首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Ribonuclease H2 is the major nuclear enzyme degrading cellular RNA/DNA hybrids in eukaryotes and the sole nuclease known to be able to hydrolyze ribonucleotides misincorporated during genomic replication. Mutation in RNASEH2 causes Aicardi-Goutières syndrome, an auto-inflammatory disorder that may arise from nucleic acid byproducts generated during DNA replication. Here, we report the crystal structures of Archaeoglobus fulgidus RNase HII in complex with PCNA, and human PCNA bound to a C-terminal peptide of RNASEH2B. In the archaeal structure, three binding modes are observed as the enzyme rotates about a flexible hinge while anchored to PCNA by its PIP-box motif. PCNA binding promotes RNase HII activity in a hinge-dependent manner. It enhances both cleavage of ribonucleotides misincorporated in DNA duplexes, and the comprehensive hydrolysis of RNA primers formed during Okazaki fragment maturation. In addition, PCNA imposes strand specificity on enzyme function, and by localizing RNase H2 and not RNase H1 to nuclear replication foci in vivo it ensures that RNase H2 is the dominant RNase H activity during nuclear replication. Our findings provide insights into how type 2 RNase H activity is directed during genome replication and repair, and suggest a mechanism by which RNase H2 may suppress generation of immunostimulatory nucleic acids.  相似文献   

3.
Nuclear dynamics of PCNA in DNA replication and repair   总被引:7,自引:0,他引:7       下载免费PDF全文
The DNA polymerase processivity factor proliferating cell nuclear antigen (PCNA) is central to both DNA replication and repair. The ring-shaped homotrimeric PCNA encircles and slides along double-stranded DNA, acting as a "sliding clamp" that localizes proteins to DNA. We determined the behavior of green fluorescent protein-tagged human PCNA (GFP-hPCNA) in living cells to analyze its different engagements in DNA replication and repair. Photobleaching and tracking of replication foci revealed a dynamic equilibrium between two kinetic pools of PCNA, i.e., bound to replication foci and as a free mobile fraction. To simultaneously monitor PCNA action in DNA replication and repair, we locally inflicted UV-induced DNA damage. A surprisingly longer residence time of PCNA at damaged areas than at replication foci was observed. Using DNA repair mutants, we showed that the initial recruitment of PCNA to damaged sites was dependent on nucleotide excision repair. Local accumulation of PCNA at damaged regions was observed during all cell cycle stages but temporarily disappeared during early S phase. The reappearance of PCNA accumulation in discrete foci at later stages of S phase likely reflects engagements of PCNA in distinct genome maintenance processes dealing with stalled replication forks, such as translesion synthesis (TLS). Using a ubiquitination mutant of GFP-hPCNA that is unable to participate in TLS, we noticed a significantly shorter residence time in damaged areas. Our results show that changes in the position of PCNA result from de novo assembly of freely mobile replication factors in the nucleoplasmic pool and indicate different binding affinities for PCNA in DNA replication and repair.  相似文献   

4.
5.
In higher eukaryotes, the proliferating cell nuclear antigen (PCNA) can be found associated to Cyclin D and Cdk4/6, the kinase complex responsible for cell cycle commitment in response to growth and mitogenic signals. During maize germination, PCNA can be found in protein complexes between 131 and 163 kDa. The sizes of PCNA protein complexes seem to change during germination, so that by the time the S phase starts, a complex of 100 kDa (likely the homotrimeric ring) is the predominant one. PCNA complexes during early germination contain (any of) two PSTAIRE-containing protein kinases of 32 and 36 kDa that readily phosphorylate both histone H1 and maize retinoblastoma-related (RBR) proteins. Kinase activity in PCNA complexes is markedly inhibited by roscovitine and olomoucine, two known Cdk inhibitors. The protein p13Suc1 only pulls down the 36 kDa PSTAIRE protein. Kinase activity in PCNA immunoprecipitates is maximal during early germination, before the onset of the S-phase, whereas kinase activity associated to p13Suc1 reaches a peak later, after the onset of the S-phase. We discuss the physiological repercussions of these findings.  相似文献   

