首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When a membrane preparation from the lactating bovine mammary gland is incubated with GDP-[14C] mannose, mannose is incorporated into a [14C] mannolipid, a [Man-14C] oligosaccharide-lipid, and metabolically stable endogenous acceptor(s). The rate of mannosyl incorporation is the fastest into [14C] mannolipid, intermediate in [Man-14C] oligosaccharide-lipid, and least into [Man-14C] endogenous acceptor(s). The [14C] mannolipid has been partially purified and characterized. Mild acid hydrolysis of this compound gives [14C] mannose, whereas alkaline hydrolysis yielded [14C] mannose phosphate as the labeled product. The t½ of hydrolysis of the mannolipid under the acidic and basic conditions are comparable to values obtained for mannosyl phosphoryl dolichol in other systems. The mannolipid is chromatographically indistinguishable from calf brain mannosyl phosphoryl polyisoprenol and chemically synthesized β-mannosyl phosphoryl dolichol. Exogenous dolichol phosphate stimulates the synthesis of mannolipid in mammary particulate preparations 8.5-fold. Synthesis of mannolipid is freely reversible; in the presence of GDP, the transfer of mannosyl moiety from endogenously labeled mannolipid to GDP-mannose is obtained. All of these results indicate that the structure of mannolipid is mannosyl phosphoryl polyisoprenol. Even though the precise chain length of the polyisoprenol portion has not been established, it is tentatively suggested to be dolichol. Partially purified [14C] mannolipid can directly serve as a mannosyl donor in the synthesis of [Man-14C] oligosaccharide-lipid and [Man-14C] endogenous acceptor(s). Pulse and chase kinetics utilizing GDP-mannose to chase the mannosyl transfer from GDP-[14C] mannose in the mammary membrane incubations caused an immediate and rapid turnover of [14C] mannose from [14C] mannolipid while the incorporation of label in [Man-14C] oligosaccharide-lipid and radioactive endogenous acceptor(s) continued for a short period before coming to a halt. Both gel filtration and electrophoresis indicate that the endogenous acceptor(s) are a mixture of 2 or more glycoproteins since incubation with proteases releases all of the radioactivity into water soluble low-molecular-weight components, perhaps glycopeptides. All of the above evidence is consistent with the following precursor-product relationship: GDP-mannose ? mannosyl phosphoryl polyisoprenol → mannosyl-oligosaccharide-lipid → mannosyl-proteins. The exact structure of the oligosaccharide-lipid and the endogenous glycoproteins is unknown.  相似文献   

2.
A particulate enzyme fraction isolated from yeast (Hansenula holstii) catalyzes the transfer of mannose from GDPmannose to endogenous lipid acceptors. Kinetic studies are presented which suggest that one of the mannolipids is a precursor to cell wall mannan. The solubility and chromatographic properties, the stability to mild alkali, and the release of mannose by mild acid hydrolysis are characteristic of polyisoprenyl phosphoryl mannose. Addition of dolichol phosphate to the enzyme system stimulates the synthesis of a mannolipid with properties similar to that synthesized from endogenous lipid. That the exogenous dolichol phosphate was acting as a mannosyl acceptor was demonstrated by showing that dolichol [32P]phosphate was converted to dolichol [32P]phosphate mannose.  相似文献   

3.
GDP-mannose and UDP-mannose (each at less than 1 micrometer) markedly inhibit glucosyl transfer from UDP-glucose (1.6 micrometer( to dolichyl phosphate in liver microsomal preparations. The biphasic response suggests the presence of two glucosyl transferases only one of which is inhibited. The inhibition appears to be a property of the intact nucleotide phosphate sugars and not due to competition for a limited pool of dolichyl phosphate. UDP-galactose and UDP-xylose cause a less marked inhibition of the same enzyme. The failure of UDP-glucose to inhibit mannosyl transfer suggests that the pool of dolichol monophosphate used by mannosyl transferase is not available to the glucosyl transferase. The relationship between the degree to which an exogenous prenol phosphate acts as an acceptor of mannose and the degree to which it inhibits mannosylation of endogenous dolichyl monophosphate varies among different prenyl phosphates. Mannosyl transferase exhibits two pH optima.  相似文献   

