首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyols (glycerol and sorbitol) and salts (magnesium sulfate, sodium sulfate, and magnesium chloride) have been used to study the refolding of the acid-induced state of human placental cystatin (HPC), which is a low molecular weight (12,500 daltons) thiol proteinase inhibitor, in terms of CD spectroscopy, binding of hydrophobic dye 1-anilinonaphthalene-8-sulfonic acid (ANS), and intrinsic fluorescence measurements. The helical content of acid-denatured HPC increased with increase in glycerol concentration (0–80%). At 80% glycerol concentration, the secondary structural features observed in the far UV-CD region are similar to those of the native state (pH 6.0). The intrinsic fluorescence and near UV-CD studies showed that this 80% glycerol-induced state has a significant amount of tertiary structure with decreased ANS binding compared to the acid-denatured state. It was found that glycerol is more effective in stabilizing the acid-denatured state of HPC as compared to sorbitol. Among salts the stability effect was more for MgCl2 (used up to concentration of 3 M) compared to MgSO4 and Na2SO4 (used up to the concentration of 1.5 M due to restricted solubility of HPC at higher sulfate salt concentrations) as determined by CD studies and fluorescence measurements, which showed secondary and tertiary structural resemblance of this MgCl2-induced state close to native state and showed overall spectral features in between the native state and the acid-denatured state. This MgCl2 (3 M)-induced state showed decreased ANS fluorescence as compared to the acid-denatured state but more than that of the native state. The results taken together suggest that the acid-denatured state of HPC in the presence of 80% glycerol or 3 M MgCl2 has a conformation in between that of the native state (pH 6.0) and the acid-induced state at pH 2.0. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 6, pp. 768–777.  相似文献   

2.
A denatured state of unmodified preparation of stem bromelain representing a structureless form has been characterized at pH 2.0 and the effect of increasing concentration of TFE on the acid-denatured state has been investigated by circular dichroism (CD), fluorescence emission spectroscopy and binding of the hydrophobic dye, 1-anilino-8-naphthalene sulfonic acid (ANS). Far-UV CD spectra show considerable accumulation of secondary structure when the acid-denatured bromelain is subjected to 70% (v/v) TFE and exhibited close resemblance to spectral features of those of pH 7.0 preparation. Interestingly, the acid-denatured state also regained some tertiary structure/interactions, with increasing concentration of TFE and at 60% (v/v) TFE, these approached almost those of the native like state. However, further increase to 70% (v/v) TFE resulted in complete loss of tertiary structure/interactions. Tryptophan fluorescence emission studies also suggested the induction of significant compact structure at 60% (v/v) concentration of TFE. In addition the acid-denatured state showed enhanced binding of ANS in presence of 60% (v/v) TFE. Taken together these observations suggest the existence of a molten globule state in acid-denatured bromelain between 60 and 70% (v/v) TFE. A similar molten globule state under identical conditions has been identified in reduced and carboxymethylated preparation of stem bromelain as reported in our earlier communication [Arch. Biochem. Biophys. 413 (2003) 199]. Comparison suggests unfolding/folding behavior of the bromelain to be independent of the intactness of the disulfide bonds.  相似文献   

3.
Human serum albumin (HSA), under conditions of low pH, is known to exist in two isomeric forms, the F form at around pH 4.0 and the E form below 3.0. We studied its conformation in the acid-denatured E form using far-UV and near-UV CD, binding of a hydrophobic probe, 1-anilinonaphthalene-8-sulfonic acid (ANS), thermal transition by far-UV and near-UV CD, tryptophan fluorescence, quenching of tryptophan fluorescence using a neutral quencher, acrylamide and viscosity measurements. The results show that HSA at pH 2.0 is characterized by a significant amount of secondary structure, as evident from far-UV CD spectra. The near-UV CD spectra showed a profound loss of tertiary structure. A marked increase in ANS fluorescence signified extensive solvent exposure of non-polar clusters. The temperature-dependence of both near-UV and far-UV CD signals did not exhibit a co-operative thermal transition. The intrinsic fluorescence and acrylamide quenching of the lone tryptophan residue, Trp214, showed that, in the acid-denatured state, it is buried in the interior in a non-polar environment. Intrinsic viscosity measurements showed that the acid-denatured state is relatively compact compared with that of the denatured state in 7 M guanidine hydrochloride. These results suggest that HSA at pH 2.0 represents the molten globule state, which has been shown previously for a number of proteins under mild denaturing conditions.  相似文献   