6.
Replication protein A (RPA) is required for simian virus 40-directed DNA replication in vitro and for nucleotide excision repair (NER). Here we report that RPA and the human repair protein XPA specifically interact both in vitro and in vivo. Mapping of the RPA-interactive domains in XPA revealed that both of the largest subunits of RPA, RPA-70 and RPA-34, interact with XPA at distinct sites. A domain involved in mediating the interaction with RPA-70 was located between XPA residues 153 and 176. Deletion of highly conserved motifs within this region identified two mutants that were deficient in binding RPA in vitro and highly defective in NER both in vitro and in vivo. A second domain mediating the interaction with RPA-34 was identified within the first 58 residues in XPA. Deletion of this region, however, only moderately affects the complementing activity of XPA in vivo. Finally, the XPA-RPA complex is shown to have a greater affinity for damaged DNA than XPA alone. Taken together, these results indicate that the interaction between XPA and RPA is required for NER but that only the interaction with RPA-70 is essential.  相似文献   

7.
CDK-independent activities of D type cyclins.   总被引:6,自引:0,他引:6  
  相似文献   

8.
DNA replication is tightly coordinated both with cell cycle cues and with responses to extracellular signals to maintain genome stability. We discovered that human Cdt1, an essential origin licensing protein whose activity must be restricted to G(1) phase, is a substrate of the stress-activated mitogen-activated protein (MAP) kinases p38 and c-Jun N-terminal kinase (JNK). These MAP kinases phosphorylate Cdt1 both during unperturbed G(2) phase and during an acute stress response. Phosphorylation renders Cdt1 resistant to ubiquitin-mediated degradation during S phase and after DNA damage by blocking Cdt1 binding to the Cul4 adaptor, Cdt2. Mutations that block normal cell cycle-regulated MAP kinase-mediated phosphorylation interfere with rapid Cdt1 reaccumulation at the end of S phase. Phosphomimetic mutations recapitulate the stabilizing effects of Cdt1 phosphorylation but also reduce the ability of Cdt1 to support origin licensing. Two other CRL4(Cdt2) targets, the cyclin-dependent kinase (CDK) inhibitor p21 and the methyltransferase PR-Set7/Set8, are similarly stabilized by MAP kinase activity. These findings support a model in which MAP kinase activity in G(2) promotes reaccumulation of a low-activity Cdt1 isoform after replication is complete.  相似文献   

9.
A Dutta  B Stillman 《The EMBO journal》1992,11(6):2189-2199
RPA is a single-stranded DNA binding protein complex purified from human cells and is essential for the initiation and elongation stages of SV40 DNA replication in vitro. In both human and yeast cells, the 34 kDa polypeptide subunit of RPA is phosphorylated in the S and G2 phases of the cell cycle and not in G1. One of the major RPA kinases present in extracts of human cells was purified and shown to be the cyclin B-cdc2 complex. This purified kinase, and a closely related cyclin A associated cdc2-like kinase, phosphorylated RPA p34 on a subset of the chymotryptic peptides that were phosphorylated in vivo at the G1-S transition. Two serines near the N-terminus of RPA p34 were identified as possible sites of phosphorylation by cdc2 kinase. These same serines were necessary for RPA phosphorylation in vivo. The purified cdc2 kinase stimulated SV40 DNA replication in vitro when added to G1 cell extracts. The kinase also stimulated unwinding at the origin of replication, one of the earliest steps in DNA replication requiring RPA, but only in the presence of an additional factor present in G1 cell extracts. Thus, one or more members of the cyclin-cdc2 kinase family may be required for the initiation and maintenance of S phase, in part due to their ability to phosphorylate and activate a cellular DNA replication factor, RPA.  相似文献   