4.
Microsomal preparations from rat adipose tissue catalyse the transfer of [14C]mannose from GDP-[14C]mannose to an endogenous acceptor forming a [14C]mannosyl lipid. The mannosyl lipid co-chromatographs with hen oviduct dolichyl monophosphate β-mannose on three solvent systems. It is stable to mild alkaline hydrolysis, but strong alkaline treatment yields a compound that co-migrates with mannose 1-phosphate. The mannosyl lipid is labile to mild acid hydrolysis, yielding [14C]mannose. Formation of the compound is reversible by GDP, but not GMP, and is stimulated by exogenous dolichyl phosphate.

The kinetics of transfer of [14C]mannose from GDP-[14C]mannose to form dolichyl monophosphate mannose were studied by using preparations derived from rats fed on one of four diets: G (high glucose), L (high lard), F (fructose) or GC (high glucose, 0.9% cholesterol). The Km and Vmax. values for transfer from GDP-mannose were virtually indistinguishable in the four preparations.

In the absence of exogenous dolichyl phosphate, the largest amount of transfer of [14C]mannose into the mannosyl lipid was observed with preparations from fructose-fed animals. Preparations from glucose-fed animals showed about 60% as much transfer, whereas membranes from rats fed the other diets showed intermediate values between the fructose- and glucose-fed animals. The inclusion of cholesterol in the glucose diet elicited an increase in transfer of mannose.

Under conditions of saturating exogenous dolichyl phosphate, preparations from lard-fed animals have 1.5 times as much enzyme activity as do preparations from animals fed the other three diets.

  相似文献   

5.
When pig liver microsomal preparations were incubated with GDP-[14C]mannose, 10–40% of the 14C was transferred to mannolipid and 1–3% to mannoprotein. The transfer to mannolipid was readily reversible and GDP was one of the products of the reaction. It was possible to reverse the reaction by adding excess of GDP and to show the incorporation of [14C]GDP into GDP-mannose. When excess of unlabelled GDP-mannose was added to a partially completed incubation there was a rapid transfer back of [14C]mannose from the mannolipid to GDP-mannose. The other product of the reaction, the mannolipid, had the properties of a prenol phosphate mannose. This was illustrated by its lability to dilute acid but stability to dilute alkali, and by its chromatographic properties. Dolichol phosphate stimulated the incorporation of [14C]mannose into both mannolipid and into protein, although the former effect was larger and more consistent than the latter. The incorporation of exogenous [3H]dolichol phosphate into the mannolipid, and its release, accompanied by mannose, on treatment of the mannolipid with dilute acid, confirmed that exogenous dolichol phosphate can act as an acceptor of mannose in this system. It was shown that other exogenous polyprenol phosphates (but not farnesol phosphate or cetyl phosphate) can substitute for dolichol phosphate in this respect but that they are much less efficient than dolichol phosphate in stimulating the transfer of mannose to protein. Since pig liver contained substances with the chromatographic properties of both dolichol phosphate and dolichol phosphate mannose, which caused an increase in transfer of [14C]mannose from GDP-[14C]mannose to mannolipid, it was concluded that endogenous dolichol phosphate acts as an acceptor of mannose in the microsomal preparation. The results indicate that the mannolipid is an intermediate in the transfer of mannose from GDP-mannose to protein. Some 4% of the mannose of a sample of mannolipid added to an incubation was transferred to protein. A scheme is proposed to explain the variations with time in the production of radioactive mannolipid, mannoprotein, mannose 1-phosphate and mannose from GDP-[14C]mannose that takes account of the above observations. ATP, ADP, UTP, GDP, ADP-glucose and UDP-glucose markedly inhibited the transfer of mannose to the mannolipid.  相似文献   