4.
Endostatin, an important angiogenesis inhibitor, is very acid resistant. We are particularly interested in knowing that whether or not endostatin can form a folding intermediate during acid titration. 1H-NMR, CD spectrum, and ANS binding assay show that endostatin at pH 2.0 contains little tertiary structure, but retains substantial secondary structure with strong ANS binding, and Na2SO4 or TFE is found to strongly stabilize endostatin at pH 2.0. All these observations are consistent with the formation of a folding intermediate at pH 2.0. Kinetics studies show that sulfate anions significantly slow down the process for endostatin to reach its equilibrium state at pH 2.0. A regular increase in the amount of alpha-helix content of the intermediate of endostatin at pH 2.0 is found when the concentration of TFE is increased in the range of 0-40%, suggesting that endostatin has an intrinsic alpha-helical propensity.  相似文献   

5.
Little work has been done to understand the folding profiles of multi-domain proteins at alkaline conditions. We have found the formation of a molten globule-like state in bovine serum albumin at pH 11.2 with the help of spectroscopic techniques; like far and near ultra-violet circular dichroism, intrinsic and extrinsic fluorescence spectroscopy. Interestingly, this state has features similar to the acid-denatured state of human serum albumin at pH 2.0 reported by Muzammil et al. (Eur J Biochem 266:26–32, 1999). This state has also shown significant increase in 8-anilino-1-naphthalene-sulfonate (ANS) binding in compare to the native state. At pH 13.0, the protein seems to acquire a state very close to 6 M guanidinium hydrochloride (GuHCl) denatured one. But, reversibility study shows it can regain nearly 40% of its native secondary structure. On the contrary, tertiary contacts have disrupted irreversibly. It seems, withdrawal of electrostatic repulsion leave room for local interactions, but disrupted tertiary contacts fail to regain their original states.  相似文献   

6.
2,2,2-Trifluoroethanol (TFE) denatures proteins but also stabilizes/induces alpha helical conformation in partially/completely unfolded proteins. As reported earlier from this laboratory, stem bromelain is known to exist as a partially folded intermediate (PFI) at pH 2.0. The effect of increasing concentration of TFE on the PFI of bromelain has been investigated by circular dichroism (CD), fluorescence emission spectroscopy, binding of the hydrophobic dye 1-anilino 8-naphthalene sulfonic acid (ANS), and near-UV CD temperature transition. Far-UV CD spectra show considerable accumulation of secondary structure at 70% (v/v) concentration of TFE with spectral features resembling the pH 7.0 preparation. Interestingly the partially folded intermediate regained significant tertiary structure/interactions, with increasing concentration of TFE, and at 60% (v/v) TFE approached almost that of the pseudo native (pH 7.0) state. Further increase to 70% (v/v) TFE, however, resulted in complete loss of tertiary structure/interactions. Studies on tryptophan fluorescence also suggested the induction of some compact structure at 60% (v/v) concentration of TFE. The partially folded intermediate showed enhanced binding of the fluorescent probe (ANS) in the presence of 60% (v/v) TFE. Taken together these observations suggest a "molten globule" state between 60 and 70% (v/v) TFE. Thermal transition studies in the near-UV CD region indicated cooperative transition for PFI in the presence of 60% (v/v) TFE changing to noncooperative transition at 70% (v/v) TFE. This was accompanied by a shift in the midpoint of thermal denaturation (T(m)) from 58 to 51 degrees C. Gradual transition and loss of cooperative thermal unfolding in the 60-70% (v/v) range of TFE also support the existence of the molten globule state.  相似文献   

