首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The advent of remote-sensed satellite land cover data has provided the opportunity to assess the relationship between invertebrate species distributions and individual land cover types. Water beetle species occur in habitats within specific land cover types and the relationship between the distribution of water beetle species and land covers at the regional scale was investigated using records of 154 species from 1018 sites in north-east England. The land covers of tilled land and urban in the lowlands and of shrub heath and heath grassland in the upland areas proved to be most important in explaining the distribution of species. There were both positive and negative associations between some species and other covers such as woodland and the coast. However, a considerable number of species, generally those with a large number of records, showed no strong relationships with any land cover types. The integration of water beetle species recording data and remote-sensed land cover data as a basis for predicting and monitoring both species distribution and environmental change is discussed.  相似文献   

2.
Definition of northern British grassland Auchenorrhyncha habitats was carried out using a classification based on analysis of data from 351 sites, involving 121 species, located between Greater Manchester and northern Scotland. Ten habitats were identified showing little influence of geographical position and exhibiting a basic upland-lowland trend. Other factors influencing habitat and species assemblage distribution were soil water, vegetation structure and land cover. An analysis of the species data with satellite-derived land cover data indicated that the lowland covers of tilled land, coast and urban and the upland covers of heath grassland and shrub heath were most important in affecting both species and assemblage distribution. The large-scale survey of grassland sites provided new information on both the ecology and distribution of individual Auchenorrhyncha species. Some were limited to specific habitat types but a considerable number were generalist species found in most or all of the 10 habitat types but showing preferences within upland to lowland or wet to dry site gradients. The ability to generate a subtle grassland Auchenorrhyncha habitat classification with large-scale survey results from standardised and reproducible sampling increases the potential for using habitat diversity for the conservation of grassland Auchenorrhyncha. Habitat preservation would also ensure that species richness (biodiversity) is maintained and that the habitats of rare species are conserved.  相似文献   

3.
The identification of beetle, and other invertebrate, biotopes based on the recording of species assemblages has become a regular occurrence as a result of increased survey work, with the approach expanded into classifications of grid square pooled species lists at the national scale. A reassessment of beetle biotopes and distribution has been attempted by interpreting the classifications in terms of the major environmental factors of productivity and disturbance, identified as being important drivers in work on habitat templates and strategic triangles. For grassland ground beetle biotopes, productivity was generally related to soil quality whilst disturbance was associated with land management or cover. Productivity of exposed riverine sediment ground beetle biotopes was dependent on deposited organic matter and disturbance on the effects of water flow on site structure. With both ground beetle biotopes, the distribution of assemblages was also affected by substrate water, another abiotic driver. Productivity in aquatic beetle biotopes was a function of base-status, generally reflected by pH, whilst disturbance was mainly due to water flow and wave action. However, disturbance in ditches was also the result of site vegetation management whilst another factor affecting assemblage distribution was water permanence, with temporary water having specific assemblages. For large-scale British, grid-based, classifications productivity and disturbance were interpreted from satellite-derived land cover data. At the national scale, the other important factor influencing distribution was temperature. There is a requirement for better quantification of a number of the factors influencing biotope and assemblage definition. Species strategies employed to cope with the various environmental variables were reflected in traits in such factors as morphology and life-cycles. The effects of environmental perturbations including climate change, pollution and land use are discussed in relation to the environmental variables and to the various species strategies. Biotope classifications, using standardised and reproducible survey methods, allied to a better understanding of the underlying environmental pressures, could produce a unified approach for the conservation of beetle and other invertebrate species.  相似文献   

4.
Aims and methods Ground beetle and satellite‐derived land cover data from 1687 United Kingdom 10 km national grid squares were used to assess the relationship between species pool and cover data in Great Britain using fuzzy classification and constrained ordination. Results Ground beetle species pools classified into nine groups which were related to land cover variables using constrained ordination. There was a strong relationship between upland land cover and three ground beetle groups. Deciduous woodland, coastal and tilled land were associated with three other groups. Three further groups did not appear to be strongly associated with any particular cover, but differed in geographical position. Conclusion The distribution of species pools derived from the British national recording scheme at the 10 km scale was strongly related to satellite‐derived land cover data. There appears to be considerable potential for the use of a synthesis of land cover and ground beetle data in the monitoring of environmental change over a large, countrywide, area.  相似文献   

