首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
AIMS: To provide information on detection of Shiga toxin-producing Escherichia coli (STEC) in retail-minced beef using an approach combining (i) PCR-based techniques and automated immunoassay for stx screening and detection of the five major serogroups associated with human infection, and (ii) immunomagnetic separation (IMS) and colony hybridization assays for bacterial strain isolation. METHODS AND RESULTS: Twenty-seven out of 164 minced beef samples were stx-positive by PCR-ELISA, nine of which were also positive by real-time PCR for at least one marker of the five main serogroups tested (O26, O103, O111, O145 and O157). Two E. coli O103 stx-negative strains were isolated from two out of 10 IMS and nine STEC strains that did not belong to the five main serogroups were isolated by colony hybridization. CONCLUSIONS: PCR techniques are applicable for rapid screening of samples containing both an stx gene and an O-group marker of the five main pathogenic STEC serogroups. Isolation of STEC strains belonging to the main non-O157 serogroups remains difficult. SIGNIFICANCE AND IMPACT OF THE STUDY: This study presents an evaluation of a multi-faceted approach for the detection of the most frequently reported human pathogenic STEC serogroups. The advantages and limits of this strategy are presented.  相似文献   

2.
Escherichia coli O157 and six additional serogroups of Shiga toxin-producing E. coli (STEC) (O26, O45, O103, O111, O121, and O145) account for the majority of STEC infections in the United States. In this study, O serogroup-specific genes (wzx or wzy) were used to design loop-mediated isothermal amplification (LAMP) assays for the rapid and specific detection of these leading STEC serogroups. The assays were evaluated in pure culture and spiked food samples (ground beef, beef trim, lettuce, and spinach) and compared with real-time quantitative PCR (qPCR). No false-positive or false-negative results were observed among 120 bacterial strains used to evaluate assay specificity. The limits of detection of various STEC strains belonging to these target serogroups were approximately 1 to 20 CFU/reaction mixture in pure culture and 10(3) to 10(4) CFU/g in spiked food samples, which were comparable to those of qPCR. Standard curves generated suggested good linear relationships between STEC cell numbers and LAMP turbidity signals. In various beef and produce samples spiked with two low levels (1 to 2 and 10 to 20 CFU/25 g) of respective STEC strains, the LAMP assays consistently achieved accurate detection after 6 to 8 h of enrichment. In conclusion, these newly developed LAMP assays may facilitate rapid and reliable detection of the seven major STEC serogroups in ground beef, beef trim, and produce during routine sample testing.  相似文献   

3.
Aims:  To study the seasonal variation of Shiga toxin-encoding genes ( stx ) and to investigate the presence of Shiga toxin-producing Escherichia coli (STEC) O157 in cattle belonging to five dairy farms from Argentina.
Methods and Results:  Rectal swab samples were collected from 360 dairy cows in each season and 115 and 137 calves in autumn and in spring, respectively. The stx were investigated by multiplex PCR and it was used as the indicator for STEC. Samples positives for stx were tested by PCR for eae-γ1 of E. coli O157 and then subjected to IMS (immunomagnetic separation). In positive animals significant differences in the prevalence of stx between warm and cold seasons were detected. In warm seasons, stx1  +  stx2 increased and stx1 decreased, independently of the animal category. The prevalence of STEC O157 in cows and calves were 0·2% and 0·8%, respectively.
Conclusions:  This work provides new data about the occurrence of stx and STEC O157 in dairy herds from Argentina and suggests a relationship between the type of stx and season of year.
Significance and Impact of Study:  The detection of STEC O157 and the seasonality of stx and its types provide an opportunity to improve control strategies designed to prevent contamination of food products and transmission animal-person.  相似文献   