7.
Human serum albumin (HSA) exists in a molten-globule like state at low pH (pH 2.0). We studied the effects of trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP) on the acid-denatured state of HSA by far-UV circular dichroism (CD), near-UV CD, tryptophan fluorescence, and 1-anilinonaphthalene-8-sulfonic acid (ANS) binding. At pH 2.0, these alcohols induced the formation of alpha-helical structure as evident from the increase in mean residue ellipticity (MRE) value at 222 nm. On addition of different alcohols, HSA exhibited a transition from the acid-denatured state to the alpha-helical state and loss of ANS-binding sites reflected by the decrease in ANS fluorescence at 480 nm. However, the concentration range required to bring about the transition varied greatly among different alcohols. HFIP was found to have highest potential whereas methanol was least effective in inducing the transition. The order of effectiveness of alcohols was shown to be: HFIP > TFE > 2-chloroethanol > tert-butanol > isopropanol > ethanol > methanol as evident from the Cm values. The near-UV CD spectra and tryptophan fluorescence showed the differential effects of halogenated alcohols with those of alkanols. A comparison of the m values, showing the dependence of Delta GH on alcohol concentration, suggests that the helix stabilizing potential of different alcohols is due to the additive effect of different constituent groups present whereas remarkably higher potential of HFIP involves some other factor in addition to the contribution of constituent groups.  相似文献   

8.
We have provided evidence that hen egg white lysozyme (HEWL) existed in alpha helical and beta structure dominated molten globule (MG) states at high pH and in the presence of tertiary butanol, respectively. Circular dichroism (CD), intrinsic fluorescence, ANS binding and acrylamide-induced fluorescence quenching techniques have been used to investigate alkali-induced unfolding of HEWL and the effect of tertiary butanol on the alkaline-induced state. At pH 12.75, HEWL existed as molten globule like intermediate. The observed MG-like intermediate was characterized by (i) retention of 77% of the native secondary structure, (ii) enhanced binding of ANS (approximately 5 times) compared to native and completely unfolded state, (iii) loss of the tertiary structure as indicated by the tertiary structural probes (near-UV, CD and Intrinsic fluorescence) and (iv) acrylamide quenching studies showed that MG state has compactness intermediate between native and completely unfolded states. Moreover, structural properties of the protein at isoelectric point (pI) and denatured states have also been described. We have also shown that in the presence of 45% tertiary butanol (t-butanol), HEWL at pH 7.0 and 11.0 (pI 11.0) existed in helical structure without much affecting tertiary structure. Interestingly, MG state of HEWL at pH 12.7 transformed into another MG state (MG2) at 20% t-butanol (v/v), in which secondary structure is mainly beta sheets. On further increasing the t-butanol concentration alpha helix was found to reform. We have proposed that formation of both alpha helical and beta sheet dominated intermediate may be possible in the folding pathway of alpha + beta protein.  相似文献   

9.
Fatima S  Ahmad B  Khan RH 《IUBMB life》2007,59(3):179-186
Studies on the acid-induced denaturation of Mucor miehei lipase (E.C. 3.1.1.3) were performed by circular dichroism (CD) spectroscopy, fluorescence emission spectroscopy and binding of hydrophobic dye, 1-anilino 8-naphthalenesulfonic acid (ANS). Acid denaturation of the lipase showed loss of secondary structure and alterations in the tertiary structure in the pH range 4 to 2 and 7 to 2 respectively, suggesting that the lipase exists as an acid-unfolded state approximately pH 2.0. A further decrease in pH (from 2.0 to 1.0) resulted in a second transition, which corresponded to the formation of both secondary and tertiary structures. The acid unfolded state at around pH 2.0 has been characterized by significant loss of secondary structure and a small increase in fluorescence intensity with a blue shift of 2 nm, indicating shift of tryptophan residues to less polar environment. Interestingly, the lipase at pH 1.0 exhibits characteristics of molten globule, such as enhanced binding of hydrophobic dye (ANS), native-like secondary structure and slightly altered tryptophanyl environments. That the molten globule of the lipase at pH 1.0 also possesses native-like tertiary structure is an interesting observation made for this lipase.  相似文献   

