首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
AZT-DNA interaction   总被引:3,自引:0,他引:3  
  相似文献   

3.
Ribonuclease A (RNase A) with several high affinity binding sites is a possible target for many organic and inorganic molecules. 3'-Azido-3'-deoxythymidine (AZT) is the first clinically effective drug for the treatment of human immunodeficiency virus (HIV) infection. The drug interactions with protein and nucleic acids are associated with its mechanism of action in vivo. This study was designed to examine the interaction of AZT with RNase A under physiological conditions. Reaction mixtures of constant protein concentration (2%) and different drug contents (0.0001-0.1 mM) are studied by UV-visible, FTIR, and circular dichroism spectroscopic methods in order to determine the drug binding mode, the drug binding constant, and the effects of drug complexation on the protein and AZT conformations in aqueous solution. The spectroscopic results showed one major binding for the AZT-RNase complexes with an overall binding constant of 5.29 x 10(5) M(-1). An increase in the protein alpha helicity was observed upon AZT interaction, whereas drug sugar pucker remained in the C2'-endo/anti conformation in the AZT-RNase complexes.  相似文献   

4.
The question addressed in this study is how does the protein-DNA complexation affect the structure and dynamics of DNA and protein in aqueous solution. We examined the interaction of calf-thymus DNA with human serum albumin (HSA) in aqueous solution at physiological conditions, using constant DNA concentration of 12.5 mM (phosphate) and various HSA contents 0.25 to 2% or 0.04 to 0.3 mM. Affinity capillary electrophoresis and FTIR spectroscopic methods were used to determine the protein binding mode, the association constant, sequence preference, and the biopolymer secondary structural changes in the HSA-DNA complexes. Spectroscopic evidence showed two types of HSA-DNA complexes with strong binding of K(1) = 4.5 x 10(5) M(-1) and weak binding of K(2) = 6.10 x 10(4) M(-1). The two major binding sites were located on the G-C bases and the backbone PO(2) group. The protein-DNA interaction stabilizes the HSA secondary structure. A minor alteration of B-DNA structure was observed, while no major protein conformational changes occurred.  相似文献   

5.
The herbicides 6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine (atrazine) and 2,4-dichlorophenoxyacetic acid (2,4-D) are widely used in agricultural practice to fight dicotyledon weeds mainly in maize, cereals, and lucerne. As a result, these compounds are found not only in the plants, soil, and water, but also in the cultivated ground in the following years as well as in agricultural products such as fruits, milk, butter, and sugar beet. The toxicological effects of herbicides occur in vivo, when transported to the target organ through the bloodstream. It has been suggested that human serum albumin (HSA) serves as a carrier protein to transport 2,4-D to molecular targets. This study was designed to examine the interaction of atrazine and 2,4-D with HSA in aqueous solution at physiological pH with herbicide concentrations of 0.0001-1 mM, and final protein concentration of 1% w/v. Gel and capillary electrophoresis, UV-visible and Fourier transform infrared spectroscopic methods were used to determine the drug binding mode, the drug binding constant, and the protein secondary structure in aqueous solution. Structural analysis showed that different types of herbicide-HSA complexes are formed with stoichiometric ratios (drug/protein) of 3:1 and 11:1 for atrazine and 4.5:1 and 10:1 for 2,4-D complexes. Atrazine showed a weak binding affinity (K=3.50 x 10(4) M(-1)), whereas two bindings (K(1)=2.50 x 10(4) M(-1) and K(2)=8.0 x 10(3) M(-1)) were observed for 2,4-D complexes. The herbicide binding results in major protein secondary structural changes from that of the alpha-helix 55% to 45--39% and beta-sheet 22% to 24--32%, beta-anti 12% to 10--22% and turn 11% to 12--15%, in the drug-HSA complexes. The observed spectral changes indicate a partial unfolding of the protein structure, in the presence of herbicides in aqueous solution.  相似文献   

