首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During systemic RNA interference (RNAi) in Caenorhabditis elegans, RNA spreads across different cells and tissues in a process that requires the systemic RNA interference deficient-1 (sid-1) gene, which encodes an integral membrane protein. SID-1 acts cell-autonomously and is required for cellular import of interfering RNAs. Heterologous expression of SID-1 in Drosophila Schneider 2 cells enables passive uptake of dsRNA and subsequent soaking RNAi. Previous studies have suggested that SID-1 may serve as an RNA channel, but its precise molecular role remains unclear. To test the hypothesis that SID-1 mediates a direct biochemical recognition of RNA molecule and subsequent permeation, we expressed the extracellular domain (ECD) of SID-1 and purified it to near homogeneity. Recombinant purified SID-1 ECD selectively binds dsRNA but not dsDNA in a length-dependent and sequence-independent manner. Genetic missense mutations in SID-1 ECD causal for deficient systemic RNAi resulted in significant reduction in its affinity for dsRNA. Furthermore, full-length proteins with these mutations decrease SID-1-mediated RNA transport efficiency, providing evidence that dsRNA binding to SID-1 ECD is related to RNA transport. To examine the functional similarity of mammalian homologs of SID-1 (SIDT1 and SIDT2), we expressed and purified mouse SIDT1 and SIDT2 ECDs. We show that they bind long dsRNA in vitro, supportive of dsRNA recognition. In summary, our study illustrates the functional importance of SID-1 ECD as a dsRNA binding domain that contributes to RNA transport.  相似文献   

2.
3.
4.
Systemic RNAi in Caenorhabditis elegans requires the widely conserved transmembrane protein SID-1 to transport RNAi silencing signals between cells. When expressed in Drosophila S2 cells, C. elegans SID-1 enables passive dsRNA uptake from the culture medium, suggesting that SID-1 functions as a channel for the transport of double-stranded RNA (dsRNA). Here we show that nucleic acid transport by SID-1 is specific for dsRNA and that addition of dsRNA to SID-1 expressing cells results in changes in membrane conductance, which indicate that SID-1 is a dsRNA gated channel protein. Consistent with passive bidirectional transport, we find that the RNA induced silencing complex (RISC) is required to prevent the export of imported dsRNA and that retention of dsRNA by RISC does not seem to involve processing of retained dsRNA into siRNAs. Finally, we show that mimics of natural molecules that contain both single- and double-stranded dsRNA, such as hairpin RNA and pre-microRNA, can be transported by SID-1. These findings provide insight into the nature of potential endogenous RNA signaling molecules in animals.  相似文献   

5.
Ingested dsRNAs trigger RNA interference (RNAi) in many invertebrates, including the nematode Caenorhabditis elegans. Here we show that the C.?elegans apical intestinal membrane protein SID-2 is required in C.?elegans for the import of ingested dsRNA and that, when expressed in Drosophila S2 cells, SID-2 enables the uptake of dsRNAs. SID-2-dependent dsRNA transport requires an acidic extracellular environment and is selective for dsRNAs with at least 50 base pairs. Through structure-function analysis, we identify several SID-2 regions required for this activity, including three extracellular, positively charged histidines. Finally, we find that SID-2-dependent transport is inhibited by drugs that interfere with vesicle transport. Therefore, we propose that environmental dsRNAs are imported from the acidic intestinal lumen by SID-2 via endocytosis and are released from internalized vesicles in a secondary step mediated by the dsRNA channel SID-1. Similar multistep mechanisms may underlie the widespread observations of environmental RNAi.  相似文献   

