首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The utilization of d-[1-(14)C]- and d-[6-(14)C]-glucose in the biosynthesis of l-rhamnose units of plum-leaf polysaccharides has been studied. 2. After the precursors had been metabolized in the leaves, polysaccharide fractions were prepared therefrom and the constituent l-rhamnose was isolated and purified. 3. Both the specific activity and the distribution of (14)C along the carbon chain of l-rhamnose from two polysaccharide fractions from each experiment were determined. 4. The results indicated a close affinity between l-rhamnose and pectin, and show that biosynthesis of the 6-deoxyhexose from d-glucose occurs in the main without scission or inversion of the carbon chain. 5. A degradation scheme for l-rhamnose via l-rhamnitol was described which gives the labelling at C-1, C-2+C-3+C-4,C-5 and C-6 on a 0.3millimole scale.  相似文献   

2.
Methods for the chemical synthesis of [23-(3)H(2)]lanosterol, [23,25-(3)H(3)]24-methyldihydrolanosterol and [24,28-(3)H(2)]24-methyldihydrolanosterol are described. It is shown that, in the biosynthesis of ergosterol from [26,27-(14)C(2),23-(3)H(2)]lanosterol by the whole cells of Saccharomyces cerevisiae, one of the original C-23 hydrogen atoms is lost and the other is retained at C-23 of ergosterol. It is also shown that 24-methyldihydrolanosterol is converted into ergosterol in good yield and without prior conversion into a 24-methylene derivative. On the basis of these results possible pathways for the formation of the ergosterol side chain from a 24-methylene side chain are discussed.  相似文献   

3.
Isolated rat hepatocytes were incubated with [3-(14)C]xylitol or d-[3-(14)C]xylulose plus xylitol or glucose at substrate concentrations. The glucose formed was isolated and degraded to give the relative specific radioactivities in each carbon atom. C-4 of glucose had the highest specific radioactivity, followed by C-3, with half to one-fifth that of C-4. Only about 1% of the total radioactivity was in C-1. The data are compared with the predictions of the classical pentose phosphate cycle [Horecker, Gibbs, Klenow & Smyrniotis (1954) J. Biol. Chem.207, 393-403], and the proposed new version of the pentose phosphate cycle in liver [Longenecker & Williams (1980) Biochem. J.188, 847-857], which they denoted as the ;L-type pentose cycle'. The Williams pathway predicts that the specific radioactivity of C-1 of glucose should be half that of C-4 (after correction for approximately equal labelling on C-3 and C-4 of hexose phosphate in the pathway involving fructose 1,6-bisphosphatase). The actual labelling in C-1 is 20-350-fold less than this. When the hepatocytes are incubated with phenazine methosulphate, to stimulate the oxidative branch of the pentose phosphate cycle, the predicted relationship between (C-2/C-3) and (C-1/C-3) ratios of specific radio-activities is nearly exactly in accord with the classical pentose phosphate cycle. Glucose and glucose 6-phosphate were isolated and degraded from an incubation of hepatocytes from starved/re-fed rats with [3-(14)C]xylitol. Although the patterns were of the classical type, there was more randomization of (14)C into C-2 and C-1 in the glucose 6-phosphate isolated at the end of the incubation than in the glucose which was continuously produced.  相似文献   

4.
1. A convenient synthesis of 3-hydroxytrisnorlanost-8-en-24-al and its conversion into [24-(3)H]lanosterol and [26,27-(14)C(2)]lanosterol is described. 2. A method for the efficient incorporation of lanosterol into ergosterol by the whole cells of Saccharomyces cerevisiae is also described. 3. It is shown that in the biosynthesis of ergosterol from doubly labelled lanosterol the C-24 hydrogen atom of lanosterol is retained in ergosterol. 4. On the basis of unambiguous degradations it is shown that the C-alkylation step in ergosterol biosynthesis is accompanied by the migration of a hydrogen atom from C-24 to C-25. 5. The mechanism for the biosynthesis of the ergosterol side chain is presented. 6. Mechanisms of other C-alkylation reactions are also discussed.  相似文献   