4.
AIMS: This paper provides identification of a DNA sequence derived from Shiga toxin-producing Escherichia coli (STEC) O157:H7 and information on its utilization for detecting STEC O157 by PCR. METHODS AND RESULTS: Random Amplified Polymorphic DNA and DNA library were used to identify in STEC O157:H7 (strain EDL 933) a 2634-bp Small Inserted Locus, designated SILO157. Analysis of 211 bacterial strains showed that the PCR assays amplifying the SILO157 region could be used to detect STEC O157 with a good specificity. CONCLUSIONS: Characterization of a novel locus in STEC O157 is attractive since the serotype O157:H7 of STEC is still by far the most important serotype associated with more serious diseases. This island encodes putative proteins and especially one that is predicted to be an outer membrane protein designated IHP1. SIGNIFICANCE AND IMPACT OF THE STUDY: Further investigations could now be developed to appreciate the role of the SILO157 in pathogenicity.  相似文献   

5.
Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) cells were isolated from 191 fecal samples from cattle with gastrointestinal infections (diagnostic samples) collected in New South Wales, Australia. By using a multiplex PCR, E. coli cells possessing combinations of stx1, stx2, eae, and ehxA were detected by a combination of direct culture and enrichment in E. coli (EC) (modified) broth followed by plating on vancomycin-cefixime-cefsulodin blood (BVCC) agar for the presence of enterohemolytic colonies and on sorbitol MacConkey agar for the presence of non-sorbitol-fermenting colonies. The high prevalence of the intimin gene eae was a feature of the STEC (35 [29.2%] of 120 isolates) and contrasted with the low prevalence (9 [0.5%] of 1,692 fecal samples possessed STEC with eae) of this gene among STEC recovered during extensive sampling of feces from healthy slaughter-age cattle in Australia (M. Hornitzky, B. A. Vanselow, K. Walker, K. A. Bettelheim, B. Corney, P. Gill, G. Bailey, and S. P. Djordjevic, Appl. Environ. Microbiol. 68:6439-6445, 2002). Forty-seven STEC serotypes were identified, including O5:H-, O8:H19, O26:H-, O26:H11, O113:H21, O157:H7, O157:H- and Ont:H- which are known to cause severe disease in humans and 23 previously unreported STEC serotypes. Serotypes Ont:H- and O113:H21 represented the two most frequently isolated STEC isolates and were cultured from nine (4.7%) and seven (3.7%) animals, respectively. Fifteen eae-positive E. coli serotypes, considered to represent atypical EPEC, were identified, with O111:H- representing the most prevalent. Using both techniques, STEC cells were cultured from 69 (36.1%) samples and EPEC cells were cultured from 30 (15.7%) samples, including 9 (4.7%) samples which yielded both STEC and EPEC. Culture on BVCC agar following enrichment in EC (modified) broth was the most successful method for the isolation of STEC (24.1% of samples), and direct culture on BVCC agar was the most successful method for the isolation of EPEC (14.1% samples). These studies show that diarrheagenic calves and cattle represent important reservoirs of eae-positive E. coli.  相似文献   

6.
AIMS: This study was carried out to evaluate the presence of Shiga toxin-producing Escherichia coli (STEC) and E. coli O157:H7 in shellfish from French coastal environments. METHODS AND RESULTS: Shellfish were collected in six growing areas or natural beds (B category) and nonfarming areas (D category) from July 2002 to August 2004. PCR detection of stx genes was performed on homogenized whole shellfish and digestive gland tissues enrichments. STEC strains were detected by colony DNA hybridization using a stx-specific gene probe and E. coli O157 strains were additionally searched by immunomagnetic separation with O157-specific magnetic beads. Stx genes were detected in 40 of 144 (27.8%) sample enrichments from mussels, oysters or cockles, 32 of 130 enrichments (24.6%) were from B-category areas and eight of 14 (57.1%) from the D-category area. Five strains carrying stx(1) or stx(1d) genes and one stx negative, eae and ehxA positive E. coli O157:H7 were isolated from six of 40 stx-positive enrichments. No relation was found between the total E. coli counts in shellfish and the presence of STEC strains in the samples. CONCLUSIONS: The STEC strains of different serotypes and stx types are present in shellfish from French coastal environments. It is the first isolation of STEC stx1d strains in France. SIGNIFICANCE AND IMPACT OF THE STUDY: Shellfish collected in coastal environments can serve as a vehicle for STEC transmission.  相似文献   