6.
7.
Despite progress in mechanistic understanding of the RNA interference (RNAi) pathways, the subcellular sites of RNA silencing remain under debate. Here we show that loading of lipid‐transfected siRNAs and endogenous microRNAs (miRNA) into RISC (RNA‐induced silencing complexes), encounter of the target mRNA, and Ago2‐mediated mRNA slicing in mammalian cells are nucleated at the rough endoplasmic reticulum (rER). Although the major RNAi pathway proteins are found in most subcellular compartments, the miRNA‐ and siRNA‐loaded Ago2 populations co‐sediment almost exclusively with the rER membranes, together with the RISC loading complex (RLC) factors Dicer, TAR RNA binding protein (TRBP) and protein activator of the interferon‐induced protein kinase (PACT). Fractionation and membrane co‐immune precipitations further confirm that siRNA‐loaded Ago2 physically associates with the cytosolic side of the rER membrane. Additionally, RLC‐associated double‐stranded siRNA, diagnostic of RISC loading, and RISC‐mediated mRNA cleavage products exclusively co‐sediment with rER. Finally, we identify TRBP and PACT as key factors anchoring RISC to ER membranes in an RNA‐independent manner. Together, our findings demonstrate that the outer rER membrane is a central nucleation site of siRNA‐mediated RNA silencing.  相似文献   

8.
H1启动子siRNA载体的构建及应用   总被引:1,自引:0,他引:1  
利用双链RNA(dsRNA)调控基因表达已经成为研究基因功能的有力工具。用人H1启动子构建了pBS/H1PS小干扰RNA(siRNA)表达载体,用于在哺乳动物细胞中产生特异性dsRNA转录产物。通过对293细胞中的PSMA7分子进行表达抑制,证明该siRNA载体能够有效产生针对靶基因的RNA干扰(RNAi)效应。  相似文献   

9.
The systemic RNA interference defective-1 (SID-1) can transport double-stranded RNA (dsRNA) into cytosol across the cytoplasmic membrane. We report here that ectopic expression of Caenorhabditis elegans SID-1 allows BmN4 cells to import extracellular plasmid dsDNA into cells via the direct soaking method. Interestingly, BmN4-SID1 cells incorporate dsRNA and plasmid DNA simultaneously. Furthermore, the ectopic SID-1 allows us to establish a stably transformed cell line by the simple soaking method. Our results provide an alternative method for silkworm gene function analysis with low cost and low cell toxicity.  相似文献   

10.
小干扰RNAs(siRNAs)能够有效降解具有互补序列的RNA.在SARS-CoV的基因组RNA和所有亚基因组RNA的5′端均有一段共同的leader序列,而且该leader序列在不同的病毒分离物中高度保守,因此leader序列可作为一个用于抑制SARS-CoV复制的有效靶点.研究表明,针对leader序列化学合成的siRNA和DNA载体表达的shRNA都可以有效抑制SARS-CoV mRNA的表达.Leader序列特异的siRNA或shRNA不仅可以有效抑制leader与报告基因EGFP融合基因的表达,而且还可以有效抑制leader与刺突蛋白(spikeprotein)、膜蛋白(membrane protein)和核衣壳蛋白(nucleocapsid protein)基因的融合转录产物的表达.结果表明,针对leader序列的RNA干扰可以发展成为一种抗SARS-CoV治疗的有效策略.  相似文献   

11.
采用蛋白组学技术分析质粒介导siRNA的“Off-target”效应   总被引:1,自引:0,他引:1  
siRNA的"脱靶效应"(off-target effects)是RNA干扰应用研究领域的热点问题.采用蛋白组学技术对质粒介导的siRNA稳定沉默原癌基因c-myc可能存在的"off-target"效应进行初步研究,为siRNA靶向特异性的系统评价奠定理论与实验基础.构建靶向c-myc的siRNA真核表达质粒p-Mat01-1及其错配质粒p-Mis09-1,空质粒pEGFP-C1为对照,并稳定转染MCF-7人乳腺癌细胞.通过RT-PCR和Western印迹分析结果显示p-Mat01-1稳定转染克隆中c-myc/c-MYC的表达降低.采用2-DE及LC-ESI-MS/MS等方法,研究了p-Mat01-1与pEGFP-C1稳定转染克隆的蛋白组表达差异.结果显示,p-Mat01-1稳定转染克隆中有47个c-myc非调控蛋白点表达升高或降低,约占423个随机检测蛋白点的11.1%.这些蛋白涉及细胞骨架、代谢、增殖、信号传导、分子伴侣、氧化还原等多条途径.实验结果表明,质粒介导靶向c-myc的siRNA在MCF-7细胞中存在明显的"off-target"效应,提示在设计siRNA实验及应用研究时应系统考察其靶向特异性.  相似文献   