5.
Aims To determine the relationship between satellite‐derived land cover data and distribution patterns of water beetle species pools. Location A total of 687 British national grid 10 km squares in Scotland and 588 1 km grid squares in 99 10 km grid squares in northeast England. Methods Multivariate classification and constrained ordination analyses were used with water beetle species and land cover data. Results The major variation in both the Scotland and northeast England 10 km species pools was from squares with upland acid water habitats to squares with lowland fens and ponds whilst for the 1 km northeast England data it was from squares dominated by fast‐flowing streams and rivers to those with fens and ponds. The secondary variations in the 10 and 1 km analyses were the primary ones juxtaposed. Constrained ordination of the Scottish 10 km data showed upland land cover types to be most influential in determining species pool distribution whilst lowland covers were more important with both the 10 and 1 km northeast England pools. The three analyses showed that coastal cover had a relatively high influence on species pool distribution but no species pool group was dominated by coastal species. Main conclusions There were strong relationships between water beetle species pool distributions and the satellite‐derived land cover types dominating upland and lowland areas. The major variation in the northeast England species pool data differed at the two scales analysed. Results indicated that there is considerable potential for the synthesis of water beetle distribution and land cover data for use in environmental and conservation monitoring at both the regional and national scales.  相似文献   

6.
Exposed riverine sediments (ERS) by four rivers in Scotland and northern England were sampled for beetles in 1996 and 1997. One hundred and sixty rove beetle (Staphylinidae) species lists were analysed using ordination and classification techniques in order to identify habitat groups within and between catchments and to assess which factors were affecting species assemblage distribution. There were major differences between the species assemblages of ERS by rivers of highland and lowland catchments. Within catchments, assemblage distribution was mainly influenced by the position of sites within the catchment; vegetation cover and sediment composition had less influence. The number of rove beetle habitats was not the same as those for ground and phytophagous beetle groups, indicating that conservation considerations should take into account variations in ERS habitat diversity. A considerable number of records of nationally rare and scarce rove beetle species were recorded, most on ERS by rivers and tributaries unaffected by river management or engineering.  相似文献   

7.
Multivariate techniques were used to compare and contrast the effects of land cover and farming practice on ground beetle and spider assemblages of Scottish farmland. For both ground beetles and spiders, the ordination and fuzzy clustering of sites were related to land cover rather than geographical location or year of sampling. The same four types of land cover group were identified: that is, heather moorland, semi-natural grassland, intensive grassland and arable land. The robustness of these land cover groups was tested using previously unsampled sites and it was found that 79 and 86% of sites, for ground beetle and spider assemblages respectively, were allocated to the land cover group predicted from their actual land cover. Furthermore, procrustes rotational analysis found a strong relationship between ground beetle and spider assemblages in intensively managed sites, suggesting that the assemblage structure of one group could be used to predict that of the other. The observed relationship between spider and ground beetle assemblages does not necessarily indicate that both groups were responding to agricultural practices in the same way. Indeed, the highest number of beetle species occurred in intensively managed grassland and arable sites while the highest number of spider species occurred in semi-natural grassland and heather sites. When conducting ecological assessments, one might wish to collect information on a wide range of ecologically different taxa; however, financial constraints make this unfeasible. From the results it could be concluded that spiders should be chosen in preference to ground beetles when seeking to make predictions on how farming practices influence invertebrates. However, such a conclusion would be premature since not only were spiders more numerous in the traps, but they were also more time consuming to process. In addition, the strong relationship found between the spider and ground beetle assemblages further justifies carabids as a target group when monitoring the influence of farming practices on biodiversity.  相似文献   

8.
This data paper reports census data of ground-dwelling beetle and other fauna of the forest floor environment; collections were made from a network of 22 forest sites in Japan. To our knowledge, this represents the largest dataset for long-term monitoring of a ground-dwelling beetle community and other taxa in a ground environment in forests, which covers a broad climatic range in the temperate zone and is freely available. The network forms part of the Monitoring Sites 1000 Project launched by the Ministry of the Environment, Japan. It covers subalpine, cool- and warm-temperate and subtropical climatic zones and the four major forest types of Japan. Thirty-three permanent plots usually 1 ha in size were established in old-growth, secondary natural and a few plantation forests. Censuses of the ground-dwelling beetle community were conducted using pitfall trapping and forest floor environment monitoring every year from 2004 to the present. During the initial 9 years of the census (2004–2012), 59,762 beetle individuals (including 3182 larvae) of more than 314 species were recorded. This dataset includes taxonomy and biomass of each beetle individual and each taxonomic group of other invertebrates coincidently captured in pitfall trapping. The dataset also includes data related to ground coverage by forest floor vegetation, dry mass of the accumulated organic litter layer, and carbon and nitrogen contents and cellulose decomposition rate in organic layer and surface mineral soil. The data could be used to investigate geographical patterns and intra- and inter-annual dynamics of individual body mass, populations and community structures of ground-dwelling beetles, and their relationships with the forest floor environment. Furthermore, the data could be analyzed with other open datasets related to tree community dynamics and litter fall continuously measured in the same study plots. This dataset also provides information related to the distribution and average body mass of each beetle species.  相似文献   

