首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multiple endocrine neoplasia type 1 (MEN1) locus has been previously localised to 11q13 by combined tumour deletion mapping and recombination studies, and a 0.5-Mb region, flanked by PYGM and D11S449, has been defined. In the course of constructing a contig, we have identified the location of the gene encoding the B56β subunit of protein phosphatase 2A (PP2A), which is involved in cell signal transduction pathways and thus represents a candidate gene for MEN1. We have searched for mutations in the PP2A-B56β coding region, together with the 5′ and 3′ untranslated regions in six MEN1 patients. DNA sequence abnormalities were not identified and thus the PP2A-B56β gene is excluded as the candidate gene for MEN1. However, our precise localisation of PP2A-B56β to this region of 11q13 may help in elucidating the basis for other disease genes mapping to this gene-rich region. Received: 17 April 1997 / Accepted: 22 April 1997  相似文献   

2.
Nine KOX zinc finger genes were localized on four human chromosomes by in situ hybridization of cDNA probes to metaphase chromosomes. KOX1 (ZNF10), KOX11 (ZNF18), and KOX12 (ZNF19) were mapped to chromosome bands 12q24.33, 17p13-p12, and 16q22-q23, respectively. Six other KOX genes were localized on chromosome 19: KOX6 (ZNF14) and KOX13 (ZNF20) to 19p13.3-p13.2, KOX5 (ZNF13) and KOX22 (ZNF27) to 19q13.2-qter, and KOX24 (ZNF28) and KOX28 (ZNF30) to 19q13.4. Pulsed field gel electrophoresis experiments showed that the pairs of KOX genes found on the chromosome bands 12q24.33, 16q22-q23, 19p13.3-p13.2, or 19q13.3-qter lie within 200–300 kb DNA fragments. This suggests the existence of KOX gene clusters on these chromosomal bands.  相似文献   

3.
The α1 subunit genes encoding voltage-dependent Ca2+ channels are members of a gene family. We have used human brain cDNA probes to localize the neuronal isoform genes CACNL1A4 (α1A), CACNL1A5 (α1B), and CACNL1A6 (α1E) to 19p13, 9q34, and 1q25-q31, respectively, using fluorescence in situ hybridization on human chromosomes. These genes are particularly interesting gene candidates in the pathogenesis of neuronal disorders. Although genetic disorders have been linked to loci 9q34 and 19p13, no genetic disease related to Ca2+ signaling defects has yet been linked to these loci.  相似文献   

4.
Aldose reductase (alditol:NAD(P)+ 1-oxidoreductase; EC 1.1.1.21) (AR) catalyzes the reduction of several aldehydes, including that of glucose, to the corresponding sugar alcohol. Using a complementary DNA clone encoding human AR, we mapped the gene sequences to human chromosomes 1, 3, 7, 9, 11, 13, 14, and 18 by somatic cell hybridization. By in situ hybridization analysis, sequences were localized to human chromosomes 1q32-q42, 3p12, 7q31-q35, 9q22, 11p14-p15, and 13q14-q21. As a putative functional AR gene has been mapped to chromosome 7 and a putative pseudogene to chromosome 3, the sequences on the other seven chromosomes may represent other active genes, non-aldose reductase homologous sequences, or pseudogenes.  相似文献   

5.
In humans, the poly(A)-binding proteins (PABPs) comprise a small nuclear isoform and a conserved gene family that displays at least three functional proteins: PABP1, inducible PABP (iPABP), and PABP3, plus four pseudogenes (1, 2, 3, and PABP4). In situ hybridization of PABP3 cDNA as the probe on metaphasic chromosomes have revealed five possible loci for this gene family at 2q21-q22, 13q11-q12, 12q13.3-q15, 8q22, and 3q24-q25. Amplifications of specific DNA fragments from a human-rodent somatic cell hybrid panel have allowed us to associate PABP1 and PABP3 with 8q22 and 13q11-q12, respectively. The iPABP gene has been assigned to chromosome 1. This result, compared with radiation hybrid database information, strengthens the location of this gene to 1p32-p36. The pseudogenes PABP4, 1, and 2 have been assigned to chromosomes 15, 4, and 14, respectively. Three loci detected on chromosome spreads are not associated with any amplified fragment. They might represent other related PABP genes not yet identified.  相似文献   