6.
The transfer of mannose from GDP-mannonse to exogenous glycopeptides and simple glycosides has been shown to be carried out by calf thyroid particles (Adamany, A. M., and Spiro, R. G. (1975) J. Biol. Chem. 250, 2830-2841). The present investigation indicates that this mannosylation process is accomplished through two sequential enzymatic reactions. The first involves the transfer of mannose from the sugar nucleotide to an endogenous acceptor to form a compound which has the properties of dolichyl mannosyl phosphate, while in the properties of dolichyl mannosyl phosphate, while in the second reaction this mannolipid serves as the glycosyl donor to exogenous acceptors. The particle-bound enzyme which catalyzed the first reaction utilized GDP-mannose (Km = 0.29 microM) as the most effective mannosyl donor, required a divalent cation, preferably manganese or calcium, and acted optimally at pH 6.3. Mannolipid synthesis was reversed by addition of GDP and a ready exchange of the mannose moiety was observed between [14C]mannolipid and unlabeled GDP-mannose. Exogenously supplied dolichyl phosphate, and to a lesser extent ficaprenyl phosphate, served as acceptors for the transfer reaction. The 14C-labeled endogenous lipid had the same chromatographic behavior as synthetic dolichyl mannosyl phosphate and enzymatically mannosylated dolichyl phosphate. The mannose component in the endogenous lipid was not susceptible to reduction with sodium borohydride and was released by mild acid hydrolysis. Alkaline treatment of the mannolipid released a phosphorylated mannose with properties consistent with that of mannose 2-phosphate. The formation of this compound which can arise from a cyclic 1,2-phosphate indicated, on the basis of steric considerations, that the mannose is present in beta linkage to the phosphate of the lipid. An intermediate role of the mannolipid in the glycosylation of exogenous acceptors was suggested by the observation that addition of dolichyl phosphate to thyroid particles resulted in a marked enhancement of mannose transfer from GDP-mannose to methyl-alpha-D-mannopyranoside acceptor while the presence of the glycoside caused a decrease in the mannolipid level. The glycosyl donor function of the polyisoprenyl mannosyl phosphate in the second reaction of the mannosylation sequence could be directly demonstrated by the transfer of [14C]mannose from purified endogenous mannolipid to either methyl-alpha-D-mannoside or dinitrophenyl unit A glycopeptides by thyroid enzyme in the presence of Triton X-100. The mannosylation of the glycoside was not inhibited by EDTA whereas the transfer of mannose to glycopeptide was cation-dependent. While dolichyl [14C]mannosyl phosphate, prepared from exogenous dolichyl phosphate, served as a donor of mannose to exogenous acceptor, this function could not be fulfilled by ficaprenyl [14C]mannosyl phosphate. The two-step reaction sequence carried out by thyroid enzymes which leads to the formation of an alpha-D-manno-pyranosyl-D-mannose linkage in exogenous acceptors by transfer of mannose from GDP-mannose through a beta-linked intermediate appears to involve a double inversion of anomeric configuration of this sugar.  相似文献   

7.
A membrane fraction obtained from the filamentous form of Sporothrix schenckii was able to transfer mannose from GDP-Mannose into dolichol phosphate mannose and from this inTermediate into mannoproteins in coupled reactions catalyzed by dolichol phosphate mannose synthase and protein mannosyl transferase(s), respectively. Although the transfer reaction depended on exogenous dolichol monophosphate, membranes failed to use exogenous dolichol phosphate mannose for protein mannosylation to a substantial extent. Over 95% of the sugar was transferred to proteins via dolichol phosphate mannose and the reaction was stimulated several fold by Mg2+ and Mn2+. Incubation of membranes with detergents such as Brij 35 and Lubrol PX released soluble fractions that transferred the sugar from GDP-Mannose mostly into mannoproteins, which were separated by affinity chromatography on Concanavilin A–Sepharose 4B into lectin-reacting and non-reacting fractions. All proteins mannosylated in vitro eluted with the lectin-reacting proteins and analytical electrophoresis of this fraction revealed the presence of at least nine putative mannoproteins with molecular masses in the range of 26–112 kDa. The experimental approach described here can be used to identify and isolate specific glycoproteins mannosylated in vitro in studies of O-glycosylation.  相似文献   

