首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a chemically defined medium called milieu proche du lait (MPL), in which 22 Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) strains exhibited growth rates ranging from 0.55 to 1 h−1. MPL can also be used for cultivation of other lactobacilli and Streptococcus thermophilus. The growth characteristics of L. bulgaricus in MPL containing different carbon sources were determined, including an initial characterization of the phosphotransferase system transporters involved. For the 22 tested strains, growth on lactose was faster than on glucose, mannose, and fructose. Lactose concentrations below 0.4% were limiting for growth. We isolated 2-deoxyglucose-resistant mutants from strains CNRZ397 and ATCC 11842. CNRZ397-derived mutants were all deficient for glucose, fructose, and mannose utilization, indicating that these three sugars are probably transported via a unique mannose-specific-enzyme-II-like transporter. In contrast, mutants of ATCC 11842 exhibited diverse phenotypes, suggesting that multiple transporters may exist in that strain. We also developed a protein labeling method and verified that exopolysaccharide production and phage infection can occur in MPL. The MPL medium should thus be useful in conducting physiological studies of L. bulgaricus and other lactic acid bacteria under well controlled nutritional conditions.  相似文献   

2.
We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production.  相似文献   

3.
The genetic determinants for lactose utilization from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 and galactose utilization from Lactococcus lactis subsp. cremoris MG 1363 were heterologously expressed in the lysine-overproducing strain Corynebacterium glutamicum ATCC 21253. The C. glutamicum strains expressing the lactose permease and beta-galactosidase genes of L. delbrueckii subsp. bulgaricus exhibited beta-galactosidase activity in excess of 1000 Miller units/ml of cells and were able to grow in medium in which lactose was the sole carbon source. Similarly, C. glutamicum strains containing the lactococcal aldose-1-epimerase, galactokinase, UDP-glucose-1-P-uridylyltransferase, and UDP-galactose-4-epimerase genes in association with the lactose permease and beta-galactosidase genes exhibited beta-galactosidase levels in excess of 730 Miller units/ml of cells and were able to grow in medium in which galactose was the sole carbon source. When grown in whey-based medium, the engineered C. glutamicum strain produced lysine at concentrations of up to 2 mg/ml, which represented a 10-fold increase over the results obtained with the lactose- and galactose-negative control, C. glutamicum 21253. Despite their increased catabolic flexibility, however, the modified corynebacteria exhibited slower growth rates and plasmid instability.  相似文献   

4.
The aim of this research effort was to investigate the role of various sugar substrates in the growth medium upon thermotolerance and upon survival during storage after freeze-drying of Lactobacillus bulgaricus. Addition of the sugars tested to the growth medium, and of these and sorbitol to the drying medium (skim milk) was investigated so as to determine whether a relationship exists between growth and drying media, in terms of protection of freeze-dried cells throughout storage. The lowest decrease in viability of L. bulgaricus cells after freeze-drying was obtained when that organism was grown in the presence of mannose. However, L. bulgaricus clearly survived better during storage when cells had been grown in the presence of fructose, lactose or mannose rather than glucose (the standard sugar in the growth medium). A similar effect could not be observed in terms of thermotolerance; in this case, the growth medium supplemented with lactose was found to yield cells bearing the highest heat resistance. Supplementation of the drying medium with glucose, fructose, lactose, mannose or sorbitol led in most cases to enhancement of protection during storage, to a degree that was growth medium-dependent.  相似文献   

5.
Lactobacillusdelbrueckii subsp. bulgaricus and Streptococcus thermophilus are used for the biotransformation of milk in yoghurt. During milk fermentation, these lactic acid bacteria (LAB) hydrolyze lactose producing a glucose moiety that is further metabolized and a galactose moiety that they are enable to metabolize. We investigated the ability of L. bulgaricus and S. thermophilus strains expressing a heterologous L-arabinose isomerase to convert residual D-galactose to D-tagatose. The Bacillus stearothermophilus US100l-arabinose isomerase (US100l-AI) was expressed in both LAB, using a new shuttle vector where the araA US100 gene is under the control of the strong and constitutive promoter of the L. bulgaricus ATCC 11842 hlbA gene. The production of L-AI by these LAB allowed the bioconversion of D-galactose to D-tagatose during fermentation in laboratory media and milk. We also established that the addition of L-AI to milk also allowed the conversion of D-galactose into D-tagatose during the fermentation process.  相似文献   