10.
In eukaryotes, the DNA replication factor PCNA is loaded onto primer-template junctions to act as a processivity factor for DNA polymerases. Genetic and biochemical studies suggest that PCNA also functions in early steps in mismatch repair (MMR) to facilitate the repair of misincorporation errors generated during DNA replication. These studies have shown that PCNA interacts directly with several MMR components, including MSH3, MSH6, MLH1, and EXO1. At present, little is known about how these interactions contribute to the mismatch repair mechanism. The interaction between MLH1 and PCNA is of particular interest because MLH1-PMS1 is thought to act as a matchmaker to signal mismatch recognition to downstream repair events; in addition, PCNA has been hypothesized to act in strand discrimination steps in MMR. Here, we utilized both genetic and surface plasmon resonance techniques to characterize the MLH1-PMS1-PCNA interaction. These analyses enabled us to determine the stability of the complex (K(D) = 300 nM) and to identify residues (572-579) in MLH1 and PCNA (126,128) that appear important to maintain this stability. We favor a model in which PCNA acts as a scaffold for consecutive protein-protein interactions that allow for the coordination of MMR steps.  相似文献   

11.
Synthesis of the nuclear protein cyclin (MW 36 000) and DNA in quiescent mouse fibroblasts is coordinately induced by serum and purified growth factors. Inhibition of DNA synthesis by hydroxyurea or aphidicolin in serum-stimulated quiescent cells does not affect the induction of cyclin. The levels of cyclin synthesis decrease rapidly at the end of the S phase. Immunofluorescence studies reveal that there are dramatic changes in the nuclear distribution of cyclin during S phase and that these depend on DNA synthesis or events during S phase. These observations strengthen the notion that cyclin is an important component of the events leading to DNA replication.  相似文献   

12.
13.
The integrity of genomic DNA during the cell division cycle in eukaryotic cells is maintained by regulated chromosomal DNA replication and repair of damaged DNA. We have used fractionation and reconstitution experiments to purify essential factors for the initiation of human chromosomal DNA replication in late G1 phase template nuclei from human cells. Here, we report the identification of soluble PCNA as an essential initiation factor in this system. Recombinant histidine-tagged human PCNA can substitute for purified endogenous human PCNA to initiate human chromosomal DNA replication. It is recruited specifically to discrete DNA replication foci formed during initiation in vitro. The template nuclei also contain DNA breaks as result of the synchronisation procedure. A separate population of chromatin-bound PCNA is already present in these template nuclei at discrete DNA damage foci, co-localising with gamma-H2AX, RPA and Rad51. This DNA damage-associated PCNA population is marked by mono-ubiquitination, suggesting that it is involved in DNA repair. Importantly, the population of damage focus-associated PCNA is neither involved in, nor required for, the initiation of chromosomal DNA replication in the same nuclei.  相似文献   

14.
The identity of DNA replication proteins and cell cycle regulatory proteins which can be found in complexes involving PCNA were investigated by the use of PCNA immobilized on Sepharose 4B. A column containing bovine serum albumin (BSA) bound to Sepharose was used as a control. Fetal calf thymus extracts were chromatographed on PCNA-Sepharose and BSA-Sepharose. The columns were washed and then eluted with 0.5 M KCl. The salt eluates were examined for the presence of both DNA replication proteins (Pol alpha, delta, straightepsilon, PCNA, RFC, RFA, DNA ligase I, NDH II, Topo I and Topo II) and cell cycle proteins (Cyclins A, B1, D1, D2, D3, E, CDK2, CDK4, CDK5 and p21) by western blotting with specific antibodies. The DNA replication proteins which bound to PCNA-Sepharose included DNA polymerase delta and straightepsilon, PCNA, the 37 and 40 kDa subunits of RFC, the 70 kDa subunit of RPA, NDH II and topoisomerase I. No evidence for the binding of DNA polymerase alpha, DNA ligase I or topoisomerase II was obtained. Of the cell cycle proteins investigated, CDK2, CDK4 and CDK5 were bound. This study presents strong evidence that PCNA is a component of protein complexes containing DNA replication, repair and cell cycle regulatory proteins.  相似文献   