8.
Inflammation and glucocorticoids stimulate hepatic glycoprotein synthesis, resulting in an increased secretion of serum glycoproteins. We now present evidence that the synthesis of dolichol and dolichol phosphate from mevalonate is increased in hepatocytes from inflamed rats. Also, in inflamed rats, the levels of dolichol and dolichol phosphate are increased in liver homogenates and microsomes. Dexamethasone treatment of the cells, however, does not increase the synthesis of dolichol and dolichol phosphate from mevalonate. The results suggest that the inflammation-induced dolichol-linked saccharide and glycoprotein synthesis is possibly mediated through an increase in the level of dolichol and dolichol phosphate in the liver. Since dexamethasone treatment does not increase the synthesis of dolichol and dolichol phosphate, its action on glycoprotein synthesis appears to be different and to affect the induction of enzymes in mannosyl phosphoryl dolichol- and dolichol-linked oligosaccharide synthesis.  相似文献   

9.
1. The transfer of mannose from GDP-(U-14-C)mannose into endogenous acceptors of bovine adrenal medullla and rat parotid was studied. The rapidly labelled product, a glycolipid, was partially purified and characterized. 2. It was stable to mild alkaline hydrolysis but yielded (14-C)mannose on mild acid hydrolysis. It co-chromatographed with mannosyl phosphoryl dolichol in four t.l.c. systems and on DEAE-cellulose acetate. Addition of dolichol phosphate or a dolichol phosphate-enriched fraction prepared from pig liver stimulated mannolipid synthesis. 3. The formation of mammolipid appeared reversible, since addition of GDP to a system synthesizing the mannolipid caused a rapid loss of label from the mannolipid. UDP-N-acetylglucosamine did not inhibit mannolipid synthesis except at high concentrations (2 mM), even though in the absence of GDP-mannose, N-acetylglucosamine was incorporated into a lipid having the properties of a glycosylated polyprenyl phosphate. 4. Mannose from GDP-mannose was also incorporated into two other acceptors, (2y being insoluble in chloroform-methanol (2:1, v/v) but soluble in choloroform-methanol-water (10:10:3, by vol.) and (ii) protein. These are formed much more slowly than the mannolipid. 5. Exogenous mannolipid served as a mannose donor for acceptors (i) and (ii), and it is suggested that transfer of mannose from GDP-mannose to mannosylated protein occurs via two intermediates, the mannolipid and acceptor (i).  相似文献   

10.
Increased incorporation of mannose into endogenous glycoprotein fractions has been found in whole cell lysates and crude membrane preparations of cultured skin fibroblasts from patients with cystic fibrosis (1.3–2.3-times normal) when GDP[14C]mannose served as the mannosyl donor. In contrast, the incorporation of mannose from GDPmannose into lipid fractions containing dolichol phosphate and dolichol pyrophosphate oligosaccharides as well as the incorporation of mannose from dolichol phospho[3H]mannose into both glycoproteins and dolichol derivatives were not significantly different among cell preparations from patients with cystic fibrosis and normal controls. Mannosyltransferase activity toward exogenous glycoproteins as well as the activities of soluble and membranous α-mannosidase and β-mannosidase appeared to be normal and could not account for the observed differences. The altered incorporation of mannose into endogenous glycoprotein may reflect changes in glycosylation processes other than mannosylation.  相似文献   

11.
Isolated Golgi apparatus membranes from the germinal elements (spermatocytes and early spermatids) of rat testis were examined for their ability to incorporate [14C]mannose and [14C]galactose into glycolipid and glycoprotein fractions. Transfer of mannose from GDP-[14C]mannose into a Lipid I fractions (GPD:MPP mannosyl transferase activity), identified as mannosyl phosphoryl dolichol, showed optimal activity at 1.5 mM manganese and at pH 7.5. Low concentrations of Triton X-100 (0.1%) stimulated transferase activity in the presence of exogenous dolichol phosphate (Dol-P); however, inhibition occurred at Triton X-100 concentrations greater than 0.1%. Maximal activity of this GDP:MPP mannosyl transferase occurred at 25 microM Dol-P. Activity using endogenous acceptor was 2.34 pmole/min/mg, whereas in the presence of 25 microM Dol-P the specific activity was 284 pmole/min/mg, a stimulation of 125-fold. Incorporation of mannose into a Lipid II (oligosaccharide pyrophosphoryl dolichol) and a glycoprotein fraction was also examined. In the absence of exogenous Dol-P, rapid incorporation into Lipid I occurred with a subsequent rise in Lipid II and glycoprotein fractions suggesting precursor-product relationships. Addition of exogenous Dol-P to galactosyl transferase assays showed only a minor stimulation, less than twofold, in all fractions. Over the concentration range of 9.4 to 62.5 micrograms/ml Dol-P, only 1% of radioactive product accumulated in the combined lipid fractions. These observations suggest that the mannose transfer involves Dol-P intermediates and also that spermatocyte Golgi membranes may be involved in formation of the oligosaccharide core as well as in terminal glycosylations.  相似文献   