6.
Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 was cultured in a chemostat and growth conditions were varied as required. Synthesis of L(+)-lactate was observed in all cases as well as activity of L(+)-lactate dehydrogenase in cell-free extracts. This enzyme was responsible for the formation of the L(+) isomer of lactate, since a lactate racemase was not present.  相似文献   

7.
Carbohydrate Utilization in Lactobacillus sake   总被引:5,自引:2,他引:3       下载免费PDF全文
The ability of Lactobacillus sake to use various carbon sources was investigated. For this purpose we developed a chemically defined medium allowing growth of L. sake and some related lactobacilli. This medium was used to determine growth rates on various carbohydrates and some nutritional requirements of L. sake. Mutants resistant to 2-deoxy-d-glucose (a nonmetabolizable glucose analog) were isolated. One mutant unable to grow on mannose and one mutant deficient in growth on mannose, fructose, and sucrose were studied by determining growth characteristics and carbohydrate uptake and phosphorylation rates. We show here that sucrose, fructose, mannose, N-acetylglucosamine, and glucose are transported and phosphorylated by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The PTS permease specific for mannose, enzyme II(supMan), was shown to be responsible for mannose, glucose, and N-acetylglucosamine transport. A second, non-PTS system, which was responsible for glucose transport, was demonstrated. Subsequent glucose metabolism involved an ATP-dependent phosphorylation. Ribose and gluconate were transported by PTS-independent permeases.  相似文献   

8.
Lactic acid bacteria (LAB) are generally sensitive to H2O2, a compound that they can paradoxically produce themselves, as is the case for Lactobacillus bulgaricus. Lactobacillus plantarum ATCC 14431 is one of the very few LAB strains able to degrade H2O2 through the action of a nonheme, manganese-dependent catalase (hereafter called MnKat). The MnKat gene was expressed in three catalase-deficient LAB species: L. bulgaricus ATCC 11842, Lactobacillus casei BL23, and Lactococcus lactis MG1363. While the protein could be detected in all heterologous hosts, enzyme activity was observed only in L. casei. This is probably due to the differences in the Mn contents of the cells, which are reportedly similar in L. plantarum and L. casei but at least 10- and 100-fold lower in Lactococcus lactis and L. bulgaricus, respectively. The expression of the MnKat gene in L. casei conferred enhanced oxidative stress resistance, as measured by an increase in the survival rate after exposure to H2O2, and improved long-term survival in aerated cultures. In mixtures of L. casei producing MnKat and L. bulgaricus, L. casei can eliminate H2O2 from the culture medium, thereby protecting both L. casei and L. bulgaricus from its deleterious effects.  相似文献   

9.
The growth of some locally isolated Lactobacillus strains forming D(-) or L(+) lactic acid, Lactobacillus helveticus ATCC 15009 and Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 was examined in different media. L. helveticus and Lactobacillus LBL strains formed atypical protoplast-like cells in LAPT medium, sensitive to SDS and proteinase. Specific morphological changes in the cell wall structure of these variants were revealed by transmission and scanning electron microscopy. The effect of glucose and various salts on their appearance was investigated. The prevalent role of metal cations, especially of Mg2+, was established.  相似文献   

10.
Fructose, galactose, L-arabinose, gluconate, and several organic acids support rapid growth and N2 fixation of Azospirillum brasiliense ATCC 29145 (strain Sp7) as a sole source of carbon and energy. Growth of Azospirillum lipoferum ATCC 29707 (strain Sp59b) is also supported by glucose, mannose, mannitol, and alpha-ketoglutarate. Oxidation of fructose and gluconate by A. brasiliense Sp7 and of glucose, gluconate, and fructose by A. lipoferum Sp59b was achieved through inducible enzymatic mechanisms. Both strains exhibited all of the enzymes of the Embden-Meyerhof-Parnas pathway, and strain Sp59b also possesses all the enzymes of the Entner-Doudoroff pathway. Fluoride inhibited growth on fructose (strains Sp7 and Sp59b) or on glucose (strain Sp59b) but not on malate. There was no activity via the oxidative hexose monophosphate pathway in either strain. There was greater activity with 1-phosphofructokinase than with 6-phosphofructokinase in both strains. Strain Sp59b formed fructose-6-phosphate via hexokinase, an enzyme that is lacking in strain Sp7. A. brasiliense and A. lipoferum exhibited the enzymes both of the tricarboxylic acid cycle and of the glyoxylate shunt; iodoacetate, fluoropyruvate, and malonate were inhibitory. A. brasiliense Sp7 could not transport [14C]glucose and alpha-[14C]ketoglutarate into its cells.  相似文献   