12.
Double-stranded RNA induces the homology-dependent degradation of cognate mRNA in the cytoplasm via RNA interference (RNAi) but also is a target for adenosine-to-inosine (A-to-I) RNA editing by adenosine deaminases acting on RNA (ADARs). An interaction between the RNAi and the RNA editing pathways in Caenorhabditis elegans has been suggested recently, but the precise mode of interaction remains to be established. In addition, it is unclear whether this interaction is possible in mammalian cells with their somewhat different RNAi pathways. Here we show that ADAR1 and ADAR2, but not ADAR3, avidly bind short interfering RNA (siRNA) without RNA editing. In particular, the cytoplasmic full-length isoform of ADAR1 has the highest affinity among known ADARs, with a subnanomolar dissociation constant. Gene silencing by siRNA is significantly more effective in mouse fibroblasts homozygous for an ADAR1 null mutation than in wild-type cells. In addition, suppression of RNAi effects are detected in fibroblast cells overexpressing functional ADAR1 but not when overexpressing mutant ADAR1 lacking double-stranded RNA-binding domains. These results identify ADAR1 as a cellular factor that limits the efficacy of siRNA in mammalian cells.  相似文献   

13.
两种高效 RNA 干涉载体系统的构建及应用   总被引:1,自引:0,他引:1  
在真核细胞基因功能研究中, RNA 干涉 (RNAi) 已成为一种强有力的选择性沉默基因表达的实验工具. 建立一套可在哺乳动物培养细胞中高效、经济地表达 siRNA 的载体系统是 RNA 干涉研究的必要前提之一. 从 HepG2 细胞基因组 DNA 中克隆得到 H1 全长启动子 (374 bp),以之为基础构建了两套 RNA 干涉载体系统, pSL 和带有绿色荧光蛋白 (EGFP) 标签的 pESL ,并对 p53 基因进行了相应的 RNA 干涉研究. 干涉质粒瞬时转染 HepG2 细胞后,分别利用半定量 RT-PCR 和蛋白质印迹检测 p53 表达水平. 与商品化载体 pSilencerTM 3.1-H1 hygro 相比, pSL 和 pESL 对 p53 基因表达具有更高的干涉效率. 结果显示:干涉载体 pSL 和 pESL 能高效特异地下调目的基因表达,可作为哺乳动物中基因功能分析的有效工具.  相似文献   

14.
RNA interference is a gene-silencing phenomenon triggered by dsRNA (double-stranded RNA) and has been widely used for studying gene functions. The short interfering RNA (siRNA) responsible for RNA interference, however, varies markedly in its gene-silencing efficacy. Because this efficacy depends on the selected target sequences, we developed an effective selection method based on the gene degradation measure (priority score) defined by positional features of individual nucleotides. We tested this method experimentally by using it to select new siRNA target sequences in the homo sapiens cyclin B1 gene (CCNB1) and confirmed that it selected highly effective gene-silencing sequences. The proposed method will therefore be useful for selecting new siRNA target sequences in mammalian cells.  相似文献   

15.
RNA interference has recently become a useful research tool for the studies of gene functions, regulations, and therapies. The double-stranded RNA is utilized to induce the sequence-specific gene silencing. To achieve this goal of specific gene silencing, a proper delivery system of siRNA is highly demanded. A number of approaches for delivering siRNA have been explored over the last few years. In the present study, we demonstrated a simple peptide-based siRNA delivery system in mammalian cells. A GC-EGFP cell line stably expressing enhanced green fluorescent protein was established from stable transfection of human gastric carcinoma cells. The synthetic nona-arginine peptide, an arginine-rich intracellular delivery peptide, or called protein transduction domain peptide, could noncovalently form stable complexes with EGFP siRNA and deliver these mixtures into cells. After entry, siRNA appeared to stay in perinuclear regions within cell, and ultimately fulfilled its targeted egfp gene silencing. These data were in consonance with that RNA-induced silencing complex components could be also localized to these perinuclear regions, creating a focal point for RNA interference factories. In the future, this non-toxic peptide may be proved to be a useful tool for the delivery of exogenous siRNA in RNA interference research.  相似文献   