5.
The stereochemistry of hydroxylation at C-2 during the biosynthesis of ecdysone in the ovaries of Schistocerca gregaria was investigated by incorporation of [1 alpha,2 alpha-3H(n)]cholesterol in admixture with [4-14C]cholesterol into oöcyte 2-deoxyecdysone and ecdysone conjugates in maturing adult female S. gregaria. Extraction of the eggs followed by enzymic hydrolysis of the ecdysteroid conjugate fraction yielded free ecdysteroids, from which 2-deoxyecdysone and ecdysone were purified. The 3H/14C ratios in the 2-deoxyecdysone and ecdysone were similar, suggesting that the 2 alpha hydrogen of cholesterol was retained during hydroxylation at C-2. This was corroborated by oxidation at C-2 of the 3,22-diacetate derivative of the ecdysone, yielding the corresponding 2-oxo compound with removal of essentially all the 3H originally present at the 2 alpha position of cholesterol. The results indicate that the 2 beta hydrogen of cholesterol has been eliminated during the hydroxylation at C-2. Thus, during ecdysone biosynthesis, hydroxylation at C-2 is direct and occurs with retention of configuration.  相似文献   

6.
The biogenetic origin of the carbon atoms in tenellin has been established by adding 13C-enriched compounds to cultures of Beauveria bassiana, and determining the isotopic distribution in the metabolite by 13C nuclear magnetic resonance spectrometry. Tenellin is formed by condensation of an acetate-derived polyketide chain with a phenylpropanoid unit that may be phenylalanine. Alternate carbon atoms of the polyketide chain were labelled with sodium [1(-13C)]- and [2-(13C]-acetate; sodium [1,2-(13C)]acetate was incorporated as intact two-carbon units, the presence of which in tenellin was apparent from coupling between adjacent 13C-enriched carbons. Substituent methyl groups of the polyketide-derived alkenyl chain were labelled with L-[Me-13C]methionine. The labelling patterns from DL-[carboxy-13C]phenylalanine and DL-[alpha-13C]phenylalanine indicated a rearrangement of the propanoid component at some stage in the synthesis. The mass spectrum of tenellin from cultures administered L-[15N]phenylalanine showed isotopic enrichment similar to that obtained with 13C- or 14C-labelled phenylalanine. During incorporation of L-[carboxy-14C, beta-3H]phenylalanine 96% of the tritium label was lost, discounting the possibility of a 1,2-hydride shift during biosynthesis of the metabolite.  相似文献   

7.
Biosynthesis of N-methyl-L-glucosamine moiety of streptomycin from D-glucose by Streptomyces griseus was studied. A mixture of D-[1-(14) C] glucose and D-[6(-3)H]glucose was given to the culture of S. griseus. The 3H/14C ratio found in N-methyl-L-glucosamine further supports a mechanism that the conversion of D-glucose to L-hexose is carried out without scission of carbon skeleton. When D-[1-14C]glucose and D-[3-3H]glucose were used, the fall of 3H/14C ratio in N-metyl-L-glucosamine showed that the hydrogen atom at C-3 plays a r?le in such a transformation.  相似文献   

8.
Lipids from the archaebacterium Sulfolobus solfataricus are based on 72-membered macrocyclic tetraethers made up from two C40 diol units differently cyclized and either two glycerol moieties or one glycerol moiety and a unique branched-chain nonitol named calditol (glycerodialkylnonitol tetraethers, GDNTs). To elucidate the biosynthesis of calditol and related tetraethers, labelled precursors, [U-14C,1(3)-3H]glycerol, [U-14C,2-3H]glycerol, D-[1-14C,6-3H]glucose, D-[6-14C,1-3H]glucose, D-[1-14C,2-3H]glucose, D-[1-14C,6-3H]fructose and D-[1-14C]galactose, were fed to S. solfataricus. Without regard to stereochemistry or phosphorylation, incorporation experiments provided evidence that the biosynthesis of calditol occurs via an aldolic condensation between dihydroxyacetone and fructose, through a 2-oxo derivative of calditol as an intermediate. The latter is in turn reduced and then alkylated to yield the GDNTs. The biogenetic origins of both glycerol and C40 isoprenoid moieties of GDNTs are also discussed.  相似文献   