11.
Cultures of 14 lactic acid bacteria species were freeze-dried in 10 or 20% non-fat skim milk and in distilled water containing one of the following additives: bovine albumin, glycogen, dextran, polyethylene glycol (PEG) 1000, PEG 4000, PEG 6000, glycerol, beta-glycerophosphate, sodium glutamate, asparagine, or cysteine. Each of the potential protective agents tested exhibited marked variations in the protection afforded to different species, none of them was effective for the preservation of viability of thermophilic lactobacilli. However, glycerol provided effective protection for L. leichmannii ATCC 4797 (90% survival), while L. bulgaricus ATCC 11842 reached a viability of 78% with 0.04 M cysteine.  相似文献   

12.
13.
We have reported previously that the phosphoenolpyruvate:mannose phosphotransferase system (mannose PTS) of Streptococcus salivarius, consisting of an Enzyme II mannose (EIIman) and two forms of Enzyme III mannose (IIIman) with Mr values of 38,900 and 35,200, respectively, concomitantly transports and phosphorylates mannose, as well as glucose and fructose. In this paper, we report the presence, in S. salivarius, of alternative specific fructose and glucose PTSs encoded by inducible and cryptic genes, respectively. Protein phosphorylation experiments conducted with [32P]phosphoenolpyruvate have allowed us to identify by SDS-PAGE and autoradiography the EII fructose (EIIfru) (Mr 57,500) and the EII glucose (EIIglc) (Mr 58,700). No proteins corresponding to IIIfru or IIIglc could be detected. EIIfru phosphorylated fructose on the C-1 position rather than, as with the constitutive mannose PTS, on the C-6 position. Growth on fructose resulted in the induction of EIIfru as well as an increase of 1-phosphofructokinase activity. Nevertheless, the genes encoding these proteins were independently regulated. Studies carried out with spontaneous mutants lacking the low-molecular-mass form of IIIman (mutants A37, G29 and B31) showed that EIIfru was expressed in glucose-grown cells of strains G29 and B31, but not in strain A37, whereas the cryptic gene encoding EIIglc was activated in all three mutant strains. The results obtained with the mutants suggest that the three spontaneous mutants were not all mutated on the gene encoding IIIman although all of them lacked IIIman.  相似文献   

14.
We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production.  相似文献   

15.
Mutants of Escherichia coli devoid of the membrane-spanning proteins PtsG and PtsMP, which are components of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) and which normally effect the transport into the cells of glucose and mannose, do not grow upon or take up either sugar. Pseudorevertants are described that take up, and grow upon, mannose at rates strongly dependent on the mannose concentration in the medium (apparent Km > 5 mM); such mutants do not grow upon glucose but are derepressed for the components of the fructose operon. Evidence is presented that mannose is now taken up via the fructose-PTS to form mannose 6-phosphate, which is further utilized for growth via fructose 6-phosphate and fructose 1,6-bisphosphate.  相似文献   

16.
Detailed kinetic and physiological characterisation of eight mannitol-producing lactic acid bacteria, Leuconostoc citreum ATCC 49370, L. mesenteroides subsp. cremoris ATCC19254, L. mesenteroides subsp. dextranicum ATCC 19255, L. ficulneum NRRL B-23447, L. fructosum NRRL B-2041, L. lactis ATCC 19256, Lactobacillus intermedius NRRL 3692 and Lb. reuteri DSM 20016, was performed using a carob-based culture medium, to evaluate their different metabolic capabilities. Cultures were thoroughly followed for 30 h to evaluate consumption of sugars, as well as production of biomass and metabolites. All strains produced mannitol at high yields (>0.70 g mannitol/g fructose) and volumetric productivities (>1.31 g/l h), and consumed fructose and glucose simultaneously, but fructose assimilation rate was always higher. The results obtained enable the studied strains to be divided mainly into two groups: one for which glucose assimilation rates were below 0.78 g/l h (strains ATCC 49370, ATCC 19256 and ATCC 19254) and the other for which they ranged between 1.41 and 1.89 g/l h (strains NRRL B-3692, NRRL B-2041, NRRL B-23447 and DSM 20016). These groups also exhibited different mannitol production rates and yields, being higher for the strains with faster glucose assimilation. Besides mannitol, all strains also produced lactic acid and acetic acid. The best performance was obtained for L. fructosum NRRL B-2041, with maximum volumetric productivity of 2.36 g/l h and the highest yield, stoichiometric conversion of fructose to mannitol.  相似文献   

