosis-regulating proteins Bax and Bcl-2 through homo- or heterodimerization. Here we show that Bax-induced PCD of yeast was suppressed by transformation with a vesicle-associated membrane protein from Arabidopsis (AtVAMP), which was isolated by screening a cDNA expression library against sugar-induced cell death in yeast. AtVAMP expression blocked Bax-induced PCD downstream of oxidative burst. AtVAMP also prevented H(2)O(2)-induced apoptosis in yeast and in Arabidopsis cells. Reduced oxidation of lipids and plasma membrane proteins was detected in the AtVAMP-transformed yeast, suggesting improved membrane repair. Inhibition of intracellular vesicle trafficking by brefeldin A induced apoptosis from a sublethal concentration of H(2)O(2). No protection occurred by overexpression of the yeast homolog SCN2. However, efficient suppression of yeast PCD occurred by expression of a chimeric gene, composed of the conserved domains from yeast, fused to the variable N-terminal domain from Arabidopsis, resulting in exchange of the proline-rich N-terminal domain of SCN2 with a proline-poor Arabidopsis sequence. Our results suggest that intracellular vesicle traffic can regulate execution of apoptosis by affecting the rate of membrane recycling and that the proline-rich N-terminal domain of VAMP inhibited this process.  相似文献   

4.
5.
We screened the Arabidopsis cDNA library to identify functional suppressors of AtBI-1, a gene that suppresses cell death induced by Bax gene expression in yeast. Cdf 3 encodes a 118-amino-acid protein with a molecular mass of 25 kDa. This protein has two uncharacterized domains at amino acids residues 5-64 and 74-117. In the present study, CDF3 was found to induce growth defects in yeast and arrested yeast growth, although the cell-growth defect was somewhat less than that of Bax. Its localization in the inner mitochondria was essential for suppression of yeast-cell proliferation. The morphological abnormality of the intracellular network, which is a hallmark of AtBI-1, was attenuated by Cdf 3 expression.  相似文献   

6.
BACKGROUND AND AIMS: It has previously been shown that Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP) contributed to resistance to abiotic stresses. Interestingly, it has also been reported that expression of ethylene-responsive factor (ERF) genes including AtEBP were regulated by the activity of APETALA2 (AP2), a floral homeotic factor. AP2 is known to regulate expression of several floral-specific homeotic genes such as AGAMOUS. The aim of this study was to clarify the relationship between AP2 and AtEBP in gene expression. METHODS: Northern blot analysis was performed on ap2 mutants, ethylene-related Arabidopsis mutants and transgenic Arabidopsis plants over-expressing AtEBP, and a T-DNA insertional mutant of AtEBP. Phenotypic analysis of these plants was performed. KEY RESULTS: Expression levels of ERF genes such as AtEBP and AtERF1 were increased in ap2 mutants. Over-expression of AtEBP caused upregulation of AP2 expression in leaves. AP2 expression was suppressed by the null-function of ethylene-insensitive2 (EIN2), although AP2 expression was not affected by ethylene treatment. Loss of AtEBP function slightly reduced the average number of stamens. CONCLUSIONS: AP2 and AtEBP are mutually regulated in terms of gene expression. AP2 expression was affected by EIN2 but was not regulated by ethylene treatment.  相似文献   

7.
Baek D  Jin Y  Jeong JC  Lee HJ  Moon H  Lee J  Shin D  Kang CH  Kim DH  Nam J  Lee SY  Yun DJ 《Phytochemistry》2008,69(2):333-338
  相似文献   

8.
Studies into the cell death program termed apoptosis have resulted in new information regarding how cells control and execute their own demise, including insights into the mechanism by which death-preventing factors can inhibit Bax-induced caspase activation. We investigated high temperature stress-induced cell death in Brassica rapa. Using a yeast functional screening from a Brassica rapa cDNA library, the BH5-127 EST clone encoding an apoptotic suppressor peptide was identified. However, a phylogenic tree showed that BH5-127 clusters within a clade containing SUMO-1 (Small Ubiquitin-like Modifier- 1). BH5-127 was confirmed similar to have function to SUMO-1 as Fas suppression. Expression of BH5-127 showed that substantial suppression of cell death survived on SD-galactose-Leu--Ura- medium. The results suggest that BrSE (Brassica rapa Sentrin EST, BH5-127) is one of the important regulatory proteins in programming cell death, especially in the seedling stage of Chinese cabbage.  相似文献   