9.
Pentose cycle and reducing equivalents in rat mammary-gland slices   总被引:14,自引:13,他引:1       下载免费PDF全文
1. Slices of mammary gland of lactating rats were incubated with glucose labelled uniformly with (14)C and in positions 1, 2, 3 and 6, and with (3)H in all six positions. Glucose carbon atoms are incorporated into CO(2), fatty acids, lipid glycerol, the glucose and galactose moieties of lactose, lactate, soluble amino acids and proteins. C-3 of glucose appears in fatty acids. The incorporation of (3)H into fatty acids is greatest from [3-(3)H]glucose. (3)H from [5-(3)H]glucose appears, apart from in lactose, nearly all in water. 2. The specific radioactivity of the galactose moiety of lactose from [1-(14)C]- and [6-(14)C]-glucose was less, and that from [2-(14)C]- and [3-(14)C]-glucose more, than that of the glucose moiety. There was no randomization of carbon atoms in the glucose moiety, but it was extensive in galactose. 3. The pentose cycle was calculated from (14)C yields in CO(2) and fatty acids, and from the degradation of galactose from [2-(14)C]glucose. A method for the quantitative determination of the contribution of the pentose cycle, from incorporation into fatty acids from [3-(14)C]glucose, is derived. The rate of the reaction catalysed by hexose 6-phosphate isomerase was calculated from the randomization pattern in galactose. 4. Of the utilized glucose, 10-20% is converted into lactose, 20-30% is metabolized via the pentose cycle and the rest is metabolized via the Embden-Meyerhof pathway. About 10-15% of the triose phosphates and pyruvate is derived via the pentose cycle. 5. The pentose cycle is sufficient to provide 80-100% of the NADPH requirement for fatty acid synthesis. 6. The formation of reducing equivalents in the cytoplasm exceeds that required for reductive biosynthesis. About half of the cytoplasmic reducing equivalents are probably transferred into mitochondria. 7. In the Appendix a concise derivation of the randomization of C-1, C-2 and C-3 as a function of the pentose cycle is described.  相似文献   

10.
13C and 2H NMR spectroscopy has been employed to probe the biosynthesis of vitamin B6 in Escherichia coli. The 13C NMR spectrum of a sample of pyridoxol derived biosynthetically from D-[1,2,3,4,5,6-13C6]glucose shows that the bonds, C(2)-C(3) and C(4)-C(5), of the pyridine nucleus are the only two carbon-carbon bonds of pyridoxol which are generated de novo in the course of its biosynthesis from glucose. It follows that the pyridoxol skeleton is generated from two intact triose units and a triose-derived two-carbon unit, all of which are supplied by glucose. From the 2H NMR spectra of samples of pyridoxol derived from (R)-[1,1-2H2]glycerol and (S)-[1,1-2H2]glycerol, respectively, it can be deduced that the rehydroxymethyl group of glycerol enters C-2', C-4', and C-5' of the pyridoxol skeleton. It follows that each of the three fragments is derived from glycerol in stereo-specific fashion. These results answer questions concerning the regiochemistry and the stereochemistry of pyridoxol biosynthesis.  相似文献   