12.
Membrane preparations from hen oviduct catalyze the transfer of mannose from GDP-mannose into three components: mannosyl phosphoryl polyisoprenol, oligosaccharide-lipid, and glycoprotein. Eivence that mannosyl phosphoryl polyisoprenol serves as a mannosyl donor for synthesis of both oligosaccharide-lipid and glycoproteins was previously reported (Waechter, C.J., Lucas, J.J., and Lennarz, W.J. (1973) J. Biol. Chem. 248, 7570-7579). In this study the oligosaccharide-lipid has been isolated, and the oligosaccharide has been partially characterized. Based on paper chromatography the oligosaccharide chain contains 7 to 9 glycose units. The glycose at the reducing terminus is N-acetylglucosamine, whereas mannose is found at the nonreducing end. When UDP-N-acetyl[14C]glucosamine is incubated with oviduct membranes in the absence of GDP-mannose, a 14C-labeled chitobiosyl lipid, but little oligosaccharide-lipid is synthesized. When GDP-mannose is also present in the incubation mixture an oligosaccharide-lipid is formed containing N-acetyl[14C]glucosaminyl residues. This oligosaccharide-lipid is chromatographically identical with the [14C]mannose-containing oligosaccharide-lipid isolated in the earlier study cited above. When the N-acetyl[14C]glucosamine-oligosaccharide released from the oligosaccharide-lipid by mild acid is treated with partially purified alpha-mannosidase the major radioactive product is [14C]chitobiose. Evidence that the [14C]mannose-containing oligosaccharide-lipid serves as an oligosaccharide donor for glycoprotein synthesis was obtained by incubation of partially purified oligosaccharide-lipid with the membranes. The products of this incubation were shown to be glycoproteins on the basis of their sensitivity to pronase, as determined by both gel filtration and paper electrophoresis. Similar experiments, using oligosaccharide-lipid doubly labeled with [14C]mannose and N-acetyl[3H]glucosamine, provided evidence that the oligosaccharide chain of the oligosaccharide-lipid is transferred en bloc to glycoprotein s.  相似文献   

13.
Incubation of a mixed membrane fraction of C. albicans with the nonionic detergents Nonidet P-40 or Lubrol solubilized a fraction that catalyzed the transfer of mannose either from endogenously generated or exogenously added dolichol-P-[14C]Man onto endogenous protein acceptors. The protein mannosyl transferase solubilized with Nonidet P-40 was partially purified by a single step of preparative nondenaturing electrophoresis and some of its properties were investigated. Although transfer activity occurred in the absence of exogenous mannose acceptors and thus depended on acceptor proteins isolated along with the enzyme, addition of the protein fraction obtained after chemical de-mannosylation of glycoproteins synthesized in vitro stimulated mannoprotein labeling in a concentration-dependent manner. Other de-mannosylated glycoproteins, such as yeast invertase or glycoproteins extracted from C. albicans, failed to increase the amount of labeled mannoproteins. Mannosyl transfer activity was not influenced by common metal ions such as Mg(2+), Mn(2+) and Ca(2+), but it was stimulated up to 3-fold by EDTA. Common phosphoglycerides such as phosphatidylglycerol and, to a lower extent, phosphatidylinositol and phosphatidylcholine enhanced transfer activity. Interestingly, coupled transfer activity between dolichol phosphate mannose synthase, i.e., the enzyme responsible for Dol-P-Man synthesis, and protein mannosyl transferase could be reconstituted in vitro from the partially purified transferases, indicating that this process can occur in the absence of cell membranes.  相似文献   