17.
In Saccharomyces cerevisiae, hexose uptake is mediated by HXT proteins which belong to a superfamily of monosaccharide facilitators. We have identified three more genes that encode hexose transporters (HXT5, 6, 7). Genes HXT6 and HXT7 are almost identical and located in tandem 3′ adjacent to HXT3 on chromosome IV. We have constructed a set of congenic strains expressing none or any one of the seven known HXT genes and followed growth and flux rates for glucose utilization. The hxt null strain does not grow on glucose, fructose or mannose, and both glucose uptake and flux rate were below the detection level. Expression of either HXT1, 2, 3, 4, 6 or 7 is basically sufficient for aerobic growth on these sugars. In most of the constructs, glucose was the preferred substrate compared to fructose or mannose. There is a considerable variation in flux and growth rates with 1% glucose, dependent on the expression of the individual HXT genes. Expression of either HXT2, 6 or 7 in the null background is sufficient for growth on 0.1% glucose, while growth of strains with only HXT1, 3 or 4 requires higher (≥1%) glucose concentrations. These results demonstrate that individual HXT proteins can function independently as hexose transporters, and that most of the metabolically relevant HXT transporters from S. cerevisiae have been identified.  相似文献   

18.
In Salmonella typhimurium, glucose, mannose, and fructose are normally transported and phosphorylated by the phosphoenolpyruvate:sugar phosphotransferase system. We have investigated the transport of these sugars and their non-metabolizable analogs in mutant strains lacking the phospho-carrier proteins of the phosphoenolpyruvate:sugar phosphotransferase system, the enzymes I and HPr, to determine whether the sugar-specific, membrane-bound components of the phosphonenolpyruvate: sugar phosphotransferase system, the enzymes II, can catalyze the uptake of these sugars in the absence of phosphorylation. This process does not occur. We have also isolated mutant strains which lack enzyme I and HPr, but have regained the ability to grow on mannose or fructose. These mutants contained elevated levels of mannokinase (fructokinase). In addition, growth on mannose required constitutive synthesis of the galactose permease. When strains were constructed which lacked the galactose permease, they were unable to grow even on high concentrations of mannose, although elevated levels of mannokinase (fructokinase) were present. These results substantiate the conclusion that the enzymes II of the phosphoenolpyruvate:sugar phosphotransferase system are unable to carry out facilitated diffusion.  相似文献   

19.
Various anaerobes were cultivated in media containing glucose. When 100 mL of thioglycollate medium containing 2.0% (w/v) glucose was used, Clostridium butyricum ATCC 859, NBRC 3315, and NBRC 13949 evolved 227-243 mL of biogas containing about 180 mL of hydrogen in 1 day. Although some strains had some resistance against oxygen, C. butyricum ATCC 859 and 860 did not have it. C. butyricum NBRC 3315 and Enterobacter aerogenes NBRC 13534 produced hydrogen in the presence of glucose or pyruvic acid, and E. aerogenes NBRC 13534 produced hydrogen by not only glucose and pyruvic acid but also dextrin, sucrose, maltose, galactose, fructose, mannose, and mannitol. When a medium containing 0.5% (w/v) yeast extract and 2.0% (w/v) glucose was used, E. aerogenes NBRC 13534 evolved more biogas and hydrogen than C. butyricum NBRC 3315 in the absence of reducing agent.  相似文献   

20.
As a member of the saccharolytic clostridia, a variety of different carbohydrates like glucose, fructose, or mannose can be used as carbon and energy source by Clostridium acetobutylicum ATCC 824. Thirteen phosphoenolpyruvate-dependent phosphotransferase systems (PTS) have been identified in C. acetobutylicum, which are likely to be responsible for the uptake of hexoses, hexitols, or disaccharides. Here, we focus on three PTS which are expected to be involved in the uptake of fructose, PTSFru, PTSManI, and PTSManII. To analyze their individual functions, each PTS was inactivated via homologous recombination or insertional mutagenesis. Standardized comparative batch fermentations in a synthetic medium with glucose, fructose, or mannose as sole carbon source identified PTSFru as primary uptake system for fructose, whereas growth with fructose was not impaired in PTSManI and slightly altered in PTSManII-deficient strains of C. acetobutylicum. The inactivation of PTSManI resulted in slower growth on mannose whereas the loss of PTSManII revealed no phenotype during growth on mannose. This is the first time that it has been shown that PTSFru and PTSManI of C. acetobutylicum are directly involved in fructose and mannose uptake, respectively. Moreover, comprehensive comparison of the fermentation products revealed that the loss of PTSFru prevents the solvent shift as no butanol and only basic levels of acetone and ethanol could be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号