7.
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are a diverse group of food-borne pathogens with various levels of virulence for humans. In this study, we describe the use of a combination of multiple real-time PCR assays for the screening of 400 raw-milk cheeses for the five main pathogenic STEC serotypes (O26:H11, O103:H2, O111:H8, O145:H28, and O157:H7). The prevalences of samples positive for stx, intimin-encoding gene (eae), and at least one of the five O group genetic markers were 29.8%, 37.3%, and 55.3%, respectively. The H2, H7, H8, H11, and H28 fliC alleles were highly prevalent and could not be used as reliable targets for screening. Combinations of stx, eae variants, and O genetic markers, which are typical of the five targeted STEC serotypes, were detected by real-time PCR in 6.5% of the cheeses (26 samples) and included stx-wzx(O26)-eae-β1 (4.8%; 19 samples), stx-wzx(O103)-eae-ε (1.3%; five samples), stx-ihp1(O145)-eae-γ1 (0.8%; three samples), and stx-rfbE(O157)-eae-γ1 (0.3%; one sample). Twenty-eight immunomagnetic separation (IMS) assays performed on samples positive for these combinations allowed the recovery of seven eaeβ1-positive STEC O26:H11 isolates, whereas no STEC O103:H2, O145:H28, or O157:H7 strains could be isolated. Three stx-negative and eaeβ1-positive E. coli O26:[H11] strains were also isolated from cheeses by IMS. Colony hybridization allowed us to recover STEC from stx-positive samples for 15 out of 45 assays performed, highlighting the difficulties encountered in STEC isolation from dairy products. The STEC O26:H11 isolates shared the same virulence genetic profile as enterohemorrhagic E. coli (EHEC) O26:H11, i.e., they carried the virulence-associated genes EHEC-hlyA, katP, and espP, as well as genomic O islands 71 and 122. Except for one strain, they all contained the stx1 variant only, which was reported to be less frequently associated with human cases than stx2. Pulsed-field gel electrophoresis (PFGE) analysis showed that they displayed high genetic diversity; none of them had patterns identical to those of human O26:H11 strains investigated here.  相似文献   

8.
In an attempt to develop a standard for ELISA-PCR detection of Shiga toxin producing Escherichia coli (STEC) O157, six published PCR tests were tested in a comparative study on a panel of 277 bacterial strains isolated from foods, animals and humans. These tests were based on the detection of the genes rfbE [J. Clin. Microbiol. 36 (1998) 1801] and rfbB [Appl. Environ. Microbiol. 65 (1999) 2954], the 3' end of the eae gene [Epidemiol. Infect. 112 (1994) 449], the region immediately flanking the 5' end of the eae gene [Int. J. Food. Microbiol. 32 (1996) 103], the flicH7 gene [J. Clin. Microbiol. 35 (1997) 656], or a part of the recently described 2634-bp Small Inserted Locus (SILO(157) locus) of STEC O157 [J. Appl. Microbiol. 93 (2002) 250]. Unlike the other PCR assays, those amplifying the rfb sequences were unable to distinguish toxigenic from nontoxigenic O157. These assays were relatively specific to STEC O157, giving essentially a cross reaction with clonally related E. coli O55 and to a lesser extent with E. coli O145, O125, O126. They also detected the Shiga toxin (stx)-negative derivatives of STEC O157. Based on these results, an ELISA-PCR assay consisting of the solution hybridization of amplicons with two probes that ensured the specificity of the amplification was developed. The ELISA-PCR assay, which used an internal control (IC) of inhibition, was able to detect 1 to 10 copies of STEC O157 in the PCR tube. Adaptation of PCR into ELISA-PCR assay format facilitates specific and sensitive detection of PCR amplification products and constitutes a method of choice for screening STEC O157.  相似文献   