11.
1. Incubation of a rat liver homogenate with 3R-[2-(14)C,(5R)-5-(3)H(1)]mevalonic acid gave cholesterol with (3)H/(14)C atomic ratio 6:5. 2. Conversion of the labelled cholesterol into 3beta-acetoxy-6-nitrocholest-5-ene or cholest-4-ene-3,6-dione resulted in the loss of one tritium atom from C-6. 3. These results show that during cholesterol biosynthesis the 6alpha-hydrogen atom of a precursor sterol is eliminated during formation of the C-5-C-6 double bond. 4. Incorporation of 3R-[2-(14)C,(5R)-5-(3)H(1)]mevalonic acid into the sterols of larch (Larix decidua) leaves gave labelled cycloartenol and beta-sitosterol with (3)H/(14)C atomic ratios 6:6 and 6:5 respectively. 5. One tritium atom was lost from C-6 on conversion of the labelled beta-sitosterol into either 3beta-acetoxy-6-nitrostigmast-5-ene or stigmast-4-ene-3,6-dione, demonstrating that formation of the C-5-C-6 double bond of phytosterols also involves the elimination of the 6alpha-hydrogen atom of a precursor sterol. 6. The 3R-[2-(14)C,(5R)-5-(3)H(1)]mevalonic acid was also incorporated by larch (L. decidua) leaves into a sterol that co-chromatographed with 28-isofucosterol. Confirmation that the radioactivity was associated with 28-isofucosterol was obtained by co-crystallization with carrier 28-isofucosterol and ozonolysis of the acetate to give radioactively labelled 24-oxocholesteryl acetate. 7. The significance of these results to phytosterol biosynthesis is discussed.  相似文献   

12.
Estimation of the pentose cycle in the perfused cow''s udder   总被引:4,自引:3,他引:1       下载免费PDF全文
1. The distributions of (14)C have been compared in the glucose and galactose moieties of lactose obtained from cows' udders perfused with blood containing [1-(14)C]-, [2-(14)C]- and [6-(14)C]-glucose. The (14)C of the glucose moiety was found in the same position as that of the administered glucose, but in the galactose moiety the (14)C from [2-(14)C]glucose was extensively randomized into positions 1 and 3. It is concluded that the glucose moiety arose from free glucose and the galactose moiety from hexose phosphate intermediates and that the latter reflected the randomization occurring through reactions of the pentose cycle. 2. The proportion of the glucose metabolized via the pentose cycle for those cells making lactose was estimated from the distribution of (14)C in the galactose moiety and found to be about 23% in one experiment and 30% in another experiment. 3. The yield and distribution of (14)C were determined in the glycerol of fat from the tissue in experiments with [2-(14)C]- and [6-(14)C]-glucose. There was a greater randomization of (14)C in the glycerol than in C-1, C-2 and C-3 of the galactose moiety of lactose. The ratio of the yield of (14)C in the glycerol from [2-(14)C]glucose to that of [6-(14)C]glucose was very low and from this ratio it was calculated that less than 10% of the glucose was metabolized by the Embden-Meyerhof pathway and approx. 60-70% was converted into lactose. 4. [6-(14)C]Glucose and [6-(3)H]glucose were used to determine whether the (3)H at the C-6 position remained stable during its conversion into glyceride of fat from the tissue. Twenty-seven per cent of the (3)H was labilized during this conversion. Therefore it was not possible to use [2-(14)C]glucose and [6-(3)H]glucose in a single experiment to measure the relative conversion of the C-2 and C-6 positions of glucose to glycerol.  相似文献   