6.
7.
Porphyrins and their metal derivatives are strong protein binders. Some of these compounds have been used for radiation sensitization therapy of cancer and are targeted to interact with cellular DNA and protein. The presence of several high-affinity binding sites on human serum albumin (HSA) makes it possible target for many organic and inorganic molecules. Chlorophyll a and chlorophyllin (a food-grade derivative of chlorophyll), the ubiquitous green plant pigment widely consumed by humans, are potent inhibitors of experimental carcinogenesis and interact with protein and DNA in many ways. This study was designed to examine the interaction of HSA with chlorophyll (Chl) and chlorophyllin (Chln) in aqueous solution at physiological conditions. Fourier transform infrared, UV-visible, and CD spectroscopic methods were used to determine the pigment binding mode, the binding constant, and the effects of porphyrin complexation on protein secondary structure. Spectroscopic results showed that chlorophyll and chlorophyllin are located along the polypeptide chains with no specific interaction. Stronger protein association was observed for Chl than for Chln, with overall binding constants of K(Chl) = 2.9 x 10(4)M(-1) and K(Chln) = 7.0 x 10(3)M(-1). The protein conformation was altered (infrared data) with reduction of alpha-helix from 55% (free HSA) to 41-40% and increase of beta-structure from 22% (free HSA) to 29-35% in the pigment-protein complexes. Using the CDSSTR program (CD data) also showed major reduction of alpha-helix from 66% (free HSA) to 58 and 55% upon complexation with Chl and Chln, respectively.  相似文献   

8.
The involvement of the Fe cations in autoxidation in cells and tissues is well documented. DNA is a major target in such reaction, and can chelate Fe cation in many ways. The present study was designed to examine the interaction of calf-thymus DNA with Fe(II) and Fe(III), in aqueous solution at pH 6.5 with cation/DNA (P) (P = phosphate) molar ratios (r) of 1:160 to 1:2. Capillary electrophoresis and Fourier transform infrared (FTIR) difference spectroscopic methods were used to determine the cation binding site, the binding constant, helix stability and DNA conformation in Fe-DNA complexes. Structural analysis showed that at low cation concentration (r = 1/80 and 1/40), Fe(II) binds DNA through guanine N-7 and the backbone PO(2) group with specific binding constants of K(G) = 5.40 x 10(4) M(1) and K(P) = 2.40 x 10(4) M(1). At higher cation content, Fe(II) bindings to adenine N-7 and thymine O-2 are included. The Fe(III) cation shows stronger interaction with DNA bases and the backbone phosphate group. At low cation concentration (r = 1:80), Fe(III) binds mainly to the backbone phosphate group, while at higher metal ion content, cation binding to both guanine N-7 atom and the backbone phosphate group is prevailing with specific binding constants of K(G) = 1.36 x 10(5) M(-1) and K(P) = 5.50 x 10(4) M(-1). At r = 1:10, Fe(II) binding causes a minor helix destabilization, whereas Fe(III) induces DNA condensation. No major DNA conformational changes occurred upon iron complexation and DNA remains in the B-family structure.  相似文献   

9.
Polyamine analogues show antitumor activity in experimental models, and their ability to alter activity of cytotoxic chemotherapeutic agents in breast cancer is well documented. Association of polyamines with nucleic acids and protein is included in their mechanism of action. The aim of this study was to examine the interaction of human serum albumin (HSA) with several polyamine analogues, such as 1,11-diamino-4,8-diazaundecane (333), 3,7,11,15-tetrazaheptadecane.4HCl (BE-333), and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333), in aqueous solution at physiological conditions using a constant protein concentration and various polyamine contents (microM to mM). FTIR, UV-visible, and CD spectroscopic methods were used to determine the polyamine binding mode and the effects of polyamine complexation on protein stability and secondary structure. Structural analysis showed that polyamines bind nonspecifically (H-bonding) via polypeptide polar groups with binding constants of K333 = 9.30 x 10(3) M(-1), KBE-333 = 5.63 x 10(2) M(-1), and KBE-3333 = 3.66 x 10(2) M(-1). The protein secondary structure showed major alterations with a reduction of alpha-helix from 55% (free protein) to 43-50% and an increase of beta-sheet from 17% (free protein) to 29-36% in the 333, BE-333, and BE-3333 complexes, indicating partial protein unfolding upon polyamine interaction. HSA structure was less perturbed by polyamine analogues compared to those of the biogenic polyamines.  相似文献   