9.
Investigations concerned with ground beetle (Carabidae) dynamics in the agroecosystem have generally been limited to relatively short time periods in one crop, commonly wheat, whilst other studies have concentrated on the influence of landscape structure and non-crop habitat on beetle activity, again usually in one crop. Results of a seven-year survey at Nafferton in northern England, with recording from all crops in an organic rotation and from three types of field boundary, indicated that the lack of field boundary management had the greatest influence on ground beetle activity/density in this particular agroecosystem. However, within the crop rotation, grass/clover limited activity/density compared with that in cereal, potato and bean crops and there were also differences within cereal crops. Data from a 17-year survey at Drayton Environmental Change Network (ECN) site in midland England indicate that previous understanding of ground beetle activity and distribution in intensively managed landscapes may have been limited by temporal constraints. At Drayton, changes in surrounding crop cover, with the introduction of willow coppice and reduced area of arable land and agricultural inputs, considerably influenced ground beetle activity/density and assemblages in non-crop habitat. Small, active species dominating the assemblage in the first few years of the Drayton survey were gradually replaced by larger, non-flying species, especially after all the willow coppice had been planted. In both surveys, activity/density of ground beetles was related to disturbance, affecting vegetation cover and structure, but at the field scale at Nafferton and at the farm scale at Drayton. Longer surveys in a variety of landscapes such as those by the United Kingdom Environmental Change Network are likely to improve understanding of activity, diversity and distribution of invertebrates, which are fundamental requirements if predators such as ground beetles are required for ecosystem service provision.  相似文献   

10.
Aims We compare performance of ecosystem classification maps and provincial forest inventory data derived from air photography in reflecting ground beetle (Coleoptera: Carabidae) biodiversity patterns that are related to the forest canopy mosaic. Our biodiversity surrogacy model based on remotely sensed tree canopy cover is validated against field-collected ground data.Methods We used a systematic sampling grid of 198 sites, covering 84 km 2 of boreal mixedwood forest in northwestern Alberta, Canada. For every site, we determined tree basal area, characterized the ground beetle assemblage and obtained corresponding provincial forest inventory and ecosystem classification information. We used variation partitioning, ordination and misclassification matrices to compare beetle biodiversity patterns explained by alternative databases and to determine model biases originating from air photo-interpretation.Important findings Ecosystem classification data performed better than canopy cover derived from forest inventory maps in describing ground beetle biodiversity patterns. The biodiversity surrogacy models based on provincial forest inventory maps and field survey generally detected similar patterns but inaccuracies in air photo-interpretation of relative canopy cover led to differences between the two models. Compared to field survey data, air photo-interpretation tended to confuse two Picea species and two Populus species present and homogenize stand mixtures. This generated divergence in models of ecological association used to predict the relationship between ground beetle assemblages and tree canopy cover. Combination of relative canopy cover from provincial inventory with other geo-referenced land variables to produce the ecosystem classification maps improved biodiversity predictive power. The association observed between uncommon surrogates and uncommon ground beetle species emphasizes the benefits of detecting these surrogates as a part of landscape management. In order to complement conservation efforts established in protected areas, accurate, high resolution, wide ranging and spatially explicit knowledge of landscapes under management is primordial in order to apply effective biodiversity conservation strategies at the stand level as required in the extensively harvested portion of the boreal forest. In development of these strategies, an in-depth understanding of vegetation is key.  相似文献   

11.
Cuticular microsculpture “cells” were measured on 78 species of UK ground beetles. The data were analyzed to establish whether the type of microsculpture could be linked to ground beetle size (length) or ecological preferences. Larger species tended towards isodiametric patterns, while more of the smaller species showed a transverse or effaced pattern. There was no indication that preferences for dry or moist habitat were linked to microsculpture type, which had been suggested in the literature.  相似文献   