13.
Stereochemical aspects of the formation of double bonds in abscisic acid   总被引:2,自引:1,他引:1  
The stereochemistry of the hydrogen elimination that occurs during the formation of the Delta(4)- and Delta(2)'-double bonds of abscisic acid has been determined from the (14)C/(3)H ratios in abscisic acid biosynthesized by avocado fruit from [2-(14)C,(2R)-2-(3)H(1)]-, [2-(14)C,(2S)-2-(3)H(1)]- and [2-(14)C,(5S)-5-(3)H(1)]-mevalonate. Setting the (14)C/(3)H ratio at 3:3 for [2-(14)C,(2R)-2-(3)H(1)]mevalonate, the corresponding ratio in derived methyl abscisate was 3:2.28; the analogous ratio for methyl abscisate from [2-(14)C,(2S)-2-(3)H(1)]mevalonate was 3:1.63. Removal of the 3'-hydrogen atom of abscisic acid by base-catalysed exchange altered the ratios to 3:1.55 and 3:1.44 respectively. It was concluded that this 3'-hydrogen atom is derived from the pro-2R-hydrogen atom of mevalonate. Removal of the 4-hydrogen atom from methyl abscisate by formation of a derivative, a lactone, lacking this hydrogen atom changed the ratio to 3:1.04 for material derived from [2-(14)C,(2R)-2-(3)H(1)]-mevalonate and to 3:1.05 for [2-(14)C,(2S)-2-(3)H(1)]mevalonate, showing that this hydrogen atom also is derived from the pro-2R-hydrogen atom of mevalonate. These ratios of the lactones are consistent with their retaining one (3)H atom at the 6'-methyl position of abscisic acid from the [(2R)-2-(3)H(1)]- and [(2S)-2-(3)H(1)]-mevalonate. The presence of some label at positions 3' and 4 when [(2S)-2-(3)H(1)]mevalonate was the precursor is attributed to the action of isopentenyl pyrophosphate isomerase. The hydrogen atom at C-5 of abscisic acid is derived from the pro-5S-hydrogen atom of mevalonate.  相似文献   

14.
1. The reactions of the pentose phosphate cycle were investigated by the intraportal infusion of specifically labelled [(14)C]glucose or [(14)C]ribose into the liver of the anaesthetized rabbit. The sugars were confined in the liver by haemostasis and metabolism was allowed to proceed for periods up to 5min. Metabolism was assessed by measuring the rate of change of the specific radioactivity of CO(2), the carbon atoms of glucose 6-phosphate, fructose 6-phosphate and tissue glucose. 2. The quotient oxidation of [1-(14)C]glucose/oxidation of [6-(14)C]glucose as measured by the incorporation into respiratory CO(2) was greater than 1.0 during most of the time-course and increased to a maximum of 3.1 but was found to decrease markedly upon application of a glucose load. 3. The estimate of the pentose phosphate cycle from C-1/C-2 ratios generally increased during the time-course, whereas the estimate of the pentose phosphate cycle from C-3/C-2 ratios varied depending on whether the ratios were measured in glucose or hexose 6-phosphates. 4. The distribution of (14)C in hexose 6-phosphate after the metabolism of [1-(14)C]ribose showed that 65-95% of the label was in C-1 and was concluded to have been the result of a rapidly acting transketolase exchange reaction. 5. Transaldolase exchange reactions catalysed extensive transfer of (14)C from [2-(14)C]glucose into C-5 of the hexose 6-phosphates during the entire time-course. The high concentration of label in C-4, C-5 and C-6 of the hexose 6-phosphates was not seen in tissue glucose in spite of an unchanging rate of glucose production during the time-course. 6. It is concluded that the reaction sequences catalysed by the pentose phosphate pathway enzymes do not constitute a formal metabolic cycle in intact liver, neither do they allow the definition of a fixed stoicheiometry for the dissimilation of glucose.  相似文献   

15.
1. Expressions are derived for the steady-state measurement of the quantitative contribution of the liver-type pentose phosphate cycle to glucose metabolism by tissues. One method requires the metabolism of [5-14C]glucose followed by the isolation and degradation of glucose 6-phosphate. The second procedure involves the metabolism of [2-14C]glucose and the isolation and degradation of a triose phosphate derivative, usually lactate or glycerol. 2. Measurements of 14C in C-2 and C-5 of glucose 6-phosphate are required and the values of the C-2/C-5 ratios can be used to calculate the quantitative contribution of the L-type pentose cycle in all tissues. 3. The measurement of 14C in C-1, C-2 and C-3 of triose phosphate derivatives can be used to calculate the quantitative contribution of the L-type pentose cycle relative to glycolysis. 4. The effect of transaldolase and transketolase exchange reactions, reactions of gluconeogenesis and non-oxidative formation of pentose 5-phosphate, isotopic equilibration of triose phosphate pools and isotopic equilibration of fructose 6-phosphate and glucose 6-phosphate, which could interfere with a clear interpretation of the data using [2-14C]- and [5-14C]glucose are discussed.  相似文献   