6.
The rat Chromosome (Chr) 2 harbors several genes controlling tumor growth or development, blood pressure, and non-insulin-dependent diabetes mellitus. We report that the region (2q1) containing the mammary susceptibility cancer gene Mcs1 also harbors the genes encoding cyclin B1, interleukin 6 signal transducer (gp130), and proprotein convertase 1. We also generated 13 new anonymous microsatellite markers from Chr 2-sorted DNA. These markers, as well as a microsatellite marker in the cyclin B1 gene, were genetically mapped in combination with known markers. A cyclin B1-related gene was also cytogenetically assigned to rat Chr 11q22-q23. Received: 21 July 1998 / Accepted: 28 August 1998  相似文献   

7.
Two human clathrin light-chain genes have been defined. The gene (CLTA) encoding the LCa light chain maps to the long arm of chromosome 12 at 12q23-q24 and that encoding the LCb light chain (CLTB) maps to the long arm of chromosome 4 at 4q2-q3. Isolation and characterization of partial genomic clones encoding human LCa and LCb reveal the neuron-specific insertions of the LCa and LCb proteins to he encoded by discrete exons, thus proving that clathrin light chains undergo alternate mRNA splicing to generate tissue-specific protein isoforms. The insertion sequence of LCb is encoded by a single exon and that of LCa by two exons. The first of the two neuron-specific LCa exons is homologous to the corresponding LCb exon. An intronic sequence of the LCb gene with similarity to the second neuron-specific exon of the LCa gene has been identified.  相似文献   

8.
To identify DNA amplifications in sarcomas, comparative genomic hybridization was performed on 27 cases that were likely to display high-level DNA copy number gains. In all cases, chromosome banding analysis had revealed homogeneously staining regions or double minutes, i.e., cytogenetic signs of gene amplification. In most cases, gains predominated over losses. Low-level amplifications (ratio 1.3:1.5) were seen in 20 cases. High-level amplifications (ratio >1.5) exceeded the frequencies seen in published, unselected sarcomas of similar histotypes and were detected in 16 tumors: 4/4 osteosarcomas, 5/8 malignant fibrous histiocytomas, 3/7 leiomyosarcomas, 1/2 myosarcomas, 0/1 liposarcoma, 0/1 rhabdomyosarcoma, 1/1 pleomorphic sarcoma, 0/1 myxofibrosarcoma, 1/1 malignant mesenchymona, and 1/1 malignant schwannoma, with two to four chromosomal regions involved in nine tumors. Recurrent amplifications involved 1p33-p32, 5p15-p14, 7pter-p12, 7q21-qter, 8q21.3-qter, 11q22-q23, 16p13.2-p12, 19q12-q13.1, 20q11.2-qter, and 22q12-q13. Most of the recurrent gains/amplifications we detected have been reported in sarcomas previously. A novel gain/amplification was seen at 2q14.3-q21 in five cases of four sarcoma types. The disparate pattern of amplified sequences, the poor correspondence between the localization of low- and high-level amplifications, and the chromosomal position of homogeneously staining regions suggest the involvement of many genes in the amplifications and that the genes rarely maintain their native position in these tumors.  相似文献   