9.
There has been no culture method of choice for detecting non-O157 Shiga toxin-producing Escherichia coli strains (STEC) because of their biochemical diversity The aim of this study was the assessment of verotoxin gene detection (VT1/VT2) within STEC PCR compared with the Vero cells cytotoxicity among O157 and non-O157 STEC serotypes. Stool cultures were performed on Tryptic Soy Broth and sorbitol MacConkey agar with cefixitime and tellurite supplements which were identified as Escherichia coli (E. coli) by BBL crystal. Further identifications were performed including verotoxin production assessment by Vero cells cytotoxicity assay, PCR for specific VT1/VT2 genotyping, and isolates were plated on blood agar and tested for enterohemolysis. Vero cells cytotoxicity assay revealed that 58 of E. coli isolates (71.6%) were STEC. In PCR, 33 (56.9%) of the 58 strains were positive for the VT2 gene, 24 (41.4%) were positive for the VT1 gene and one isolate was positive for both genes. In comparison to Vero cells cytotoxicity, the sensitivity, specificity of PCR were 100%. In comparative study between verotoxin assessment by Vero cells cytotoxicity and enterohemolytic activity, concordance positive results between both were 53 (91.4%). The most common serogroups of STEC were O157 (33%) and O26 (20%). From this study we can conclude that enterohemolysin production can be used as surrogate marker for STEC. The most rapid and promising approach for detection of STEC is by molecular method.  相似文献   

10.
Shiga toxin-producing Escherichia coli (STEC) are an important cause of haemorrhagic colitis and the diarrhoea-associated form of the haemolytic uraemic syndrome. Of the numerous serotypes of E. coli that have been shown to produce Shiga toxin (Stx), E. coli O157:H7 and E. coli O157:NM (non-motile) are most frequently implicated in human disease. Early recognition of STEC infections is critical for effective treatment of patients. Furthermore, rapid microbiological diagnosis of individual patients enables the prompt notification of outbreaks and implementation of control measures to prevent more cases. Most human infections caused by STEC have been acquired by the consumption of contaminated foods, especially those of bovine origin such as undercooked ground beef and unpasteurized cows' milk, and by person-to-person contacts. To identify the reservoirs of STEC and the routes of transmission to man, sensitive methods are needed as these pathogens may only be present in food, environmental and faecal samples in small numbers. In addition, sensitive and rapid detection methods are necessary for the food industry to ensure a safe supply of foods. Sensitive methods are also needed for surveillance programmes in risk assessment studies, and for studies on survival and growth of STEC strains. Cultural methods for the enrichment, isolation and confirmation of O157 STEC are still evolving. Several selective enrichment media have been described, of which modified tryptone soy broth with novobiocin and modified E. coli broth with novobiocin, seem to be the most appropriate. These media are minimally-selective broths that give a somewhat limited differential specificity favouring isolation of O157 STEC, as opposed to other Gram-negative bacteria, in the sample. An incubation temperature of 41-42 degrees C further enhances selectivity. The occurrence of heat-, freeze-, acid- or salt-stressed STEC in foods means that it is important to be able to detect cells that are in a stressed state, as STEC generally have a very low infectious dose, and injured cells mostly retain their pathogenic properties. For the isolation of stressed O157 STEC, pre-enrichment in a non-selective broth is necessary. The most widely used plating medium for the isolation of typical sorbitol-non-fermenting strains of STEC of serogroup O157 is sorbitol MacConkey agar with cefixime and tellurite (CT-SMAC). As some STEC strains are sensitive for tellurite and/or are sorbitol-fermenting, the use of a second isolation medium, such as one of the newer chromogenic media, is recommended. Immunomagnetic separation (IMS) following selective enrichment, and subsequent spread-plating of the concentrated target cells onto CT-SMAC agar, appears to be the most sensitive and cost-effective method for the isolation of E. coli O157 from raw foods. IMS increases sensitivity by concentrating E. coli O157 relative to background microflora, which may overgrow or mimic O157 STEC cells on selective agars. While cultural isolation of O157 STEC from foods and faeces is time-consuming, labour-intensive and hence, costly, rapid immunological detection systems have been developed which significantly reduce the analysis time. These methods include enzyme-linked immunosorbent assays (ELISAs), colony immunoblot assays, direct immunofluorescent filter techniques, and several immunocapture techniques. Both polyclonal and monoclonal antibodies specific for the O and H antigens are used for these methods. Many of these test systems are able to detect less than one O157 STEC cell g(-1) of raw meat after overnight enrichment. Presumptive results are available after just one day, but need to be completed with the isolation of the organisms. The primary use of these procedures is therefore to identify food and faecal samples that possibly contain O157 STEC.  相似文献   