12.
13.
Aims We examine the relationships between the distribution of British ground beetle species and climatic and altitude variables with a view to developing models for evaluating the impact of climate change. Location Data from 1684 10‐km squares in Britain were used to model species–climate/altitude relationships. A validation data set was composed of data from 326 British 10‐km squares not used in the model data set. Methods The relationships between incidence and climate and altitude variables for 137 ground beetle species were investigated using logistic regression. The models produced were subjected to a validation exercise using the Kappa statistic with a second data set of 30 species. Distribution patterns for four species were predicted for Britain using the regression equations generated. Results As many as 136 ground beetle species showed significant relationships with one or more of the altitude and climatic variables but the amount of variation explained by the models was generally poor. Models explaining 20% or more of the variation in species incidence were generated for only 10 species. Mean summer temperature and mean annual temperature were the best predictors for eight and six of these 10 species respectively. Few models based on altitude, annual precipitation and mean winter temperature were good predictors of ground beetle species distribution. The results of the validation exercise were mixed, with models for four species showing good or moderate fits whilst the remainder were poor. Main conclusions Whilst there were many significant relationships between British ground beetle species distributions and altitude and climatic variables, these variables did not appear to be good predictors of ground beetle species distribution. The poor model performance appears to be related to the coarse nature of the response and predictor data sets and the absence of key predictors from the models.  相似文献   

14.
Influence of ground cover on spider populations in a table grape vineyard   总被引:2,自引:0,他引:2  
1. Cover crops and/or resident ground vegetation have been used in California vineyards to increase the number of predators and decrease the number of pestiferous herbivores. The most common resident predators in vineyards are spiders (Araneae). Several observational studies suggest that the addition of cover crops results in an increase in spider density and a decrease in insect pest densities. 2. To test experimentally the effects of cover crops and/or resident ground vegetation (hereafter collectively referred to as ground cover) on spider populations, a 3-year study was undertaken in a commercial vineyard. Large, replicated plots were established with and without ground cover during the growing season. Spider species diversity was analysed on the vines and on the ground cover. 3. On the vines, there was no significant difference in spider species richness or the total number of spiders in plots with and without ground cover. There were differences in the relative abundance of two spiders between treatments, with one species (Trachelas pacificus [Chamberlin & Ivie]) more abundant in plots with ground cover and another (Hololena nedra Chamberlin & Ivie) more common on vines in plots with no ground cover. Annual variation in spider abundance was greater than variation due to ground cover treatment. 4. On the ground cover, the spider species diversity was considerably different from that found on the vines above, suggesting that there is little movement of spiders between the ground cover and the vines. Enhancement of T. pacificus populations on vines with ground covers may be a result of prey species movement between the ground cover and the vines. Spider abundance was sparse on the bare ground. 5. The maintenance of ground cover increased spider species diversity in the vineyard as a whole (vine and ground cover). However, the relatively small changes in spider abundance on the vines indicate there are limitations in the use of ground covers for pest management with respect to generalist predators.  相似文献   

15.
A total of 78 brownfield (post-industrial and urban) sites were surveyed for beetles between 1991 and 2001 throughout England using pitfall traps. The distribution of ground, rove and phytophagous beetle assemblages was investigated using ordination and classification analyses. Site drainage and vegetation cover had a profound effect on the distribution of ground and rove beetle assemblages but site location was also important for phytophagous beetle assemblages. A total of 182 records of 46 nationally rare and scarce species (16 ground, 10 rove and 20 phytophagous species) were generated. A number of these species are more usually associated with other, more natural habitats such as riverine sediments, sandy heaths and chalk grassland. Brownfield sites provide habitat conditions similar to more natural habitats and they may help maintain populations of some rare and scarce species. The results indicate that brownfield sites are important habitats for beetles and there is evidence that the situation is similar for other invertebrate groups. There should be no further assumptions that post-industrial and urban sites have no conservation interest.  相似文献   

16.
The diversity of beetle assemblages in different habitat types (primary forest, logged forest, acacia plantation and oil palm plantation) in Sabah, Malaysia was investigated using three different methods based on habitat levels (Winkler sampling, flight-interception-trapping and mist-blowing). The overall diversity was extremely high, with 1711 species recorded from only 8028 individuals and 81 families (115 family and subfamily groups). Different degrees of environmental changes had varying effects on the beetle species richness and abundance, with oil palm plantation assemblage being most severely affected, followed by acacia plantation and then logged forest. A few species became numerically dominant in the oil palm plantation. In terms of beetle species composition, the acacia fauna showed much similarity with the logged forest fauna, and the oil palm fauna was very different from the rest. The effects of environmental variables (number of plant species, sapling and tree densities, amount of leaf litter, ground cover, canopy cover, soil pH and compaction) on the beetle assemblage were also investigated. Leaf litter correlated with species richness, abundance and composition of subterranean beetles. Plant species richness, tree and sapling densities correlated with species richness, abundance and composition of understorey beetles while ground cover correlated only with the species richness and abundance of these beetles. Canopy cover correlated only with arboreal beetles. In trophic structure, predators represented more than 40% of the species and individuals. Environmental changes affected the trophic structure with proportionally more herbivores (abundance) but fewer predators (species richness and abundance) in the oil palm plantation. Biodiversity, conservation and practical aspects of pest management were also highlighted in this study.  相似文献   