9.
BACKGROUND AND AIMS: Recent reports have described dramatic alterations in mitochondrial morphology during metazoan apoptosis. A dynamin-related protein (DRP) associated with mitochondrial outer membrane fission is known to be involved in the regulation of apoptosis. This study analysed the relationship between mitochondrial fission and regulation of plant cell death. METHODS: Transgenic plants were generated possessing Arabidopsis DRP3B (K56A), the dominant-negative form of Arabidopsis DRP, mitochondrial-targeted green fluorescent protein and mouse Bax. KEY RESULTS: Arabidopsis plants over-expressing DRP3B (K56A) exhibited long tubular mitochondria. In these plants, mitochondria appeared as a string-of-beads during cell death. This indicates that DRP3B (K56A) prevented mitochondrial fission during plant cell death. However, in contrast to results for mammalian cells and yeast, Bax-induced cell death was not inhibited in DRP3B (K56A)-expressing plant cells. Similarly, hydrogen peroxide-, menadione-, darkness- and salicylic acid-induced cell death was not inhibited by DRP3B (K56A) expression. CONCLUSIONS: These results indicate that the systems controlling cell death in animals and plants are not common in terms of mitochondrial fission.  相似文献   

10.
Bax-induced cell death in yeast depends on mitochondrial lipid oxidation.   总被引:7,自引:0,他引:7  
The oxidant function of pro-apoptotic protein Bax was investigated through heterologous expression in yeast. Direct measurements of fatty acid content show that Bax-expression induces oxidation of mitochondrial lipids. This effect is prevented by the coexpression of Bcl-xL. The oxidation actually could be followed on isolated mitochondria as respiration-induced peroxidation of polyunsaturated cis-parinaric acid and on whole cells as the increase in the amount of thiobarbituric acid-reactive products. Treatments that increase the unsaturation ratio of lipids, making them more sensitive to oxidation, increase kinetics of Bax-induced death. Conversely, inhibitors of lipid oxidation and treatments that decrease the unsaturation ratio of fatty acids decrease kinetics of Bax-induced death. Taken together, these results show that Bax-induced mitochondrial lipid oxidation is relevant to Bax-induced cell death. Conversely, lipid oxidation is poorly related to the massive Bax-induced superoxide and hydrogen peroxide accumulation, which occurs at the same time, as chemical or enzymatic scavenging of ROS does not prevent lipid oxidation nor has any effects on kinetics of Bax-induced cell death. Whatever the origin of mitochondrial lipid oxidation, these data show that it represents a major step in the cascade of events leading to Bax-induced cell death. These results are discussed in the light of the role of lipid oxidation both in mammalian apoptosis and in other forms of cell death in other organisms.  相似文献   

11.
Bax inhibitor-1 (BI-1) is an evolutionarily conserved cell death suppresser in animals, yeast, and plants. In this study, yeast strains carrying single-gene deletions were screened for factors related to cell death suppression by Arabidopsis BI-1 (AtBI-1). Our screen identified mutants that failed to survive Bax-induced lethality even with AtBI-1 coexpression (Bax suppressor). The Deltacox16 strain was isolated as a BI-1-inactive mutant; it was disrupted in a component of the mitochondrial cytochrome c oxidase. Other mutants defective in mitochondrial electron transport showed a similar phenotype. ATP levels were markedly decreased in all these mutants, suggesting that BI-1 requires normal electron transport activity to suppress cell death in yeast.  相似文献   

12.
Murine Bax was expressed in the methylotrophic yeast, Pichia pastoris, using the alcohol oxidase 1 (AOX1) or alcohol oxidase 2 (AOX2) promoter and the AOX1 terminator. Upon induction in methanol medium, transformants containing BAX cDNA under control of the strong AOX1 promoter showed complete growth inhibition and extensive cell death. Except for chromatin condensation, morphological changes typical of apoptosis in mammalian cells could not be observed, indicating that the cell death machinery in P. pastoris is marked different from the endogenous cell death program of higher eukaryotes. Staining of Bax-induced cells with propidium iodide indicated that cell death was not correlated with necrosis. Electron microscopic examination revealed no striking differences in cell morphology, but showed few cells with an enlarged vacuole containing spherical bodies, which suggests autophagic cell death.  相似文献   

13.
Six genes encode proteins with acyl-CoA-binding domains in Arabidopsis thaliana. They are the small 10-kDa cytosolic acyl-CoA-binding protein (ACBP), membrane-associated ACBP1 and ACBP2, extracellularly-targeted ACBP3, and kelch-motif containing ACBP4 and ACBP5. Here, the interaction of ACBP4 with an A. thaliana ethylene-responsive element binding protein (AtEBP), identified in a yeast two-hybrid screen, was confirmed by co-immunoprecipitation. The subcellular localization of ACBP4 and AtEBP, was addressed using an ACBP4:DsRed red fluorescent protein fusion and a green fluorescent protein (GFP):AtEBP fusion. Transient expression of these autofluoresence-tagged proteins in agroinfiltrated tobacco leaves, followed by confocal laser scanning microscopy, indicated their co-localization predominantly at the cytosol which was confirmed by FRET analysis. Immuno-electron microscopy on Arabidopsis sections not only localized ACBP4 to the cytosol but also to the periphery of the nucleus upon closer examination, perhaps as a result of its interaction with AtEBP. Furthermore, the expression of ACBP4 and AtEBP in Northern blot analyses was induced by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, methyl jasmonate treatments, and Botrytis cinerea infection, suggesting that the interaction of ACBP4 and AtEBP may be related to AtEBP-mediated defence possibly via ethylene and/or jasmonate signalling.  相似文献   