10.
Characterization of conformational transition and folding intermediates is central to the study of protein folding. We studied the effect of various alcohols (trifluoroethanol (TFE), butanol, propanol, ethanol and methanol) and salts (K(3)FeCN(6), Na(2)SO(4), KClO(4) and KCl) on the acid-induced state of alpha-chymotrypsinogen A, a predominantly beta-sheet protein, at pH 2.0 by near-UV circular dichroism (CD), far-UV CD and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence measurements. Addition of alcohols led to an increase in ellipticity value at 222 nm indicating the formation of alpha-helical structure. The order of effectiveness of alcohols was shown to be TFE>butanol>propanol>ethanol>methanol. ANS fluorescence data showed a decrease in fluorescence intensity on alcohol addition, suggesting burial of hydrophobic patches. The near-UV CD spectra showed disruption of tertiary structure on alcohol addition. No change in ellipticity was observed on addition of salts at pH 2.0, whereas in the presence of 2 M urea, salts were found to induce a molten globule-like state as evident from the increases in ellipticity at 222 nm and ANS fluorescence indicating exposure of hydrophobic regions of the protein. The effectiveness in inducing the molten globule-like state, i.e. both increase in ellipticity at 222 nm and increase in ANS fluorescence, followed the order K(3)FeCN(6)>Na(2)SO(4)>KClO(4)>KCl. The loss of signal in the near-UV CD spectrum on addition of alcohols indicating disordering of tertiary structure results suggested that the decrease in ANS fluorescence intensity may be attributed to the unfolding of the ANS binding sites. The results imply that the alcohol-induced state had characteristics of an unfolded structure and lies between the molten globule and the unfolded state. Characterization of such partially folded states has important implications for protein folding.  相似文献   

11.
A molten globule-like intermediate of Con-A was obtained when subjected to acid unfolding. At pH 2 the intermediate was found to have native-like secondary structure, somewhat denatured tertiary structure and maximum ANS binding. Further the stability of this intermediate was studied in presence of fluoroalcohols (TFE and HFIP) and polyethylene glycols (PEG-400, 4000 and 20,000). Secondary structural changes were monitored by far-UV CD while alterations in the tertiary structure of the acid unfolded intermediate were probed by near-UV CD. To study the environment and position of the tryptophan residues present intrinsic fluorescence studies were performed. ANS binding studies were also made to know the extent of exposure of the hydrophobic patches. Using the above-mentioned techniques it was found that in presence of fluoroalcohols the pH 2 intermediate was transformed to a state with predominant alpha-helical secondary and denatured tertiary structures. In the pathway of these transformations MG-like intermediates were formed at 10% TFE and 6% HFIP. The folding intermediate of Con-A obtained at pH 2 underwent a series of conformational changes when exposed to different molecular weight PEGs. Secondary structure was induced by low molecular weight PEG-400 and low concentrations of PEG-4000 and PEG-20,000 while at higher concentrations transition in structure was observed. Tertiary structure was stabilized only at low concentrations of PEG-400. PEG-4000 and PEG-20,000 in the whole concentration range resulted in the loss of tertiary structure.  相似文献   

12.
Equilibrium studies on the acid included denaturation of stem bromelain (EC 3.4.22.32) were performed by CD spectroscopy, fluorescence emission spectroscopy and binding of the hydrophobic dye, 1-anilino 8-naphthalene sulfonic acid (ANS). At pH 2.0, stem bromelain lacks a well defined tertiary structure as seen by fluorescence and near-UV CD spectra. Far-UV CD spectra show retention of some native like secondary structure at pH 2.0. The mean residue ellipticities at 208 nm plotted against pH showed a transition around pH 4.5 with loss of secondary structure leading to the formation of an acid-unfolded state. With further decrease in pH, this unfolded state regains most of its secondary structure. At pH 2.0, stem bromelain exists as a partially folded intermediate containing about 42.2% of the native state secondary structure Enhanced binding of ANS was observed in this state compared to the native folded state at neutral pH or completely unfolded state in the presence of 6 m GdnHCl indicating the exposure of hydrophobic regions on the protein molecule. Acrylamide quenching of the intrinsic tryptophan residues in the protein molecule showed that at pH 2.0 the protein is in an unfolded conformation with more tryptophan residues exposed to the solvent as compared to the native conformation at neutral pH. Interestingly, stem bromelain at pH 0.8 exhibits some characteristics of a molten globule, such as an enhanced ability to bind the fluorescent probe as well as considerable retention of secondary structure. All the above data taken together suggest the existence of a partially folded intermediate state under low pH conditions.  相似文献   