14.
Particulate fractions (10,000g) from pupae of Stomoxys calcitrans transfer [14C]-mannose from GDP-[14C]-mannose to dolichol monophosphate and proteins. Production of the mannosyl lipid was inhibited by Mn2+, UDP, GMP, GDP, and EDTA. The insect growth regulator diflubenzuron had no effect on mannosyl transferase activity. Dolichol monophosphate and Mg2+ stimulated mannosyl transferase activity. The mannosyl lipid product was identified as mannosyl-phosphoryl-dolichol (Man-P-Dol). The apparent Km and Vmax values for the formation of Man-P-Dol using GDP-[14C]-Man while holding dolichol phosphate constant were 2.4 ± 0.9 μM and 9.4 ± 2.3 pmol Man-P-Dol·min?1·mg?1 protein, respectively. The apparent Km and Vmax values using dólichol phosphate while holding GDP-Man constant were 2.2 ± 1.2 μM and 18.5 ± 1.7 pmol Man-P-Dol·min?1·mg?1 protein.  相似文献   

15.
R. B. Mellor  J. M. Lord 《Planta》1979,146(1):91-99
A crude organelle preparation from germinating castor bean endosperm catalysed the incorporation of mannose from GDP[14C]mannose into acid-labile mannolipids. Solubility and chromatographic properties have identified the most rapidly synthesized products as mannosyl-phosphoryl-polyisoprenol, while the more polar lipid formed was shown to contain oligosaccharide. Little radioactivity from GDP[14C]mannose accumulated in insoluble product in the cell-free system, but supplying GDP[14C]mannose to intact endosperm tissue has shown that the major incorporation product in vivo is glycoprotein. This product was readily solubilized by either pronase or sodium dodecyl sulphate treatment suggesting it was membrane bound glycoprotein. Incorporation of mannose into mannosyl-phosphoryl-polyisoprenol during the cell-free assay was stimulated by the addition of dolichol monophosphate. This enzymic activity was optimal at pH 7.5 and in the presence of 10 mM Mg2+. The Km for GDP-mannose was estimated to be 5×10-7 M. Cellular mannosyl transferase activity changed markedly during early post-germinative growth; from being absent in the dry seed, enzyme activity increased to peak between the second and third days of growth and subsequently declined.Abbreviations TCA trichloroacetic acid - SDS sodium dodecyl sulphate  相似文献   

16.
The Mn-2+ dependent mannosyl transfer reaction between GDP-[14-C]mannose and dolichol phosphate, which is catalyzed by liver membranes, could not be followed accurately with the existing assay systems. Thus, GDP-[14-C]mannose is hydrolyzed rapidly by a pyrophosphatase present in microsomal and Golgi fractions from liver cells. The rate of the hydrolysis is rapid enough to limit the extent of incorporation of [14-c]mannose into endogenous acceptors. AMP was an effective inhibitor of the pyrophosphatase in Golgi membranes, and protected GDP-mannose from metabolism in alternative pathways. In the presence of AMP it was possible accurately to follow the time course of synthesis of dolichol phosphate [14-c]mannose over short time periods. Even though the time course of the reaction was measured over 2 s intervals, no linear portion could be detected in plots of product formed versus time. The kinetics of synthesis did, however, fit an equation for a first-order kinetic process. The basis for the first-order kinetics seems related to the very small amounts of dolichol phosphate in membranes. The values of the first-order rate constant is dependent on the concentrations of GDP-mannose and Mn-2+ added to the assays.  相似文献   

17.
Neurospora crassa membrane preparations incorporated mannose from GDP-mannose-[14C] in the presence of Mg2+ into a polyprenol lipid and side chains of protein acceptor(s), which are labile on hydrolysis in weak base. The addition of Mn2+ to the reaction mixtures does not affect mannosyl lipid synthesis but it stimulates the transfer of mannose to larger oligosaccharide chains resistant to β-elimination and the transfer of a second mannosyl unit to form an O-glycosidically linked mannobiosyl side chain. Incubation of particulate preparations with polyprenol-mannose-[14C] in the presence of Mg2+ and Mn2+ also results in the transfer of a single mannose to the protein. When non-radioactive GDP-mannose is added to this reaction mixture, however, β-elimination yields mannobiose. The mannobiose is labeled in the reducing sugar only. These results indicate that the first mannose of this mannobiosyl side chain is transferred via a lipid intermediate, but the second mannose is transferred directly from GDP-mannose. In the presence of Mg2+ and Mn2+, mannose apparently is also transferred from polyprenol-mannose-[14C] to side chains which are resistant to hydrolysis.  相似文献   