16.
RNA interference is expected to have considerable potential for the development of novel specific therapeutic strategies. However, successful application of RNA interference in vivo will depend on the availability of efficient delivery systems for the introduction of small-interfering RNA (siRNA) into the appropriate target cells. This paper focuses on the use of reconstituted viral envelopes (“virosomes”), derived from influenza virus, as a carrier system for cellular delivery of siRNA. Complexed to cationic lipid, siRNA molecules could be efficiently encapsulated in influenza virosomes. Delivery to cultured cells was assessed on the basis of flow cytometry analysis using fluorescently labeled siRNA. Virosome-encapsulated siRNA directed against Green Fluorescent Protein (GFP) inhibited GFP fluorescence in cells transfected with a plasmid encoding GFP or in cells constitutively expressing GFP. Delivery of siRNA was dependent on the low-pH-induced membrane fusion activity of the virosomal hemagglutinin, supporting the notion that virosomes introduce their encapsulated siRNA into the cell cytosol through fusion of the virosomal membrane with the limiting membrane of cellular endosomes, after internalization of the virosomes by receptor-mediated endocytosis. It is concluded that virosomes represent a promising carrier system for cellular delivery of siRNA in vitro as well as in vivo.  相似文献   

17.
18.
RNA interference (RNAi) is a powerful tool for functional genetic studies in model organisms and mammalian cells. To facilitate rapid construction of gene knockdown constructs and RNAi libraries for known genes of mammalian cells, a new and simple strategy to produce small interfering RNA (siRNA) expression vectors with two opposing polymerase III promoters was developed. The design involved a one-step PCR amplification and single cloning procedure to construct a dual promoter siRNA expression vector. The forward primer is identical for all PCR reactions, only a single reverse primer that contains the siRNA targeting sequence has to be synthesized in the construction of each individual vector. This single primer design is cost-effective and it reduces the risk of sequence errors during synthesis of long oligos. Sense and antisense strands of siRNA duplexes were transcribed from the same template and this eliminated the need to synthesize long hairpin-forming oligonucleotides. Our study demonstrated that this vector design could mediate potent inhibition of expression of both exogenous and endogenous genes in mammalian cells.  相似文献   

19.
RNA interference is a powerful tool for gene functional analysis in mammals. Permanent gene suppression can be achieved by siRNAs as stem-loop precursors transcribed from RNA Pol III promoter such as H1 and U6 based on vector. This approach, however, has a major limitation: inhibition can not be controlled in a time or tissue specific manner because the RNA Pol III promoter is not time or tissue specific. To overcome these limitations, we designed a strategy that allows synthesis of small hairpin RNAs in a GFP-fused form mediated by RNA Pol II promoter CMV to efficiently and specifically knock down expression of both exogenous and endogenous genes in mammalian cells. As assayed by both fluorescence observing and quantitative RT-PCR, the protein and mRNA products of exogenous gene RFP were efficiently and specifically inhibited; quantitative RT-PCR and western blotting results respectively demonstrated that endogenous lamin B2 mRNA and protein was suppressed without global down-regulation of protein synthesis. Furthermore, GFP-fused shRNA efficacy for RNAi is dependent on target position based on this vector system. This method may provide a novel approach for the application of RNAi technology in suppressing gene expression in mammalian system. Jing Yuan, Xiaobo Wang and Ning Li - These authors contributed equally to this work.  相似文献   

20.
Lysosomes are thought to be the major intracellular compartment for the degradation of macromolecules. We recently identified a novel type of autophagy, RNautophagy, where RNA is directly taken up by lysosomes in an ATP-dependent manner and degraded. However, the mechanism of RNA translocation across the lysosomal membrane and the physiological role of RNautophagy remain unclear. In the present study, we performed gain- and loss-of-function studies with isolated lysosomes, and found that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference deficient-1), mediates RNA translocation during RNautophagy. We also observed that SIDT2 is a transmembrane protein, which predominantly localizes to lysosomes. Strikingly, knockdown of Sidt2 inhibited up to ?50% of total RNA degradation at the cellular level, independently of macroautophagy. Moreover, we showed that this impairment is mainly due to inhibition of lysosomal RNA degradation, strongly suggesting that RNautophagy plays a significant role in constitutive cellular RNA degradation. Our results provide a novel insight into the mechanisms of RNA metabolism, intracellular RNA transport, and atypical types of autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号