10.
Saffron is the red dried stigmas of Crocus sativus L. flowers and used both as a spice and as a drug in traditional therapeutic. The biological activity of saffron in modern medicine is in development. Its numerous applications as an anti-oxidant and anti-cancer agent are due to its secondary metabolites and their derivatives (safranal, crocins, crocetin, dimethylcrocetin). The aim of this study was to examine the interaction of transfer RNA with safranal, crocetin, and dimethylcrocetin in aqueous solution at physiological conditions. Constant tRNA concentration (6.25 mM) and various drug/tRNA (phosphate) molar ratios of 1/48 to 1/8 were used. FT-IR and UV-Visible difference spectroscopic methods have been applied to determine the drug binding mode, the binding constants and the effects of drug complexation on the stability and conformation of tRNA duplex. External binding mode was observed for safranal crocetin and dimethylcrocetin, with overall binding constants K(safranal) = 6.8 (+/- 0.34) x 10(3) M(-1), K(CRT) = 1.4 (+/- 0.31) x 10(4) M(-1), and K(DMCRT) = 3.4 (+/- 0.30) x 10(4) M(-1). Transfer RNA remains in the A-family structure, upon safranal, crocetin and dimethylcrocetin complexation.  相似文献   

11.
DNA adducts with antioxidant flavonoids: morin, apigenin, and naringin   总被引:1,自引:0,他引:1  
Flavonoids have recently attracted a great interest as potential therapeutic drugs against a wide range of free-radical-mediated diseases. The anticancer and antiviral activities of these natural products are implicated in their mechanism of actions. While the antioxidant activity of these natural polyphenolic compounds is well known, their bindings to DNA are not fully investigated. This study was designed to examine the interactions of morin (Mor), naringin (Nar), and apigenin (Api) with calf thymus DNA in aqueous solution at physiological conditions, using constant DNA concentration (6.25 mM) and various drug/DNA(phosphate) ratios of 1/40 to 1. FTIR and UV-Vis spectroscopic methods were used to determine the ligand binding modes, the binding constant, and the stability of DNA in flavonoid-DNA complexes in aqueous solution. Spectroscopic evidence shows both intercalation and external binding of flavonoids to DNA duplex with overall binding constants of K(morin) = 5.99 x 10(3) M(-1), K(apigenin) = 7.10 x 10(4) M(-1), and K(naringin) = 3.10 x 10(3) M(-1). The affinity of ligand-DNA binding is in the order of apigenin > morin > naringin. DNA aggregation and a partial B- to A-DNA transition occurs upon morin, apigenin, and naringin complexation.  相似文献   

12.
DNA-RNase H adducts were used for site specific cleavage of RNA and DNA-RNA duplexes, whereas nonspecific DNA interaction with ribonuclease A (RNase A) has been observed. The aim of this study was to examine the complexation of calf-thymus DNA with RNase A at physiological condition, using constant DNA concentration (12.5 mM) and various protein contents (1 microM to 270 microM). FTIR, UV-visible, and CD spectroscopic methods were used to analyse protein binding mode, the binding constant and the effects of nucleic acid-enzyme interaction on both DNA and protein conformations. Our structural analysis showed a strong RNase-PO2 binding and minor interaction with G-C bases with overall binding constant of K = 6.1 x 10(4) M(-1). The RNase-DNA interaction alters the protein secondary structure with a major reduction of the alpha-helix and increase of the beta-sheet and random structure, while DNA remains in the B-family structure.  相似文献   