13.
Concanavalin A (Con A) exists in dimeric state at pH 5. In concentration range 20-60% (v/v) 2,2,2-trifluoroethanol (TFE) and 2-40% (v/v) 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), Con A at pH 5.0 shows visible aggregation. However, when succinyl Con A was used, no aggregation was observed in the entire concentration range of fluoroalcohols (0-90% v/v TFE and HFIP) and resulted in stable alpha-helix formation. Temperature-induced concentration-dependent aggregation in Con A was also found to be prevented/reduced in succinylated form. Possible role of electrostatic repulsion among residues in the prevention of hydrophobically driven aggregation has been discussed. Results indicate that succinylation of a protein resulted in greater stability (in both beta-sheet and alpha-helical forms) against alcohol-induced and temperature-induced concentration-dependent aggregation and this observation may play significant role in amyloid-forming proteins. Effect of TFE and HFIP on the conformation of a dimeric protein, Succinylated Con A, has been investigated by circular dichroism (CD), fluorescence emission spectroscopy, binding of hydrophobic dye ANS (8-anilinonaphthalene-1-sulfonic acid). Far UV-CD, a probe for secondary structure shows loss of native secondary structure in the presence of low concentration of both the alcohols, TFE (10% v/v) and HFIP (4% v/v). Upon addition of higher concentration of these alcohols, Succinylated Con A exhibited transformation from beta-sheet to alpha-helical structure. Intrinsic tryptophan fluorescence studies, ANS binding and near UV-CD experiments indicate the protein is more expanded, have more exposed hydrophobic surfaces and highly disrupted tertiary structure at 60% (v/v) TFE and 30% (v/v) HFIP concentrations. Taken together, these results it might be concluded that TFE and HFIP induce two intermediate states at their low and high concentrations in Succinyl Con A.  相似文献   

14.
The molten globule (MG) state of proteins is widely detected through binding with 1-anilino-8-naphthalene sulphonate (ANS), a fluorescent dye. This strategy is based upon the assumption that when in molten globule state, the exposed hydrophobic clusters of protein are readily bound by the nonpolar anilino-naphthalene moiety of ANS molecules which then produce brilliant fluorescence. In this work, we explored the acid-induced unfolding pathway of chymopapain, a cysteine proteases from Carica papaya, by monitoring the conformational changes over a pH range 1.0–7.4 by circular dichroism, intrinsic fluorescence, ANS binding, acrylamide quenching, isothermal titration calorimetry (ITC) and dynamic light scattering (DLS). The spectroscopic measurements showed that although maximum ANS fluorescence intensity was observed at pH 1.0, however protein exhibited ∼80% loss of secondary structure which does not comply with the characteristics of a typical MG-state. In contrast at pH 1.5, chymopapain retains substantial amount of secondary structure, disrupted side chain interactions, increased hydrodynamic radii and nearly 30-fold increase in ANS fluorescence with respect to the native state, indicating that MG-state exists at pH 1.5 and not at pH 1.0. ITC measurements revealed that ANS molecules bound to chymopapain via hydrophobic interaction were more at pH 1.5 than at pH 1.0. However, a large number of ANS molecules were also involved in electrostatic interaction with protein at pH 1.0 which, together with hydrophobically interacted molecules, may be responsible for maximum ANS fluorescence. We conclude that maximum ANS-fluorescence alone may not be the criteria for determining the MG of chymopapain. Hence a comprehensive structural analysis of the intermediate is essentially required.  相似文献   