9.
Mapping of porcine ESTs obtained from the anterior pituitary   总被引:5,自引:0,他引:5  
  相似文献   

10.
Armadillo-like proteins are characterized by a series of armadillo repeats that are typically 42 to 45 amino acids in length. Three major subfamilies of Armadillo-like proteins can be distinguished on the basis of their number of repeats, their overall sequence similarity, and dispersion of the repeats throughout the protein. One of these is the p120ctn/plakophilin subfamily, which contains at least six members. We mapped the corresponding human genes by PCR on a monochromosomal cell hybrid mapping panel and by fluorescencein situhybridization. The gene for plakophilin-1 (PKP1) was located at 1q32, the plakophilin-2 gene (PKP2) was located at 12p13, while the gene for p0071 was located at 2q23–q31. We confirmed the chromosomal localization of the p120ctngene (CTNND1) at 11q11, the ARVCF gene at 22q11, and the δ-catenin/NPRAP gene (CTNND2) at 5p15. Although some of the Armadillo proteins are highly related to one another, the corresponding genes are dispersed throughout the human genome.  相似文献   

11.
Downregulation or total loss of HLA class I expression on tumor cells is known as a mechanism of cancer immune escape. Alterations of the HLA phenotype are frequently due to mutations affecting genes encoding the HLA class I heavy chains located on chromosome 6p21 or the β2-microglobulin (β2m) gene encoding the light chain of the HLA complex located on chromosome 15q21. Frequently irreversible total loss of HLA class I molecules is due to the coincidence of two molecular events, the mutation of one β2m gene and the loss of the second copy. The latter is detectable as loss of heterozygosity (LOH) of microsatellite markers in the β2m region on chromosome 15q21 (LOH-15q21). Thus, LOH-15q21 might be an important event in the processes of HLA class I downregulation and total loss. Here we studied the frequency of LOH-15q21 in tumor tissues of different entities. By determining the status of heterozygosity of two microsatellite markers we detected LOH-15q21 in 44% of bladder carcinomas (n = 69), in 35% of colon carcinomas (n = 95), in 16% of melanomas (n = 70) but only in 7% of renal cancers (n = 45). Moreover, we observed a frequent coincidence of LOH-15q21 and LOH-6p21 in colorectal carcinoma, bladder carcinoma and melanoma, but not for renal carcinoma. We believe that the high incidence of LOH-15q21 in some malignancies and especially the coincidence of LOH-15q21 and LOH-6p21 might have a strong impact on tumor immunogenicity and on the efficiency of cancer immunotherapy.  相似文献   

12.
The genes encoding α1-antitrypsin (α1AT; gene symbol PI) and corticosteroid-binding globulin (CBG) are part of a cluster of structurally related serine protease inhibitor (serpin) genes on human Chromosome (Chr) 14q32.1. This cluster also includes the genes encoding α1-antichymotrypsin (AACT) and protein C inhibitor (PCI), as well as an α1-antitrypsin-related sequence (ATR; gene symbol PIL). In this report we present a detailed restriction map of a 110-kb region of genomic DNA that includes the α1AT, ATR, and CBG genes. Gene order in this interval is tel–α1AT–ATR–CBG–cen, and all three genes are transcribed in a distal-to-proximal orientation. Within the gene cluster, ATR is approximately 12 kb downstream of α1AT, and CBG is about 57 kb downstream of α1AT. Repetitive DNA sequences have been mapped throughout the interval, and several new restriction site polymorphisms in the region are described. Received: 25 May 1997 / Accepted: 23 July 1997  相似文献   

13.
The development of genetic epidemiology methods using recent human genetic mapping information together with the growing availability of candidate genes has led to major advances in the identification of host genes in human schistosomiasis. Two phenotypes have been studied so far in the infection by Schistosoma mansoni: infection levels by the parasite as measured by the faecal egg counts, and the severe hepatic fibrosis caused by S. mansoni assessed by ultrasound examination. The first study was performed on Brazilian pedigrees and provided strong evidence for a major gene controlling infection levels by S. mansoni denoted as SM1 which was mapped to chromosome 5q31-q33. This region contains several candidate genes involved in the regulation of the Th1/Th2 response, and the direct role of polymorphisms located within these genes is under investigation. The second study conducted in Sudan also showed the presence of a major gene influencing the development of severe hepatic fibrosis due to S. mansoni infection denoted as SM2. This gene is not located in the 5q31-q33 region, but maps to chromosome 6q22-q23 and is closely linked to the IFN-gamma R1 gene encoding the receptor of the strongly anti-fibrogenic cytokine Interferon-gamma. These findings indicate that two distinct genetic loci control human predisposition to schistosomiasis, SM1 located in the 5q31-q33 region which is likely to play a role in the Th1/Th2 differentiation, and SM2 in 6q22-q23 influencing disease progression with a possible involvement in the regulation of IFN-gamma.  相似文献   

