首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli   总被引:41,自引:0,他引:41  
Summary DNA fragments of 3.4 kb containing the gyrB gene were cloned from Escherichia coli KL-16 and from spontaneous nalidixic acid-resistant mutants. The mutations (nal-24 and nal-31) had been determined to be in the gyrB gene by transduction analysis. Nucleotide sequence analysis of the cloned DNA fragments revealed that nal-24 was a G to A transition at the first base of the 426th codon of the gyrB gene, resulting in an amino acid change from aspartic acid to asparagine, and nal-31 was an A to G transition at the first base of the 447th codon, resulting in an amino acid change from lysine to glutamic acid. This indicates that mutations in the gyrB gene are responsible for nalidixic acid resistance.  相似文献   

2.
Artificial mutations of Gyrase A protein (GyrA) in Escherichia coli by site-directed mutagenesis were generated to analyze quinolone-resistant mechanisms. By genetic analysis of gyrA genes in a gyrA temperature sensitive (Ts) background, exchange of Ser at the NH2-terminal 83rd position of GyrA to Trp, Leu, Phe, Tyr, Ala, Val, and Ile caused bacterial resistance to the quinolones, while exchange to Gly, Asn, Lys, Arg and Asp did not confer resistance. These results indicate that it is the most important for the 83rd amino acid residue to be hydrophobic in expressing the phenotype of resistance to the quinolones. These findings also suggest that the hydroxyl group of Ser would not play a major role in the quinolone-gyrase interaction and Ser83 would not interact directly with other amino acid residues.  相似文献   

3.
Summary Escherichia coli K12 strain KS40 and plasmid pKY241 were designed for easy screening of supF mutations in plasmid pZ189. KS40 is a nalidixic acid-resistant (gyrA) derivative of MBM7070 (lacZ(am)CA7020). Using in vitro mutagenesis, an amber mutation was introduced into the cloned gyrA structural gene, of E. coli, to give pKY241, a derivative of pACYC184. When KS40 containing pKY241 (designated KS40/pKY241) is transformed with pZ189, nalidixic acid-resistant GyrA protein is produced from the chromosomal gyrA gene and wild-type GyrA protein from pKY241 because of the suppression of the gyrA amber mutation by supF. It is known that the wild-type, otherwise nalidixic acid-sensitive, phenotype is dominant over the nalidixic acid-resistant phenotype. Thus, KS40/pKY241 gives rise to nalidixic acid-sensitive colonies when it carries a pZ189 plasmid with an active supF suppressor tRNA. If the supF gene on the plasmid carries an inactivating mutation then KS40/pKY241 will form nalidixic acid-resistant colonies. By using this system, the spontaneous mutational frequency of the supF gene on pZ189 was calculated to be 3.06 × 10–7 per replication. Among 51 independent supF mutations analyzed by DNA sequencing, 63% were base substitutions, 25% IS element insertions, 9.6% deletions and 1.9% single-base frameshifts. The base substitutions included both transversions (84.8%) and transitions (15.2%), the largest single group being G:C to T:A transversions (45.4% of the base substitutions). These results demonstrate that the KS40/pKY241 system we have developed can be used to characterize the DNA sequence changes induced by mutagens that give very low mutational frequencies.  相似文献   

4.
The 3.5 kb nucleotide fragment, including the recA gene and its downstream recX-like gene, has been isolated from a genomic library by dot-blot hybridization with the Mycobacterium smegmatis recA gene. The recA gene, consisting of 1047 base pairs (bp), encodes a polypeptide of 348 amino acids while the recX-like gene, consisting of 450 bp, encodes a shorter polypeptide of 149 amino acids. Both the deduced amino acid sequences of recA and recX resemble those of the recA and recX genes from other bacteria. The cloned Amycolatopsis mediterranei U32 recA gene conferred partial resistance to ethyl methane sulfonate when expressed in E. coli with the lacZ promoter.  相似文献   