16.
Phenol biosynthesis in higher plants. Gallic acid   总被引:1,自引:0,他引:1       下载免费PDF全文
The biosynthesis of gallic acid in a number of higher plants was investigated by using l-[U-(14)C]phenylalanine, (-)-[G-(14)C]shikimic acid, d-[1-(14)C]glucose and d-[6-(14)C]glucose as tracers. The results are compared with those obtained similarly for caffeic acid and are interpreted in terms of the dehydrogenation of 5-dehydroshikimic acid as a normal route of metabolism for gallic acid.  相似文献   

17.
1. Glucose 5-phosphate was synthesized from ribose 5-phosphate by an enzyme extract prepared from an acetone-dried powder of rat liver. Three rates of ribose 5-phosphate utilization were observed during incubation for 17 h. An analysis of intermediates and products formed throughout the incubation revealed that as much as 20% of the substrate carbon could not be accounted for. 2. With [1-14C]ribose 5-phosphate as substrate, the specific radioactivity of [14C]glucose 6-phosphate formed was determined at 1, 2, 5 and 30 min and 3, 8 and 17 h. It increased rapidly to 1.9-fold the initial specific radioactivity of [1-14C]ribose 5-phosphate at 3 h and then decreased to a value approximately equal to that of the substrate at 6 h, and finally at 17 h reached a value 0.8-fold that of the initial substrate [1-14C]ribose 5-phosphate. 3. The specific radioactivity of [14C]ribose 5-phosphate decreased to approx. 50% of its inital value during the first 3 h of the incubation and thereafter remained unchanged. 4. The distribution of 14C in the six carbon atoms of [14C]glucose 6-phosphate formed from [1-14C]ribose 5-phosphate at 1, 2, 5 and 30 min and 3, 8 and 17 h was determined. The early time intervals (1--30 min) were characterized by large amounts of 14C in C-2 and in C-6 and with C-1 and C-3 being unlabelled. In contrast, the later time intervals (3--17 h) were characterized by the appearance of 14C in C-1 and C-3 and decreasing amounts of 14C in C-2 and C-6. 5. It is concluded that neither the currently accepted reaction sequence for the non-oxidative pentose phosphate pathway nor the 'defined' pentose phosphate-cycle mechanism can be reconciled with the labelling patterns observed in glucose 6-phosphate formed during the inital 3 h of the incubation.  相似文献   