15.
Detailed circular dichroism (CD), scattering and quenching studies, 1-anilinonaphthalene-8-sulfonate (ANS) binding, irreversible thermoinactivation, activity measurements and proteolytic digestion of bacterial alpha-amylases have been carried out to elucidate the effect of trifluoroethanol (TFE) on the structure of these enzymes. Under high concentrations of TFE both of the alpha-amylases, a thermostable alpha-amylase from Bacillus licheniformis (BLA) and its mesophilic counterpart from Bacillus amyloliquefaciens (BAA), acquire partially folded state characterized by an enhanced content of the secondary structure (helix) and reduced tertiary structures. According to ANS binding studies, we suggest that the TFE states induced by TFE/water mixture are not the molten globule state in the alpha-amylase folding pathway. In addition, data shows significant reversible aggregation of both enzymes in TFE/water mixtures with concentration between 10 and 60% (v/v). However, reversibility is more in case of BAA. As expected, in the absence of TFE, the thermophilic enzyme compared to mesophilic enzyme, shows a greater resistance to digestion by thermolysin. With respect to fluorescence quenching by acrylamide and potassium iodide, the thermophilic enzyme, BLA, is characterized by higher structural flexibility as compared to the BAA. On the other hand, in the presence of TFE, the enzymes are digested by protease to produce large protein fragments. It is proposed that highly helical secondary structures, acquired by BAA and BLA when dissolved in aqueous TFE, prevent binding and adaptation of the protein substrate at the active site of the protease.  相似文献   

16.
Dev S  Khan RH  Surolia A 《IUBMB life》2006,58(8):473-479
Peanut Agglutinin (PNA) is a legume lectin with a unique open quarternary structure. It is a homotetrameric protein, the monomeric subunit of which is made up of 3 beta sheets. The structural change in this protein has been induced by 2,2,2-trifluoroethanol (TFE) at two different pH. At neutral pH, PNA exists as a homotetramer, while at pH 2.5, it is known to dissociate to a dimer. The effect of TFE has been studied at both the pH by intrinsic tryptophan fluorescence, far and near UV Circular Dichroism, ANS binding and dynamic light scattering. At low pH, 15% TFE is found to induce a molten globule like state that shows maximum ANS binding. Increasing concentration of TFE increases alpha helical content and the compactness of the protein. The compact PNA at higher concentration of TFE is structurally different from the native structure. The effect of TFE at neutral pH on PNA is somewhat different from that observed at low pH. TFE does not induce molten globule like state at this pH. The detailed study of the structural change of PNA by TFE has been presented.  相似文献   

17.
Stem bromelain (SBM) is a therapeutic protein that has been studied for alkaline denaturation in the intestines, the principal site of its absorption. In this study, we investigated fluorinated alcohol 2,2,2-trifluoroethanol (TFE)-induced conformational changes in the specific/pre-molten globule (SMG) state of SBM observed at pH 10 by spectroscopic methods. Far-UV circular dichroism (CD) spectra showed that the protein retained its native-like secondary structure at TFE concentrations of up to 30% with a pronounced minimum at 222 nm, characteristic of a helix. However, addition of slightly higher TFE concentrations (≥40%) resulted in an ∼2.5-fold induction of this helical feature and a time-dependent increase in non-amyloidic turbidity as evidenced by turbidometric, Congo red-binding, and Thioflavin T (ThT)-binding studies. Near-UV CD spectra suggested a gradual but significant loss of tertiary structure at 10-30% TFE. Tryptophan studies showed blue-shifted fluorescence, although the number of accessible tryptophans remained the same up to 30% TFE. The SMG showed enhanced binding of the fluorescent probe 1-anilino-8-naphthalene sulfonic acid (ANS) up to 30% TFE, beyond which binding plateaued. Thermal and guanidine hydrochloride (GdnHCl) transition studies in the near-UV range indicated a single cooperative transition for the SMG state in the presence of 30% TFE, similar to that observed for native SBM at pH 7.0 (although with different Tms), unlike the SMG state. TFE (30%) appeared to induce native-like stability to the original SMG. These observations suggest a transformation of the SMG to a characteristic molten globule (MG) conformation at 30% TFE, possibly due to TFE-induced rearrangement of hydrophobic interactions at the protein's isoelectric point.  相似文献   