11.
AIMS: Combinations of PCR primer sets were evaluated to establish a multiplex PCR method to specifically detect Escherichia coli O157:H7 genes in bovine faecal samples. METHODS AND RESULTS: A multiplex PCR method combining three primer sets for the E. coli O157:H7 genes rfbE, uidA and E. coli H7 fliC was developed and tested for sensitivity and specificity with pure cultures of 27 E. coli serotype O157 strains, 88 non-O157 E. coli strains, predominantly bovine in origin and five bacterial strains other than E. coli. The PCR method was very specific in the detection of E. coli O157:H7 and O157:H- strains, and the detection limit in seeded bovine faecal samples was <10 CFU g(-1) faeces, following an 18-h enrichment at 37 degrees C, and could be performed using crude DNA extracts as template. CONCLUSIONS: A new multiplex PCR method was developed to detect E. coli O157:H7 and O157:H-, and was shown to be highly specific and sensitive for these strains both in pure culture and in crude DNA extracts prepared from inoculated bovine faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY: This new multiplex PCR method is suitable for the rapid detection of E. coli O157:H7 and O157:H- genes in ruminant faecal samples.  相似文献   

12.
AIMS: The object of this study was to develop a multiplex PCR system for rapid and specific identification of Shiga toxin-producing Escherichia coli (STEC) in faeces. METHODS AND RESULTS: A multiplex PCR (mPCR) protocol was developed using a primer pair specific for genes that are involved in the biosynthesis of the O157 E. coli antigen, and primers that identify the sequences of Shiga toxin 1 and 2 (stx 1 and stx1) and the intimin protein (eaeA). The mPCR assay was used for amplification of STEC genes in bacteria directly (after enrichment) in faeces. The test was very sensitive and could detect between 9 and 1 bacterial cells per gram of faeces. The mPCR was used for the examination of 69 bovine faecal samples derived from healthy cattle. The results indicated that 62 x 3% of the samples were positive, generating at least one PCR amplicon of the expected size. CONCLUSIONS: The method can be applied for rapid and specific identification of STEC bacteria in faecal samples, and for differentiation of their main virulence marker genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to sensitively detect Shiga toxin-producing E. coli directly in faeces within a short time represents a considerable advancement over more time-consuming and less sensitive methods for identification and characterization of STEC bacteria.  相似文献   

13.
AIMS: A DNA sequence, from Escherichia coli STEC O145, homologous to O-island 29 from STEC O157 is described, together with a real-time PCR assay for detecting it. METHODS AND RESULTS: PCR and sequencing were used to identify the 'O-island 29' homologous DNA sequence from STEC O145 (strain VTH34). The sequence divergence between the STEC O145 and O157 'O-island 29' allowed a STEC O145 5'-nuclease PCR assay to be developed. CONCLUSIONS: The characterization of a novel locus in STEC O145 has allowed a specific O145 serogroup 5'-nuclease PCR assay to be designed. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings increase the number of serogroup PCR assays available as alternatives to classical O-serotyping of E. coli.  相似文献   