18.
1. d-[2-(14)C]Glucose, [2-(14)C]acetate, hydroxy[3-(14)C]pyruvate, [3-(14)C]pyruvate and [U-(14)C]glycine were incorporated by surviving scrapings of sheep colonic mucosal tissue into glycoprotein. 2. d-[2-(14)C]Glucose, [2-(14)C]acetate, incorporated hydroxy-[3-(14)C]pyruvate and [3-(14)C]pyruvate resulted in labelling of each of the monosaccharide residues of the glycoprotein, namely N-glycollylneuraminic acid, N-acetylneuraminic acid, galactose, fucose, glucosamine and galactosamine. [U-(14)C]Glycine was incorporated as glycyl and seryl residues of the glycoprotein. 3. Despite N-glycollylneuraminic acid being quantitatively the predominant sialic acid (N-glycollylneuraminic acid and N-acetylneuraminic acid were 8.5 and 5.2% by weight of the glycoprotein respectively) the corresponding ratio of the radio-active labelling from d-[2-(14)C]glucose in N-glycollylneuraminic acid to that in N-acetylneuraminic acid was 1.00:7.27 (expressed as percentages of the total radioactivity in the glycoprotein). Neutral sugar, hexosamine and N-acetylneuraminic acid residues of the mucoprotein were each labelled to a similar extent. 4. Similarly, the ratio of the radioactivity in N-glycollylneuraminic acid to that in N-acetylneuraminic acid in the mucoprotein from tissue incubations with [2-(14)C]-acetate was 1.0:4.0. 5. Both [2-(14)C]acetate and [2-(14)C]glucose with whole tissue led to labelling of the N-glycollyl substituent and of the main nonose skeleton of the N-glycollylneuraminic acid. In whole-tissue incubations, [3-(14)C]pyruvate was also a precursor of radioactive N-glycollylneuraminic acid. 6. Hydroxy[3-(14)C]-pyruvate and [U-(14)C]glycine caused labelling of the carbohydrate and peptide residues of the glycoprotein, but did not give rise to labelling in the N-glycollylneuraminic acid residues. 7. With a wide variety of possible N-glycollyl precursors (fructose 6-phosphate, hydroxypyruvate, glycollate and chemically synthesized glycollyl-CoA) biosynthesis of N-glycollylglucosamine was not observed in cell-free preparations.  相似文献   

19.
Parthenocissus quinquefolia (L.) Planch., commonly known as Virginia Creeper, is a vitaceous tartrate-accumulating vine that exhibits C-4/C-5 cleavage of l-ascorbic acid (AA) to produce l-tartaric acid (TA) from the C4 fragment and carbohydrate pool material from the C2 fragment. Experiments in which detached leaves were supplied d-[5-3H,1-14C]glucose or d-[5-3H,6-14C]glucose yielded AA devoid of 3H whereas the l-threonic acid (ThA) and TA recovered from the same tissues still retained some 3H. These comparative experiments also indicated that the ThA was derived from carbons 3 through 6 of d-glucose. ThA was shown to be a natural constituent of P. quinquefolia but apparently not an intermediate between AA and TA. Results are consistent with a biosynthetic pathway from d-glucose to AA that involves a hydrogen-exchanging epimerization at C-5 as reported earlier for the geraniaceous plant Pelargonium crispum, but differing from P.crispum in biosynthesis and metabolism of ThA.When l-[6-14C]idonate or its lactone was supplied to P. quinquefolia leaves, about 80% of the 14C appeared in the carbohydrates, an observation remarkably similar to previous observations with [6-14C]AA-labeled leaves. l-Idonate and its lactone appear to have an intermediate role in AA metabolism in vitaceous plants.  相似文献   

20.
Glucose metabolism in the developing rat. Studies in vivo   总被引:10,自引:10,他引:0  
1. The specific radioactivity of plasma d-glucose and the incorporation of (14)C into plasma l-lactate, liver glycogen and skeletal-muscle glycogen was measured as a function of time after the intraperitoneal injection of d-[6-(14)C]glucose and d-[6-(3)H]glucose into newborn, 2-, 10- and 30-day-old rats. 2. The log of the specific radioactivity of both plasma d-[6-(14)C]- and d-[6-(3)H]-glucose of the 2-, 10- and 30-day-old rats decreased linearly with time for at least 60min after injection of labelled glucose. The specific radioactivity of both plasma d-[6-(14)C]- and d-[6-(3)H]-glucose of the newborn rat remained constant for at least 75min after injection. 3. The glucose turnover rate of the 30-day-old rat was significantly greater than (approximately twice) that of the 2- and 10-day-old rats. The relative size of both the glucose pool and the glucose space decreased with age. Less than 10% of the glucose utilized in the 2-, 10- and 30-day-old rats was recycled via the Cori cycle. 4. The results are discussed in relationship to the availability of dietary glucose and other factors that may influence glucose metabolism in the developing rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号