5.
The gene for the catalytic subunit of cellulose synthase from Acetobacter xylinum has been cloned by using an oligonucleotide probe designed from the N-terminal amino acid sequence of the catalytic subunit (an 83 kDa polypeptide) of the cellulose synthase purified from trypsin-treated membranes of A. xylinum. The gene was located on a 9.5 kb HindIII fragment of A. xylinum DNA that was cloned in the plasmid pUC18. DNA sequencing of approximately 3 kb of the HindIII fragment led to the identification of an open reading frame of 2169 base pairs coding for a polypeptide of 80 kDa. Fifteen amino acids in the N-terminal region (positions 6 to 20) of the amino acid sequence, deduced from the DNA sequence, match with the N-terminal amino acid sequence obtained for the 83 kDa polypeptide, confirming that the DNA sequence cloned codes for the catalytic subunit of cellulose synthase which transfers glucose from UDP-glucose to the growing glucan chain. Trypsin treatment of membranes during purification of the 83 kDa polypeptide cleaved the first 5 amino acids at the N-terminal end of this polypeptide as observed from the deduced amino acid sequence, and also from sequencing of the 83 kDa polypeptide purified from membranes that were not treated with trypsin. Sequence analysis suggests that the cellulose synthase catalytic subunit is an integral membrane protein with 6 transmembrane segments. There is no signal sequence and it is postulated that the protein is anchored in the membrane at the N-terminal end by a single hydrophobic helix. Two potential N-glycosylation sites are predicted from the sequence analysis, and this is in agreement with the earlier observations that the 83 kDa polypeptide is a glycoprotein [13]. The cloned gene is conserved among a number of A. xylinum strains, as determined by Southern hybridization.  相似文献   

6.
7.
The gene encoding the XorII methyltransferase (M · XorII) was cloned from Xanthomonas oryzae pv. oryzae and characterized in Escherichia coli. The M · XorII activity was localized to a 3.1 kb BamHI-BstXI fragment, which contained two open reading frames (ORFs) of 1272 nucleotides (424 amino acids) and 408 nucleotides (136 amino acids). Ten polypeptide domains conserved in other M5 cytosine methyltransferases (MTases) were identified in the deduced amino acid sequence of the 1272 ORF. E. coli Mrr+ strains were transformed poorly by plasmids containing the XorII MTase gene, indicating the presence of at least one MCG in the recognition sequence for M · XorII (CGATCG). The 408 nucleotide ORF was 36% identical at the amino acid level to sequences of the E. coli dcm-vsr gene, which is required for very short patch repair. X. oryzae pv. oryzae genomic DNA that is resistant to digestion by Pvul and XorII hybridizes with a 7.0 kb fragment containing the XorII MTase gene and vsr homolog, whereas DNA from strains that lack M · XorII activity do not hybridize with the fragment.The sequence presented in this paper has been submitted to NCBI; the accession number is U06424  相似文献   

8.
The development of resistance to quinolones (nalidixic acid, ciprofloxacin and enrofloxacin) in 2006–2008 was evaluated in 317 strains of Escherichia coli isolated from healthy chicken broilers from various farms. The isolates (2006/2007/2008) showed a high resistance to nalidixic acid (87/85/67 %), ciprofloxacin (CIP) (49/54/29 %) and enrofloxacin (ENR) (52/42/22 %). Nalidixic acid-resistant isolates with low level of MIC for CIP and ENR represented a single mutation; intermediary MIC for CIP and ENR were related to two mutations and high level resistance MIC for CIP (≥4 mg/L) and ENR (≥16 mg/L) represented three mutations (two in gyrA and one in parC). There was a correlation between the phenotype reading of high-level resistance and mutations in gyrA (Ser83Leu, Asp87Tyr or Asp87Asn) and parC (Ser80Ile) gene. Plasmid-mediated quinolone-resistance qnrS gene was detected in one Escherichia coli strain with a high level of ciprofloxacin resistance. Our results demonstrate the increase in occurrence of multiresistant E. coli strains with a high level of chromosomal and plasmid resistance to fluoroquinolones.  相似文献   