18.
We have studied the effect of 2,2,2-trifluoroethanol (TFE), an α-helix inducer, versus methyl cyanide (MeCN), a β-sheet inducer, on acid-denatured human serum albumin (HSA) using far-UV circular dichroism, intrinsic fluorescence, 1-anilino-8-naphthalene sulfonate binding, and acrylamide quenching studies. Interestingly, at pH 2.0, where the recovery and resolution of the protein in reverse phase chromatography is high, its secondary structure remains unchanged even in the presence of very high concentration (76% v/v) of MeCN. Gain of 23 and 34% α-helicity was observed in the presence of 20 and 50% TFE, respectively. At pH 7.3, HSA aggregates in the presence of 40% MeCN, but it remains soluble up to 75% MeCN at pH 2.0. The results seem to be important for HSA isolation and purification.  相似文献   

19.
The effect of salts and alcohols was examined on the partially folded intermediate (PFI) state of stem bromelain reported at low pH (Haq, Rasheedi, and Khan (2002) European Journal of Biochemistry 269, 47-52) by a combination of optical methods like circular dichroism, intrinsic fluorescence and ANS binding. ESI mass spectrometry was also performed to see the effect, if any, on the overall tertiary structure of the protein. Increase in ionic strength by the addition of salts resulted in folded structures somewhat different from the native enzyme. Salt-induced intermediates are characterized by increase in helical content and a significantly reduced exposure of hydrophobic clusters relative to the state at pH 2.0. The emission wavelength maximum of intrinsic fluorescence was shifted towards that of native enzyme. ESI-MS data show decreased accessibility of ionizable/protonation sites suggestive of a folded structure. On the other hand, alcohol-induced intermediates though exhibiting increased helical content are apparently largely unfolded as observed by ESI. Thermal denaturation of a representative intermediate, each from the group of salts and alcohols examined, was also performed to check their relative stabilities. While the alcohol-induced state showed a cooperative thermal transition, the salt-induced state shows non-cooperative thermal denaturation.  相似文献   

20.
A systematic investigation of the acid-induced unfolding of glucose oxidase (beta-D-glucose: oxygen 1-oxidoreductase) (GOD) from Aspergillus niger was made using steady-state tryptophan fluorescence, circular dichroism (CD), and ANS (1-anilino 8-naphthalene sulfonic acid) binding. Intrinsic tryptophan fluorescence studies showed a maximally unfolded state at pH 2.6 and the presence of a non-native intermediate in the vicinity of pH 1.4. Flavin adenine dinucleotide (FAD) fluorescence measurements indicate that the bound cofactors are released at low pH. In the pH range studied, near- and far-UV CD spectra show maximal loss of tertiary as well as secondary structure (40%) at pH 2.6 although glucose oxidase at this pH is relatively less denatured as compared to the conformation in 6M GdnHCl. Interestingly, in the vicinity of pH 1.4, glucose oxidase shows a refolded conformation (A-state) with approximately 90% of native secondary structure and native-like near-UV CD spectral features. ANS fluorescence studies, however, show maximal binding of the dye to the protein at pH 1.4, indicating a "molten-globule"-like conformation with enhanced exposure of hydrophobic surface area. Acrylamide quenching data exhibit reduced accessibility of quencher to tryptophan, suggesting a more compact conformation at low pH. Thermal stability of this state was assessed by ellipticity changes at 222 nm relative to native protein. While native glucose oxidase showed a completely reversible thermal denaturation profile, the state at pH 1.4 showed approximately 50% structural loss and the denatured state appeared to be in a different conformation exhibiting prominent beta-sheet structure (around 85 degrees C) that was not reversible. To summarize; the A-state of GOD exists as a compact folded intermediate with "molten-globule"-like characteristics, viz., native-like secondary structure but with non-native cofactor environment, enhanced hydrophobic surface area and non-cooperative thermal unfolding. That the A-state also possesses significant tertiary structure is an interesting observation made in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号