14.
Beef carcass sponge samples collected from July to August 1999 at four large processing plants in the United States were surveyed for the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC). Twenty-eight (93%) of 30 single-source lots surveyed included at least one sample containing non-O157 STEC. Of 334 carcasses sampled prior to evisceration, 180 (54%) were found to harbor non-O157 STEC. Non-O157 STEC isolates were also recovered from 27 (8%) of 326 carcasses sampled after the application of antimicrobial interventions. Altogether, 361 non-O157 STEC isolates, comprising 41 different O serogroups, were recovered. O serogroups that previously have been associated with human disease accounted for 178 (49%) of 361 isolates. Although 40 isolates (11%) carried a combination of virulence factor genes (enterohemorrhagic E. coli hlyA, eae, and at least one stx gene) frequently associated with STEC strains causing severe human disease, only 12 of these isolates also belonged to an O serogroup previously associated with human disease. Combining previously reported data on O157-positive samples (R. O. Elder, J. E. Keen, G. R. Siragusa, G. A. Barkocy-Gallagher, M. Koohmaraie, and W. W. Laegreid, Proc. Natl. Acad. Sci. USA 97:2999-3003, 2000) with these data regarding non-O157-positive samples indicated total STEC prevalences of 72 and 10% in preevisceration and postprocessing beef carcass samples, respectively, showing that the interventions used by the beef-processing industry effected a sevenfold reduction in carcass contamination by STEC.  相似文献   

15.
Direct PCR detection of Escherichia coli O157:H7   总被引:2,自引:0,他引:2  
AIMS: This paper reports a simple, rapid approach for the detection of Shiga toxin (Stx)-producing Escherichia coli (STEC). METHODS AND RESULTS: Direct PCR (DPCR) obviates the need for the recovery of cells from the sample or DNA extraction prior to PCR. Primers specific for Stx-encoding genes stx1 and stx2 were used in DPCR for the detection of E. coli O157:H7 added to environmental water samples and milk. CONCLUSIONS: PCR reactions containing one cell yielded a DPCR product. SIGNIFICANCE AND IMPACT OF THE STUDY: This should provide an improved method to assess contamination of environmental and other samples by STEC and other pathogens.  相似文献   

16.
Cattle are an important reservoir of Shiga toxin-producing Escherichia coli (STEC) O26, O111, and O157. The fate of these pathogens in bovine feces at 5, 15, and 25 degrees C was examined. The feces of a cow naturally infected with STEC O26:H11 and two STEC-free cows were studied. STEC O26, O111, and O157 were inoculated into bovine feces at 10(1), 10(3), and 10(5) CFU/g. All three pathogens survived at 5 and 25 degrees C for 1 to 4 weeks and at 15 degrees C for 1 to 8 weeks when inoculated at the low concentration. On samples inoculated with the middle and high concentrations, O26, O111, and O157 survived at 25 degrees C for 3 to 12 weeks, at 15 degrees C for 1 to 18 weeks, and at 5 degrees C for 2 to 14 weeks, respectively. Therefore, these pathogens can survive in feces for a long time, especially at 15 degrees C. The surprising long-term survival of STEC O26, O111, and O157 in bovine feces shows that such feces are a potential vehicle for transmitting not only O157 but also O26 and O111 to cattle, food, and the environment. Appropriate handling of bovine feces is emphasized.  相似文献   

17.
An immunochromatographic-based assay (Quixtrade mark E. coli O157 Sprout Assay) and a polymerase chain reaction (PCR)-based assay (TaqMan E. coli O157:H7 Kit) were used to detect Escherichia coli O157:H7 strain 380-94 in spent irrigation water from alfalfa sprouts grown from artificially contaminated seeds. Ten, 25, 60, or 100 seeds contaminated by immersion for 15 min in a suspension of E. coli O157:H7 at concentrations of 10(6) or 10(8) cfu/ml were mixed with 20 g of non-inoculated seeds in plastic trays for sprouting. The seeds were sprayed with tap water for 15 s every hour and spent irrigation water was collected at intervals and tested. E. coli O157:H7 was detected in non-enriched water by both the TaqMan PCR (30 of 30 samples) and the immunoassay (9 of 24 samples) in water collected 30 h from the start of the sprouting process. However, enrichment of the spent irrigation water in brain heart infusion (BHI) broth at 37 degrees C for 20 h permitted detection of E. coli O157:H7 in water collected 8 h from the start of sprouting using both methods, even in trays containing as few as 10 inoculated seeds. The TaqMan PCR assay was more sensitive (more positive samples were observed earlier in the sprouting process) than the immunoassay; however, the immunoassay was easier to perform and was more rapid. At 72 h after the start of the sprouting process, the sprouts were heated at 100 degrees C for 30 s to determine the effectiveness of blanching for inactivation of E. coli O157:H7. All of the 32 samples tested with the TaqMan assay and 16 of 32 samples tested with the Quixtrade mark assay gave positive results for E. coli O157:H7 after enrichment of the blanched sprouts at 37 degrees C for 24 h. In addition, the organism was detected on Rainbow Agar O157 in 9 of 32 samples after 24 h of enrichment of the blanched sprouts. In conclusion, E. coli O157:H7 was detected in spent irrigation water collected from sprouts grown from artificially contaminated seeds by both the TaqMan and Quixtrade mark assays. The data also revealed that blanching may not be effective to completely inactivate all the E. coli O157:H7 that may be present in sprouts.  相似文献   