17.
A sufficiently large body of knowledge on British ground beetle (Carabidae) communities now exists to allow investigation of whether habitats may be classified or described on the basis of their ground beetle communities, in the same way that the National Vegetation Classification (NVC) describes British plant communities. A data set of ground beetle abundances from pitfall traps at 481 sites in a range of natural, semi-natural and agricultural habitats throughout Scotland was available for analysis. Multivariate analysis (detrended correspondence analysis and fuzzy cluster analysis) was carried out on proportional catch data of 156 species of ground beetle from 444 of these sites and the results related to the NVC of the sites.
Initial analysis classified the sites into five broad categories: 1) peatlands, 2) calcifugous, 3) mesotrophic, 4) dry river sediments and 5) damp river sediments. Further analysis identified 15 ground beetle assemblages, each corresponding to a relatively well defined vegetation type within one of these broad categories. The major environmental factors appearing to determine the distribution of ground beetle assemblages were substratum type, disturbance and soil moisture, all of which are also important determinants of the distribution of plant communities. The presence and absence of relatively stenotopic species were important discriminants of certain habitats such as wetlands and river sediments but the relative abundances within assemblages of more eurytopic species provided good indications of a relationship between ground beetle assemblages and NVC categories.  相似文献   

18.
Pooled water beetle species lists from 1826 British national grid 10-km squares were analysed using multivariate ordination and classification methods. The relationships of pool groups to the climate, altitude and land cover variables were assessed using constrained and partial ordinations. Ordination of the species pool data indicated a major trend between squares in the north-west of Scotland and those in southern England, illustrating differences in acid and basic water standing water. Secondary variation was from acid standing water to fast-flowing streams and rivers. Classification generated nine species pool groups. These showed a distinct north-west to south-east trend but there was no obvious coastal or brackish water effect on distribution. The climatic and land cover variables were all significantly related to each other, and to north-south variation in grid square location, but the constrained ordination results indicated that that the most important influence on water beetle species pool distribution was mean summer temperature. Although the amount of variation explained by the environmental variables was low, spatial variation in the environmental predictors was almost as important as the environmental variables themselves in determining species pool composition. Mean annual temperature was also strongly correlated with species pool distribution with two land cover variables slightly less important. Altitude and precipitation had the least influence. The water beetle national recording scheme database appears to be of sufficiently high quality for environmental investigations at the British scale. There is considerable potential for the synthesis of invertebrate species distribution, land cover and climate change predictions in the assessment of environmental change. The results, together with previous work on other invertebrate species, indicate that changing summer temperatures may have a considerable influence on the distribution British invertebrate species.  相似文献   

19.
Land-use intensification in Mediterranean agro-forest systems became a pressure on biodiversity, concerning particularly the woodland sensitive species. In 2001, the effects of a land-use gradient from old-growth cork-oak forest to a homogeneous agricultural area were assessed using rove beetles as indicators in a Mediterranean landscape. The aim was to find which species were negatively affected by land-use intensification at the landscape level and whether they benefited from cork-oak patches occurring along the land-use gradient. A total of 3,196 rove beetles from 88 taxa were sampled from all landscape types. Agricultural area recorded significantly higher numbers of abundance and species richness in relation to the cork-oak mosaics, i.e. the old-growth forest and the managed agro-forest landscapes (montados). Moreover, 70% of rove beetle indicator species common enough to be tested by IndVal displayed their highest indicator value for agriculture, showing a lower number of woodland indicators in comparison to ground beetles. Nevertheless, one rove beetle taxon was considered a specialist of closed woodland mosaics while no specialist ground beetle was found for that landscape typology. Some rare rove beetle species were also important in typifying diversity patterns of old-growth cork-oak forests. Hence, future management in Mediterranean landscapes should take into account not only indicator species common enough to be tested by IndVal, but also rare and endemic species. Considering the added value of cork-oak woodland cover for sensitive rove and ground beetle diversity, the strengthening of cork-oak woodland connectivity seems to be a crucial management that is required in agricultural Mediterranean landscapes.  相似文献   

20.
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground‐dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H’) of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H’/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号