14.
15.
Cell death suppressor Bax inhibitor-1 (BI-1), an endoplasmic reticulum membrane protein, exists in a wide range of organisms. The split-ubiquitin system, overlay assay, and bimolecular fluorescence complementation analysis demonstrated that Arabidopsis (Arabidopsis thaliana) BI-1 (AtBI-1) interacted with calmodulin in yeast (Saccharomyces cerevisiae) and in plant cells. Furthermore, AtBI-1 failed to rescue yeast mutants lacking Ca2+ ATPase (Pmr1 or Spf1) from Bax-induced cell death. Pmr1 and Spf1, p-type ATPases localized at the inner membrane, are believed to be involved in transmembrane movement of calcium ions in yeast. Thus, the presence of intact Ca2+ ATPases was essential for AtBI-1-mediated cell death suppression in yeast. To investigate the effect of AtBI-1 on calcium homeostasis, we evaluated sensitivity against cyclopiazonic acid (CPA), an inhibitor of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase in AtBI-1-overexpressing or knock-down transgenic Arabidopsis plants. These plants demonstrated altered CPA or ion stress sensitivity. Furthermore, AtBI-1-overexpressing cells demonstrated an attenuated rise in cytosolic calcium following CPA or H2O2 treatment, suggesting that AtBI-1 affects ion homeostasis in plant cell death regulation.  相似文献   

16.
Yeast-based functional screening of a human glioblastoma cDNA library identified ras-related nuclear protein (Ran) as a novel suppressor of Bcl-2-associated X protein (Bax), a pro-apoptotic member of the Bcl-2 family of proteins. Yeast cells that expressed human Ran were resistant to Bax-induced cell death. In U373MG glioblastoma cells, stable overexpression of Ran significantly attenuated apoptotic cell death induced by the chemotherapeutic agent paclitaxel. FACS analysis demonstrated that Ran is involved in paclitaxel-induced cell cycle arrest. Stable overexpression of Ran also markedly inhibited the phosphorylation of Bcl-2 by paclitaxel, and inhibited the translocation of Bax, the release of cytochrome c and activation of caspase-3. Paclitaxel-induced phosphorylation of c-JUN N-terminal kinase (JNK), but not p38, extracellular signal-regulated kinase and Akt, was markedly suppressed in U373MG cells that stably expressed Ran. These results suggest that Ran suppresses paclitaxel-induced cell death through the downregulation of JNK-mediated signal pathways. Im Sun Woo and Han-Su Jang contributed equally to this work.  相似文献   

17.
Mammalian Bax is known to cause cell death when expressed in plants. We examined transgenic plants expressing both Bax and organelle-targeted green fluorescent protein to determine the cellular changes that occur during Bax-induced cell death. The mitochondria changed morphologically from being bacilli-shaped to being round, eventually becoming swollen. Mitochondria streaming also stopped. The chloroplasts lost membrane function and their contents leaked out, followed by the disruption of the vacuole. Light was not essential for Bax-induced ion leakage or organelle disruption. These results indicate that Bax induces temporal and spatial cell death events at the organelle level in the plant. A heterologous system, using Bax, would therefor be available to investigate cell death, which is commonly conserved in animals and plantsElectronic Supplementary Material Supplementary material is available for this article at  相似文献   

18.
19.
Yeast Snf4 is a prototype of activating gamma-subunits of conserved Snf1/AMPK-related protein kinases (SnRKs) controlling glucose and stress signaling in eukaryotes. The catalytic subunits of Arabidopsis SnRKs, AKIN10 and AKIN11, interact with Snf4 and suppress the snf1 and snf4 mutations in yeast. By expression of an Arabidopsis cDNA library in yeast, heterologous multicopy snf4 suppressors were isolated. In addition to AKIN10 and AKIN11, the deficiency of yeast snf4 mutant to grown on non-fermentable carbon source was suppressed by Arabidopsis Myb30, CAAT-binding factor Hap3b, casein kinase I, zinc-finger factors AZF2 and ZAT10, as well as orthologs of hexose/UDP-hexose transporters, calmodulin, SMC1-cohesin and Snf4. Here we describe the characterization of AtSNF4, a functional Arabidopsis Snf4 ortholog, that interacts with yeast Snf1 and specifically binds to the C-terminal regulatory domain of Arabidopsis SnRKs AKIN10 and AKIN11.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号