15.
Patrick SM  Oakley GG  Dixon K  Turchi JJ 《Biochemistry》2005,44(23):8438-8448
Replication protein A (RPA) is a heterotrimeric protein consisting of 70-, 34-, and 14- kDa subunits that is required for many DNA metabolic processes including DNA replication and DNA repair. Using a purified hyperphosphorylated form of RPA protein prepared in vitro, we have addressed the effects of hyperphosphorylation on steady-state and pre-steady-state DNA binding activity, the ability to support DNA repair and replication reactions, and the effect on the interaction with partner proteins. Equilibrium DNA binding activity measured by fluorescence polarization reveals no difference in ssDNA binding to pyrimidine-rich DNA sequences. However, RPA hyperphosphorylation results in a decreased affinity for purine-rich ssDNA and duplex DNA substrates. Pre-steady-state kinetic analysis is consistent with the equilibrium DNA binding and demonstrates a contribution from both the k(on) and k(off) to achieve these differences. The hyperphosphorylated form of RPA retains damage-specific DNA binding, and, importantly, the affinity of hyperphosphorylated RPA for damaged duplex DNA is 3-fold greater than the affinity of unmodified RPA for undamaged duplex DNA. The ability of hyperphosphorylated RPA to support DNA repair showed minor differences in the ability to support nucleotide excision repair (NER). Interestingly, under reaction conditions in which RPA is maintained in a hyperphosphorylated form, we also observed inhibition of in vitro DNA replication. Analyses of protein-protein interactions bear out the effects of hyperphosphorylated RPA on DNA metabolic pathways. Specifically, phosphorylation of RPA disrupts the interaction with DNA polymerase alpha but has no significant effect on the interaction with XPA. These results demonstrate that the effects of DNA damage induced hyperphosphorylation of RPA on DNA replication and DNA repair are mediated through alterations in DNA binding activity and protein-protein interactions.  相似文献   

16.
17.
Replication factor C (RF-C) complex binds to DNA primers and loads PCNA onto DNA, thereby increasing the processivity of DNA polymerases. We have previously identified a distinct region, domain B, in the large subunit of human RF-C (RF-Cp145) which binds to PCNA. We show here that the functional interaction of RF-Cp145 with PCNA is regulated by cdk-cyclin kinases. Phosphorylation of either RF-Cp145 as a part of the RF-C complex or RF-Cp145 domain B by cdk-cyclin kinases inhibits their ability to bind PCNA. A cdk-cyclin phosphorylation site, Thr506 in RF-Cp145, identified by mass spectrometry, is also phosphorylated in vivo. A Thr506→Ala RF-Cp145 domain B mutant is a poor in vitro substrate for cdk-cyclin kinase and, consequently, the ability of this mutant to bind PCNA was not suppressed by phosphorylation. By generating an antibody directed against phospho-Thr506 in RF-Cp145, we demonstrate that phosphorylation of endogenous RF-Cp145 at Thr506 is mediated by CDKs since it is abolished by treatment of cells with the cdk-cyclin inhibitor roscovitine. We have thus mapped an in vivo cdk-cyclin phosphorylation site within the PCNA binding domain of RF-Cp145.  相似文献   

18.
Two hybridomas producing monoclonal antibodies to proliferating cell nuclear antigen. (PNCA)/cyclin were generated from spleen cells of BALB/c mice immunized with purified PCNA from rabbit thymus. The specificity of the monoclonal antibodies (19A2 and 19F4) was established by showing that they reacted in enzyme-linked immunosorbent assay (ELISA) with purified PCNA. Furthermore, they reacted in one-dimensional (ID) gel immunoblots with a 36 kD polypeptide which also reacted with human autoantibodies from lupus patients. Both monoclonals also recognized the nuclear polypeptide cyclin in two-dimensional (2D) gel immunoblots of HeLa cell proteins. Epitopes recognized by 19A2 and 19F4 were analysed by competitive inhibition test using a modified ELISA. The data suggested that the epitopes were closely related, but not identical. The data with human auto-antibodies were more difficult to interpret, although it suggested that some human anti-PCNA may share epitopes with 19A2 and 19F4, but in addition recognize different epitopes on the PCNA molecule.  相似文献   

19.
Archaeal DNA replication and repair   总被引:1,自引:0,他引:1  
Since the first archaeal genome was sequenced, much attention has been focused on the study of these unique microorganisms. We have learnt that although archaeal DNA metabolic processes (replication, recombination and repair) are more similar to the metabolic processes of Eukarya than those of Bacteria, Archaea are not simply 'mini Eukarya'. They are, in fact, a mosaic of the eukaryal and bacterial systems that also possess archaeal-specific features. Recent biochemical and structural studies of the proteins that participate in archaeal DNA replication and repair have increased our understanding of these processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号