9.
The glucose-6-phosphate dehydrogenase (EC 1.1.1.49) gene (zwf) of the cyanobacterium Synechococcus PCC 7942 was cloned on a 2.8 kb Hind III fragment. Sequence analysis revealed an ORF of 1572 nucleotides encoding a polypeptide of 524 amino acids which exhibited 41% identity with the glucose-6-phosphate dehydrogenase of Escherichia coli.  相似文献   

10.
A prolonged incubation of Escherichia, Salmonella or Pseudomonas at 48°C with nalidixic acid selected mutants (T48) able to grow at 48°C. A prolonged incubation at 54°C of the T48 mutants selected mutants (T54) able to grow at 54°C. These mutants were susceptible to the same bacteriophages as the original mesophilic strains. Auxotrophic phenotypes of Escherichia coli and Salmonella typhimurium mesophilic parents were demonstrated by these mutants if they were cultivated on minimal agar with cellobiose at 48°C or 54°C or on a minimal agar with glucose at 37°C. The T48 alleles mapped in the gyrA region of E. coli or S. typhimurium chromosome. In S. typhimurium the T54 alleles, which permit growth at 54°C, were shown by cotransductional analysis to be linked to gyrA.  相似文献   

11.
Summary We isolated new gyrA and gyrB mutations in Escherichia coli which have a graded effect on DNA supercoiling. The mutants, selected respectively for resistance to nalidixic acid and coumermycin, were sorted by means of a rapid in vivo assay of DNA gyrase activity (Aleixandre and Blanco 1987). Cells carrying a gyrB (Cour) mutation usually showed a decrease in DNA supercoiling, which would indicate a reduction in gyrase activity. In contrast, most of the gyrA (Nalr) mutations had no significant effect on DNA supercoiling. Moreover, they conferred a high level of resistance to nalidixic acid and other quinolones, thus being similar to the gyrA(Nalr) mutants currently used. We also detected rare gyrA mutants showing a reduction in DNA gyrase activity. These mutants were, in addition, resistant to only low concentrations of quinolones, which allowed us to use the phenotype of partial quinolone resistance as an indicator to score gyrA mutations affecting DNA supercoiling. When gyrB mutations were introduced into the gyrA mutants, these became more sensitive to quinolones and a decrease in supercoiling was observed. Moreover, the topA10 mutation sensitized gyrA(Nalr) cells to quinolones. We conclude therefore that the GyrA-dependent quinolone resistance is diminished as a consequence of the reduction either in topoisomerase I or gyrase activities.  相似文献   

12.
The lipo-penicillinase (LIPEN) gene from an alkalophilic Bacillus sp. strain 170 was cloned in Escherichia coli using the vector pHSG399. A plasmid, pFAP121, was isolated from an ampicillin resistant transformant and the cloned LIPEN gene was found to be in a 2.2 kb DNA fragment. The nucleotide sequence of a 1.9 kb segment encoding the LIPEN was determined. This segment showed an open reading frame which would encode a polypeptide of 310 amino acids. The amino acid sequence of this LIPEN gene product has strong homology with those of the Bacillus cereus -lactamase III and Bacillus licheniformis penicillinase.  相似文献   

13.
Summary A lysine decarboxylase (LDC) gene from Hafnia alvei was cloned in the Escherichia coli strain HB101. A gene bank consisting of 2,000 clones, carrying recombinant plasmids with large DNA fragments of H. alvei integrated in the BamH1 site of pBR322, was screened for LDC activity by a colony filter radioimmunoassay. The gene bank yielded clone 462 expressing high LDC activity with the presence of a plasmid carrying a 7.5 kb insert of H. alvei. Two LDC-positive subclones derived from 462 with inserts of 2.9 and 3.3 kb were sequenced by the shotgun method. An open reading frame for a 83 K protein with 739 amino acids was determined as the coding region for the LDC. The identification of this reading frame as the true reading frame of the H. alvei LDC gene and its similarities with LDC of E. coli are described. The use of the cloned gene for the transformation of plant cells is discussed.  相似文献   