13.
We report different analytical methods used to study the effects of 3\'-azido-3\'-deoxythymidine, aspirin, taxol, cisplatin, atrazine, 2,4-dichlorophenoxyacetic, biogenic polyamines, chlorophyll, chlorophyllin, poly(ethylene glycol), vanadyl cation, vanadate anion, cobalt-hexamine cation, and As2O3, on the stability and secondary structure of human serum albumin (HSA) in aqueous solution, using capillary electrophoresis, Fourier transform infrared, ultraviolet visible, and circular dichroism (CD) spectroscopic methods. The concentrations of HSA used were 4% to 2% or 0.6 to 0.3 mM, while different ligand concentrations were 1 microM to 1 mM. Structural data showed drugs are mostly located along the polypeptide chains with both specific and nonspecific interactions. The stability of drug-protein complexes were in the order K(VO(2+)) 1.2 x 10(8) M(-1) > K(AZT) 1.9 x 10(6) M(-)1 > K(PEG) 4.1 x 10(5) M(-1) > K(atrazine) 3.5 x 10(4) M(-1) > K(chlorophyll) 2.9 x 10(4) M(-1) > K2,4-D 2.5 x 10(4) M-1 > K(spermine) 1.7 x 10(4) M(-1) > K(taxol) 1.43 x 10(4) M(-1) > K(Co(3+)) > 1.1 x 10(4) M(-1) > K(aspirin) 1.04 x 10(4)i(-1) > K(chlorophyllin) 7.0 x 10(3) M(-1) > K(VO(3)(-)) 6.0 x 103 M(-1) > K(spermidine) 5.4 x 10(3) M(-1) > K(putrescine) 3.9 x 10(3) M(-1) > K(As(2)O(3)) 2.2 x 10(3) M(-1)> K(cisplatin) 1.2 x 10(2) M(-1). The protein conformation was altered (infrared and CD results) with major reduction of alpha-helix from 60 to 55% (free HSA) to 49 to 40% and increase of beta-structure from 22 to 15% (free HSA) to 33 to 23% in the drug-protein complexes. The alterations of protein secondary structure are attributed to a partial unfolding of HSA on drug complexation.  相似文献   

14.
Poly(ethylene glycol) (PEG) and its derivatives are synthetic polymers with major applications in gene and drug delivery systems. Synthetic polymers are also used to transport miRNA and siRNA in vitro. We studied the interaction of tRNA with several PEGs of different compositions, such as PEG 3350, PEG 6000, and mPEG-anthracene under physiological conditions. FTIR, UV-visible, CD, and fluorescence spectroscopic methods as well as atomic force microscopy (AFM) were used to analyze the PEG binding mode, the binding constant, and the effects of polymer complexation on tRNA stability, aggregation, and particle formation. Structural analysis showed that PEG-tRNA interaction occurs via RNA bases and the backbone phosphate group with both hydrophilic and hydrophobic contacts. The overall binding constants of K(PEG?3350-tRNA)= 1.9 (±0.5) × 10(4) M(-1), K(PEG?6000-tRNA) = 8.9 (±1) × 10(4) M(-1), and K(mPEG-anthracene)= 1.2 (±0.40) × 10(3) M(-1) show stronger polymer-RNA complexation by PEG 6000 and by PEG 3350 than the mPEG-anthracene. AFM imaging showed that PEG complexes contain on average one tRNA with PEG 3350, five tRNA with PEG 6000, and ten tRNA molecules with mPEG-anthracene. tRNA aggregation and particle formation occurred at high polymer concentrations, whereas it remains in A-family structure.  相似文献   

