首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arabidopsis plants flower in response to long days (LDs). Exposure of leaves to inductive day lengths activates expression of FLOWERING LOCUS T (FT) protein which moves to the shoot apical meristem (SAM) to induce developmental reprogramming. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FRUITFULL (FUL) are induced by FT at the apex. We previously screened the SAM for mRNAs of genes required to promote the floral transition in response to photoperiod, and conducted detailed expression and functional analyses on several putative candidates. Here, we show that expression of AGAMOUS-LIKE 24 (AGL24) is detected at the SAM under SD conditions and increases upon exposure to LDs. Mutations in AGL24 further delay flowering of a soc1 ful double mutant, suggesting that flowering is controlled by AGL24 partly independently of SOC1 and FUL.  相似文献   

2.
3.
Integration of flowering signals in winter-annual Arabidopsis   总被引:12,自引:0,他引:12       下载免费PDF全文
Photoperiod is the primary environmental factor affecting flowering time in rapid-cycling accessions of Arabidopsis (Arabidopsis thaliana). Winter-annual Arabidopsis, in contrast, have both a photoperiod and a vernalization requirement for rapid flowering. In winter annuals, high levels of the floral inhibitor FLC (FLOWERING LOCUS C) suppress flowering prior to vernalization. FLC acts to delay flowering, in part, by suppressing expression of the floral promoter SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1). Vernalization leads to a permanent epigenetic suppression of FLC. To investigate how winter-annual accessions integrate signals from the photoperiod and vernalization pathways, we have examined activation-tagged alleles of FT and the FT homolog, TSF (TWIN SISTER OF FT), in a winter-annual background. Activation of FT or TSF strongly suppresses the FLC-mediated late-flowering phenotype of winter annuals; however, FT and TSF overexpression does not affect FLC mRNA levels. Rather, FT and TSF bypass the block to flowering created by FLC by activating SOC1 expression. We have also found that FLC acts as a dosage-dependent inhibitor of FT expression. Thus, the integration of flowering signals from the photoperiod and vernalization pathways occurs, at least in part, through the regulation of FT, TSF, and SOC1.  相似文献   

4.
5.
6.
7.
8.
9.
FLC是植物成花关键抑制因子, 主要通过结合到其下游2个关键的成花促进基因(FTSOC1)启动子上而抑制二者的表达。此外, 还可以与其它调控因子结合调控开花。然而, 关于FLC在成花调控中的具体分子机制仍需深入研究。该文主要结合8条成花调控遗传途径, 梳理近年来与FLC相关的新进展, 并展望了未来的研究方向。  相似文献   

10.
11.
12.
13.
The timing of flowering is pivotal for maximizing reproductive success under fluctuating environmental conditions. Flowering time is tightly controlled by complex genetic networks that integrate endogenous and exogenous cues, such as light, temperature, photoperiod, and hormones. Here, we show that AGAMOUS-LIKE16 (AGL16) and its negative regulator microRNA824 (miR824) control flowering time in Arabidopsis thaliana. Knockout of AGL16 effectively accelerates flowering in nonvernalized Col-FRI, in which the floral inhibitor FLOWERING LOCUS C (FLC) is strongly expressed, but shows no effect if plants are vernalized or grown in short days. Alteration of AGL16 expression levels by manipulating miR824 abundance influences the timing of flowering quantitatively, depending on the expression level and number of functional FLC alleles. The effect of AGL16 is fully dependent on the presence of FLOWERING LOCUS T (FT). Further experiments show that AGL16 can interact directly with SHORT VEGETATIVE PHASE and indirectly with FLC, two proteins that form a complex to repress expression of FT. Our data reveal that miR824 and AGL16 modulate the extent of flowering time repression in a long-day photoperiod.  相似文献   

14.
Transition from vegetative to reproductive phase   总被引:10,自引:0,他引:10  
  相似文献   

15.
Quantitative effects of vernalization on FLC and SOC1 expression   总被引:2,自引:0,他引:2  
Prolonged exposure to cold results in early flowering in Arabidopsis winter annual ecotypes, with longer exposures resulting in a greater promotion of flowering than shorter exposures. The promotion of flowering is mediated through an epigenetic down-regulation of the floral repressor FLOWERING LOCUS C (FLC). We present results that provide an insight into the quantitative regulation of FLC by vernalization. Analysis of the effect of seed or plant cold treatment on FLC expression indicates that the time-dependent nature of vernalization on FLC expression is mediated through the extent of the initial repression of FLC and not by affecting the ability to maintain the repressed state. In the over-expression mutant flc-11, the time-dependent repression of FLC correlates with the proportional deacetylation of histone H3. Our results indicate that sequences within intron 1 and the activities of both VERNALIZATION1 (VRN1) and VERNALIZATION2 (VRN2) are required for efficient establishment of FLC repression; however, VRN1 and VRN2 are not required for maintenance of the repressed state during growth after the cold exposure. SUPPRESSOR OF OVER-EXPRESSION OF CO 1 (SOC1), a downstream target of FLC, is quantitatively induced by vernalization in a reciprocal manner to FLC. In addition, we show that SOC1 undergoes an acute induction by both short and long cold exposures.  相似文献   