14.
Summary A cluster of four Azospirillum brasilense histidine biosynthetic genes, hisA, hisB, hisF and hisH, was identified on a 4.5 kb DNA fragment and its organization studied by complementation analysis of Escherichia coli mutations and nucleotide sequence. The nucleotide sequence of a 1.3 kb fragment that complemented the E. coli hisB mutation was determined and an ORF of 624 nucleotides which can code for a protein of 207 amino acids was identified. A significant base sequence homology with the carboxyterminal moiety of the E. coli hisB gene (0.53) and the Saccharomyces cerevisiae HIS3 gene (0.44), coding for an imidazole glycerolphosphate dehydratase activity was found. The amino acid sequence and composition, the hydropathic profile and the predicted secondary structures of the yeast, E. coli and A. brasilense proteins were compared. The significance of the data presented is discussed.Abbreviations IGP imidazole glycerolphosphate - HP histidinolphosphate  相似文献   

15.
A 5-kb region of theAcholeplasma laidlawii PG-8B genome was sequenced. The region contained the genes for RecF, DNA gyrase subunits A and B (GyrA and GyrB), and a fragment of the ATP-binding subunit of the hypothetical ABC transporter. In phylogenetic analysis,A. laidlawii GyrA and GyrB formed statistically significant, stable clusters with the corresponding proteins ofClostridium acetobutylicum, Staphylococcus aureus, Bacillus subtilis, andStreptococcus pneumoniae. A laidlawii PG-8B clones resistant to fluoroquinolone (FQ) antibiotic ciprofloxacin (Cff) were obtained on a selective medium. The clones carried mutations in the quinolone resistance-determining region (QRDR) ofgyrA, which resulted in substitutions Ser83→Ala, Ser83→Phe, or Asp91→Asn. No mutations were found ingyrB QRDR of the resistant clones.  相似文献   

16.
Neisseria gonorrhoeae homologues of gyrA and parC have been identified using hybridization probes generated from conserved regions of diverse gyrA genes. These genes have been tentatively identified as gyrA and parC, based on predicted amino acid sequence homologies to known GyrA homologues from numerous bacterial species and to ParC from Escherichia coli and Salmonella typhimurium. The gyrA gene maps to a physical location distant from the gyrB locus on the gonococcal chromosome, which is similar to the situation found in E. coli. The parC gene is not closely linked (i.e. greater than 9 kb) to an identifiable parE gene in N. gonorrhoeae. The gonococcal GyrA is slightly larger than its E. coli homologue and contains several small insertions near the O-terminus of the predicted open reading frame. A series of ciprofloxacin-resistant mutants were selected by passage of N. gonorrhoeae on increasing concentrations of the antibiotic. Sequential passage resulted in the selection of isolates with minimum inhibitory concentrations approximately 10000-fold higher than the parental strain. Mutations within gyrA resulted in low to moderate levels of resistance, while strains with high-level resistance acquired analogous mutations in both gyrA and parC. Resistance mutations were readily transferred between N. gonorrhoeae strains by transformation. The frequencies of transformation, resulting in different levels of ciprofloxacin resistance, further support the notion that both gyrA and parC genes are invoived in the establishment of extreme levels of ciprofloxacin resistance.  相似文献   

17.
The functional contributions of amino acid residue Asp87 of Escherichia coli gyrase A protein (GyrA) was analyzed by site-directed mutagenesis. We generated a series of mutants, in which Asp87 of GyrA was changed to Ala, Val, Phe, Asn, Ser, and Lys. By genetic analysis of gyrA genes in a gyrA temperature-sensitive (Ts) background, it was shown that all these mutations caused the quinolone-resistance. These results indicate that the 87th amino acid of E. coli GyrA must have negative charge in expressing the phenotype of quinolone sensitivity. These findings also suggest that the carboxyl group of Asp87 may interact with quinolone drugs.  相似文献   