15.
Resveratrol (Res), a polyphenolic compound found largely in the skin of red grape and wine, exhibits a wide range of pharmaceutical properties and plays a role in prevention of human cardiovascular diseases [Pendurthi et al., Arterioscler. Thromb. Vasc. Biol. 19, 419-426 (1999)]. It shows a strong affinity towards protein binding and used as inhibitor for cyclooxygenase and ribonuclease reductase. The aim of this study was to examine the interaction of resveratrol with human serum albumin (HSA) in aqueous solution at physiological conditions, using a constant protein concentration (0.3 mM) and various pigment contents (microM to mM). FTIR, UV-Visible, CD, and fluorescence spectroscopic methods were used to determine the resveratrol binding mode, the binding constant and the effects of pigment complexation on protein secondary structure. Structural analysis showed that resveratrol bind non-specifically (H-bonding) via polypeptide polar groups with overall binding constant of K(Res) = 2.56 x 10(5) M(-1). The protein secondary structure, analysed by CD spectroscopy, showed no major alterations at low resveratrol concentrations (0.125 mM), whereas at high pigment content (1 mM), major increase of alpha-helix from 57% (free HSA) to 62% and a decrease of beta-sheet from 10% (free HSA) to 7% occurred in the resveratrol-HSA complexes. The results indicate a partial stabilization of protein secondary structure at high resveratrol content.  相似文献   

16.
Although structural differences for the Mg-DNA and Ca-DNA complexes are provided in the solid state, such comparative study in aqueous solution has been less investigated. The aim of this study was to examine the bindings of Mg and Ca cations with calf thymus DNA in aqueous solution at physiological pH, using constant concentration of DNA (1.25 or 12.5 mM) and various concentrations of metal ions (2 microM-650 microM). Capillary electrophoresis, UV-visible, and Fourier transform infrared spectroscopic methods were used to determine the cation-binding modes, the binding constants, and DNA structural variations in aqueous solution. Direct Ca-PO(2) binding was evident by major spectral changes (shifting and splitting) of the backbone PO(2) asymmetric stretching at 1222 cm(-1) with K = 4.80 x 10(5) M(-1), whereas an indirect Mg-phosphate interaction occurred (due to the lack of shifting and splitting of the phosphate band at 1222 cm(-1)) with K = 5.6 x 10(4) M(-1). The metal-base bindings were directly for the Mg with K = 3.20 x 10(5) M(-1) and indirectly for the Ca cation with K = 3.0 x 10(4) M(-1). Both major and minor groove bindings were observed with no alteration of the B-DNA conformation.  相似文献   

17.
Interaction of taxol with human serum albumin   总被引:16,自引:0,他引:16  
Taxol (paclitaxel) is an anticancer drug, which interacts with microtuble proteins, in a manner that catalyzes their formation from tubulin and stabilizes the resulting structures (Nogales et al., Nature 375 (1995) 424-427). This study was designed to examine the interaction of taxol with human serum albumin (HSA) in aqueous solution at physiological pH with drug concentrations of 0.0001-0.1 mM, and HSA (fatty acid free) concentration of 2% w/v. Gel electrophoresis, absorption spectra and Fourier transform infrared (FTIR) spectroscopy with self-deconvolution and second-derivative resolution enhancement were used to determine the drug binding mode, binding constant and the protein secondary structure in the presence of taxol in aqueous solution. Spectroscopic evidence showed that taxol-protein interaction results into two types of drug-HSA complexes with overall binding constant of K=1.43 x 10(4) M(-1). The molar ratios of complexes were of taxol/HSA 30/1 (30 mM taxol) and 90/1 (90 mM taxol) with the complex ratios of 1.9 and 3.4 drug molecules per HSA molecule, respectively. The taxol binding results in major protein secondary structural changes from that of the alpha-helix 55 to 45% and beta-sheet 22 to 26%, beta-anti 12 to 15% and turn 11 to 16%, in the taxol-HSA complexes. The observed spectral changes indicate a partial unfolding of the protein structure, in the presence of taxol in aqueous solution.  相似文献   