16.
The proper timing of flowering is of crucial importance for reproductive success of plants. Regulation of flowering is orchestrated by inputs from both environmental and endogenous signals such as daylength, light quality, temperature and hormones, and key flowering regulators construct several parallel and interactive genetic pathways. This integrative regulatory network has been proposed to create robustness as well as plasticity of the regulation. Although knowledge of key genes and their regulation has been accumulated, there still remains much to learn about how they are organized into an integrative regulatory network. Here, we have analyzed the CRYPTIC PRECOCIOUS (CRP) gene for the Arabidopsis counterpart of the MED12 subunit of the Mediator. A novel dominant mutant, crp-1D, which causes up-regulation of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), FRUITFULL (FUL) and APETALA1 (AP1) expression in a FLOWERING LOCUS T (FT)-dependent manner, was identified in an enhancer screen of the early-flowering phenotype of 35S::FT. Genetic and molecular analysis of both crp-1D and crp loss-of-function alleles showed that MED12/CRP is required not only for proper regulation of SOC1, FUL and AP1, but also for up-regulation of FT, TWIN SISTER OF FT (TSF) and FD, and down-regulation of FLOWERING LOCUS C (FLC). These observations suggest that MED12/CRP is a novel flowering regulator with multiple regulatory target steps both upstream and downstream of the key flowering regulators including FT florigen. Our work, taken together with recent studies of other Mediator subunit genes, supports an emerging view that the Mediator plays multiple roles in the regulation of flowering.  相似文献   

17.
Recent molecular and genetic studies in rice, a short-day plant, have elucidated both conservation and divergence of photoperiod pathway genes and their regulators. However, the biological roles of rice genes that act within the autonomous pathway are still largely unknown. In order to better understand the function of the autonomous pathway genes in rice, we conducted molecular genetic analyses of OsFVE, a rice gene homologous to Arabidopsis FVE. OsFVE was found to be ubiquitously expressed in vegetative and reproductive organs. Overexpression of OsFVE could rescue the flowering time phenotype of the Arabidopsis fve mutants by up-regulating expression of the SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) and down-regulating FLOWERING LOCUS C (FLC) expression. These results suggest that there may be a conserved function between OsFVE and FVE in the control of flowering time. However, OsFVE overexpression in the fve mutants did not rescue the flowering time phenotype in in relation to the response to intermittent cold treatment.  相似文献   

18.
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 ( SOC1 ) is one of the flowering pathway integrators and regulates the expression of LEAFY ( LFY ), which links floral induction and floral development. However, the mechanism by which SOC1, a MADS box protein, regulates LFY has proved elusive. Here, we show that SOC1 directly binds to the distal and proximal region of the LFY promoter where critical cis -elements are located. Intragenic suppressor mutant analysis shows that a missense mutation in the MADS box of SOC1 causes loss of binding to the LFY promoter as well as suppression of the flowering promotion function. The full-length SOC1 protein locates in the cytoplasm if expressed alone in protoplast transient expression assay, but relocates to the nucleus if expressed with AGAMOUS-LIKE 24 (AGL24), another flowering pathway integrator and a MADS box protein. The domain analysis shows that co-localization of SOC1 and AGL24 is mediated by the MADS box and the intervening region of SOC1. Finally, we show that LFY is expressed only in those tissues where SOC1 and AGL24 expressions overlap. Thus, we propose that heterodimerization of SOC1 and AGL24 is a key mechanism in activating LFY expression.  相似文献   

19.
Appropriate timing of flowering is critical for propagation and reproductive success in plants. Therefore, flowering time is coordinately regulated by endogenous developmental programs and external signals, such as changes in photoperiod and temperature. Flowering is delayed by a transient shift to cold temperatures that frequently occurs during early spring in the temperate zones. It is known that the delayed flowering by short-term cold stress is mediated primarily by the floral repressor FLOWERING LOCUS C (FLC). However, how the FLC-mediated cold signals are integrated into flowering genetic pathways is not fully understood. We have recently reported that the INDUCER OF CBF EXPRESSION 1 (ICE1), which is a master regulator of cold responses, FLC, and the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) constitute an elaborated feedforward-feedback loop that integrates photoperiod and cold temperature signals to regulate seasonal flowering in Arabidopsis. Cold temperatures promote the binding of ICE1 to FLC promoter to induce its expression, resulting in delayed flowering. However, under floral inductive conditions, SOC1 induces flowering by blocking the ICE1 activity. We propose that the ICE1-FLC-SOC1 signaling network fine-tunes the timing of photoperiodic flowering during changing seasons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号