18.
Summary An 8.2 kb fragment of E. coli chromosomal DNA, when cloned in increased copy number, suppresses the dnaA46 mutation, and an abundant protein of about 68 kd (60 kd when measured by us), encoded by the fragment, is essential for the suppression (Takeda and Hirota 1982). Mapping experiments show that the fragment originates from the 94 min region of the chromosome. It encodes several proteins but only one abundant polypeptide of the correct size, the product of the groEL gene. Suppression by the fragment is allele specific; those mutations which map to the centre of the gene are suppressed. Other initiation mutants including dnaA203, dnaA204, dnaA508, dnaAam, dnaC, dnaP and dnaB252 are not suppressed. Most suppressed strains are cold-sensitive suggesting an interaction between the mutant proteins (or their genes) and the suppressing protein or proteins.  相似文献   

19.
Summary A cosmid bank of Methanococcus voltae DNA was obtained in Escherichia coli after ligation of partially HindIII-digested M. voltae DNA in the HindIII site of the transferable cosmid pVK100. The bank was used to perform complementation experiments with E. coli auxotrophic mutants. Five cosmids complementing trpA shared three adjacent HindIII fragments of 2.1, 2.3 and 14 kb. Two of these cosmids also complemented trpD and carried an additional 4.2 kb HindIII fragment. The trpA- and trpD-complementing regions were more precisely localized using Tn5 mutagenesis. A 1.7 kb PstI fragment, cloned into pUC9 in both orientations, was responsible for the trpA complementation. This fragment was sequenced and an open reading frame (ORF) of 852 nucleotides (ORFtrpA) encoding a 284 amino acid polypeptide of mol. wt. 31938 was found. The amino acid sequence was compared with that of the subunit of tryptophan synthase (trpA gene product) from nine eubacterial species and to the N-terminal part of the tryptophan synthase of Saccharomyces cerevisiae (TRP5 gene product). Similarity varied from 24% (Brevibacterium lactofermentum) to 35% (S. cerevisiae). The nucleotide sequence of the region upstream from M. voltae ORFtrpA was determined and revealed the presence of an ORF of 1227 nucleotides (ORFtrpB) encoding a 409 amino acid polypeptide of mol. wt. 44634. The polypeptide sequence was similar to the subunit of tryptophan synthase (trpB gene product) from six eubacterial species and to the C-terminal part of the tryptophan synthase of S. cerevisiae. Similarity varied from 49% (S. cerevisiae, B. lactofermentum) to 58% (Pseudomonas aeruginosa). This high conservation supports the hypothesis of a common ancestor for the trpA and trpB genes of archaebacteria, eubacteria and eucaryotes. M. voltae ORFtrpA and ORFtrpB, which are transcribed in the same direction, are separated by a 37 bp AT-rich region. Immediately upstream from ORFtrpB, the 3 end of an ORF homologous to E. coli and Bacillus subtilis trpF was found. As the trpD-complementing region was located upstream from the trpFBA sequenced region, the organization of trp genes in the archaebacterium might thus be trpDFBA. Such an organization resembles that of enteric eubacteria, in which the trpEDCFBA genes are grouped in a single operon. However, M. voltae ORFtrpA and ORFtrpB do not overlap, in contrast with what is found in most eubacteria.  相似文献   

20.
Summary A DNA fragment that codes for the 364 amino-terminal amino acid residues of a putative Bacillus subtilis SecA homologue has been cloned using the Escherichia coli SecA gene as a probe. The deduced amino acid sequence showed 58% identity to the aminoterminus of the E. coli SecA protein. A DNA fragment which codes for 275 amino-terminal amino acid residues of the B. subtilis SecA homologue was expressed in E. coli and the corresponding gene product was shown to be recognized by anti-E. coli SecA antibodies. This polypeptide, although only about 30% the size of the E. coli SecA protein, also restored growth of E. coli MM52 (secA ts) at the non-permissive temperature and the translocation defect of proOmpA in this mutant was relieved to a substantial extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号