14.
Gilles de la Tourette syndrome (GTS) is a sporadic or inherited complex neuropsychiatric disorder characterized by involuntary motor and vocal tics. There is comorbidity with disorders like obsessive compulsive disorder and attention deficit hyperactivity disorder. Until now linkage analysis has pointed to a number of chromosomal locations, but has failed to identify a clear candidate gene(s). We have investigated a GTS family with a complex chromosomal insertion/translocation involving chromosomes 2 and 7. The affected father [46,XY,inv(2) (p23q22),ins(7;2) (q35-q36;p21p23)] and two affected children [46,XX,der(7)ins(7;2)(q35-q36;p21p23) and 46,XY,der(7)ins(7;2)(q35-q36;p213p23)] share a chromosome 2p21-p23 insertion on chromosome 7q35-q36, thereby interrupting the contactin-associated protein 2 gene (CNTNAP2). This gene encodes a membrane protein located in a specific compartment at the nodes of Ranvier of axons. We hypothesize that disruption or decreased expression of CNTNAP2 could lead to a disturbed distribution of the K(+) channels in the nervous system, thereby influencing conduction and/or repolarization of action potentials, causing unwanted actions or movements in GTS.  相似文献   

15.
16.
Summary The human progesterone receptor gene was mapped by in situ hybridization using two cDNA probes corresponding to the 5′ and 3′ part of the coding sequence. This gene was localized to 11q22-q23.  相似文献   

17.
Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily that play a pivotal role in bone formation during embryogenesis and fracture repair. BMP signaling occurs via hetero-oligomeric serine/threonine kinase complexes of BMP type I (BMPR-IA or BMPR-IB) and type II receptors (BMPR-II). BMPR-IA and IB are closely related receptors, with sequence differences conserved between different species, suggesting that they serve distinct functions. Here we report the cDNA cloning of human BMPR1B and the chromosomal localization of all three BMPR genes. Using somatic cell hybrid and FISH analyses, the BMPR1A, BMPR1B, and BMPR2 genes were assigned to 10q23, 4q22-24, and 2q33-34, respectively. A processed BMPR1A pseudogene was mapped to 6q23. Received: 17 February 1997 / Accepted: 15 October 1998  相似文献   

18.
19.
Summary The human RAB genes share structural and biochemical properties with the RAS gene superfamily. The encoded RAB proteins show 38 to 75% amino acid identity with the yeast YPT1 and SEC4 gene products. We used four human RAB-cDNAs, RAB3B, RAB4, RAB5 and RAB6, to map the corresponding genes on human chromosomes. These genes were assigned to 1p32-p31, 1q42-q43, 3p24-p22 and 2q14-q21, respectively, by in situ hybridization.  相似文献   

20.
Linear order of the four BCR-related loci in 22q11   总被引:5,自引:0,他引:5  
M Budarf  E Canaani  B S Emanuel 《Genomics》1988,3(2):168-171
It has recently been shown the a probe for the 3' end of the BCR gene recognizes a family of four BCR-like genes that map to 22q11. Using a panel of somatic cell hybrids with rearrangement of chromosome 22, we have determined their order within 22q11: BCR-2, BCR4, BCR1, BCR-3, with BCR-2 the most centromere proximal. All of the BCR-like genes map proximal to the 22q11-q12 breakpoint of a t(11;22) in a Ewing sarcoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号