18.
The enzymes dolichol phosphate glucose synthase and dolichol phosphate mannose synthase (DPMS), which catalyze essential steps in glycoprotein biosynthesis, were solubilized and partially characterized in Candida albicans. Sequential incubation of a mixed membrane fraction with increasing concentrations of Nonidet P-40 released a soluble fraction that transferred glucose from UDP-Glc to dolichol phosphate glucose and minor amounts of glucoproteins in the absence of exogenous dolichol phosphate. Studies with the soluble fraction revealed that some properties were different from those previously determined for the membrane-bound enzyme. Accordingly, the soluble enzyme exhibited a twofold higher affinity for UDP-Glc and a sixfold higher affinity over the competitive inhibitor UMP, and the transfer reaction was fourfold more sensitive to inhibition by amphomycin. On the other hand, a previously described protocol for the solubilization of mannosyl transferases that rendered a fraction exhibiting both DPMS and protein mannosyl transferase (PMT) activities operating in a functionally coupled reaction was modified by increasing the concentration of Nonidet P-40. This resulted in a solubilized preparation enriched with DPMS and nearly free of PMT activity which remained membrane bound. DPMS solubilized in this manner exhibited an absolute dependence on exogenous Dol-P. Uncoupling of these enzyme activities was a fundamental prerequisite for future individual analysis of these transferases.  相似文献   

19.
A soluble enzyme which catalyzes the formation of dolichyl β-d-mannosyl phosphate has been prepared from encysting cultures of Acanthamoeba castellanii. The enzyme is relatively specific for GDP-d-mannose in that GDP-d-glucose and various uridine nucleotides do not serve as substrates. Uridine diphosphate d-glucose is not an inhibitor at 100-fold molar excess concentration, but GDP-d-glucose, GDP, and GMP do inhibit the reaction at relatively high concentrations. The apparent Km for GDP-d-mannose is approximately 0.25 μm and that for dolichyl phosphate is approximately 3.3 μm. The enzyme has a pH optimum of 7.0, a temperature optimum of 27 °C, and requires a divalent cation. Magnesium, cobalt, and manganese salts will serve as cofactors but maximum activity is produced by Mn2+. No loss of activity is evident after storage for 2 weeks at ?70 °C, but half the activity was lost within 3 days at 0 °C, and a third of the activity was lost within 2 weeks at ?20 °C.  相似文献   

20.
Incubation of a membrane fraction from Mycobacterium smegmatis cells with GDP-mannose and free mannose at pH 7 in presence of Mg2+ ions resulted in the formation of a series of alpha 1----6-linked mannooligosaccharides with up to 12 mannoses. The membrane fraction also catalyzed incorporation of mannose from GDP-mannose into a lipid-soluble product with the properties of a mannosyl phospholipid. A similar product was formed by the incubation of the membrane protein with decaprenol phosphate and GDP-mannose, and it was characterized as beta-mannosylphosphoryldecaprenol. A pulse-chase experiment suggested that the mannosyl phospholipid was an intermediate in alpha 1----6-linked mannooligosaccharide synthesis, and the isolated beta-mannosylphosphoryldecaprenol was shown to function as a direct mannosyl donor on incubation with mannose, methyl alpha-D-mannoside, or alpha 1----6-linked mannooligosaccharides as acceptors. The Km values for mannose, methylmannoside, and alpha 1----6-linked mannobiose were 30-90 mM, whereas for alpha 1----6-linked mannotriose, mannotetraose, and mannopentaose the Km dropped to 2 mM. A weak enzymic activity was detected at pH 6 in the presence of both Mg2+ and Mn2+ ions that catalyzed addition of mannose in alpha 1----2 linkage to the longer alpha 1----6-mannooligosaccharides in a reaction that was specific for GDP-mannose as the donor. The membrane preparation also contained an endo-alpha 1----6-mannanase activity that degraded products longer than mannotriose by cleavage of trisaccharide units from the nonreducing end of the alpha 1----6-mannooligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号