18.
Interactions of human serum albumin with chlorogenic acid and ferulic acid   总被引:8,自引:0,他引:8  
The interactions of chlorogenic acid and ferulic acid with human serum albumin (HSA) have been investigated by fluorescence and Fourier transformed infrared (FT-IR) spectrometry. Fluorescence results showed that one molecule of protein combined with one molecule of drugs at the molar ratio of drug to HSA ranging from 1 to 10, and their binding affinities (KA) are 4.37 x 10(4) M(-1) and 2.23 x 10(4) M(-1) for chlorogenic acid and ferulic acid, respectively. The primary binding site for chlorogenic acid is most likely located on IIA and that for ferulic acid in IIIA. The main mechanism of protein fluorescence quenching was static quenching process. Combining the curve-fitting results of infrared amide I and amide III bands, the alterations of protein secondary structure after drug complexation were estimated. With increasing the drug concentration, the protein alpha-helix structure decreased gradually and the reduction of protein alpha-helix structure reached about 7% and 5% for protein binding with chlorogenic acid and ferulic acid individually at the drug to protein molar ratio of 30. This indicated a partial unfolding of HSA in the presence of the two acids. From the fluorescence and FT-IR results, the binding mode was discussed.  相似文献   

19.
Human DNase I is an endonuclease that catalyzes the hydrolysis of double-stranded DNA predominantly by a single-stranded nicking mechanism under physiological conditions in the presence of divalent Mg and Ca cations. It binds to the minor groove and the backbone phosphate group and has no contact with the major groove of the right-handed DNA duplex. The aim of this study was to examine the effects of DNase I - DNA complexation on DNA and protein conformations.We monitored the interaction of DNA with DNase I under physiological conditions in the absence of Mg2+, with a constant DNA concentration (12.5 mmol/L; phosphate) and various protein concentrations (10-250 micromol/L). We used Fourier transfrom infrared, UV-visible, and circular dichroism spectroscopic methods to determine the protein binding mode, binding constant, and effects of polynucleotide-enzyme interactions on both DNA and protein conformations. Structural analyses showed major DNase-PO2 binding and minor groove interaction, with an overall binding constant, K, of 5.7 x 10(5) +/- 0.78 x 10(5) (mol/L)-1. We found that the DNase I - DNA interaction altered protein secondary structure, with a major reduction in alpha helix and an increase in beta sheet and random structures, and that a partial B-to-A DNA conformational change occurred. No DNA digestion was observed upon protein-DNA complexation.  相似文献   

20.
Antioxidants are essential to good health. Flavonoids are powerful antioxidants, and prevent DNA damage. The antioxidative protections are related to their binding modes to a DNA duplex and complexation with free radicals in vivo. Recently we reported the interaction of flavonoids with DNA in vitro (Kanakis et al., J. Biomol. Struct. Dyn. 22, 719-724, 2005), where polyphenol different binding modes were discussed. The aim of this study was to examine the interaction of transfer RNA with quercetin (que), kaempferol (kae), and delphinidin (del) in aqueous solution at physiological conditions and to make a comparison with the corresponding pigment-DNA adducts. Constant tRNA concentration (6.25 mM) and various drug/RNA(phosphate) molar ratios of 1/48 to 1/8 were used. FTIR and UV-visible difference spectroscopic methods have been applied to determine the drug binding mode, the binding constants, and the effects of drug complexation on the stability and conformation of tRNA duplex. Both intercalative and external binding modes were observed. Structural analysis showed que, kae, and a del intercalate tRNA duplex with minor external binding to the major or minor groove and the backbone phosphate group with overall binding constants K (que) = 4.80 x 10(4) M(1), K (kae) = 4.65 x 10(4) M(1), and K (del) = 9.47 x 10(4) M(1). The stability of adduct formation is in the order of del > que > kae. A comparison with flavonoids-DNA adducts showed both intercalation and external bindings with the stability order K (que) = 7.25 x 10(4) M(1), K (kae) = 3.60 x 10(4) M(1), and K (del) = 1.66 x 10(4) M(1). Low flavonoid concentration induces helical stabilization, whereas high pigment content causes helix opening. A partial Bto A-DNA transition occurs at high drug concentration, while tRNA remains in the A-family structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号