18.
AIMS: To evaluate the presence of Shiga toxin-producing strains of Escherichia coli (STEC) of the O157:H7 serotype in living layer hens so as to analyse the role of this avian species as potential reservoir. METHODS AND RESULTS: Cloacal swabs were collected between November 2004 and November 2005 from four intensive management layer hen farms and analysed for STEC O157:H7 by immunomagnetic separation methods and multiplex polymerase chain reaction for stx1 and/or stx2, the E. coli attaching and effacing (eae) and hly genes. STEC was detected in 26 of the 720 samples. CONCLUSIONS: The layer hens analysed were shown to carry STEC O157:H7. The presence of this bacterium in living layer hen farms investigated did not result in any detectable increase in gastrointestinal disease in this species. SIGNIFICANCE AND IMPACT OF THE STUDY: Living layer hens are a novel potential reservoir of E. coli O157:H7.  相似文献   

19.
AIMS: The aim of the study was to monitor the shedding and transmission of generic and Shiga toxin-producing Escherichia coli (STEC) in a consignment of cattle during lot feeding. METHODS AND RESULTS: Faecal and environmental samples were tested for total E. coli and screened with PCR specific for Shiga toxin and O157 rfb. STEC were isolated using colony hybridization and characterized by serology and genotyping. STEC prevalence initially decreased after the diet shift from pasture to grain, although there were intermittent peaks in numbers of cattle shedding STEC and E. coli O157. Water troughs and soil were intermittently contaminated. Common genotypes and serotypes were isolated from animals, water and soil in the feedlot, with additional types introduced at slaughter. CONCLUSION: STEC and E. coli O157 are endemic in cattle and intermittent peaks in shedding occur. Prevention of these peaks and/or reduction in transmission is required to reduce the risk of carcass contamination during slaughter. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings contribute to the understanding of the ecology of STEC and suggest control points for reducing STEC contamination in feedlot cattle production.  相似文献   

20.
AIMS: To investigate phenotypic and genotypic aspects of sorbitol-negative or slow-fermenting Escherichia coli, suspected to belong to O157 serogroup, isolated in Italy. METHODS AND RESULTS: Milk samples originating from goats and cows were screened for the presence of E. coli O157 with cultural methods. Sorbitol-negative or slow-fermenting strains were subjected to phenotypic characterization, antibiotic resistance profiles, PCR reactions for detection of toxins (stx(1) and stx(2)) and intimin (eae(GEN) and eae(O157)) genes and clustering by pulsed field gel electrophoresis (PFGE). Only one strain revealed to be O157. Susceptibility to 11 antibiotics highlighted the high resistance to tetracycline (50%), sulfonamide and streptomycin (33%). The stx(2) gene was detected in two strains; only the strain identified as O157 exhibited an amplicon for both eae genes. PFGE identified seven distinct XbaI macrorestriction patterns at a similarity level of 41%. CONCLUSIONS: The use of sorbitol fermentation as cultural method is not sufficient for STEC discrimination while PCR assay proved to be a valuable method. SIGNIFICANCE AND IMPACT OF THE STUDY: The study reports presence of Shiga toxin-producing E. coli in raw milk, signalling a potential risk for humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号