首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We derive an alternative expression for a delayed logistic equation, assuming that the rate of change of the population depends on three components: growth, death, and intraspecific competition, with the delay in the growth component. In our formulation, we incorporate the delay in the growth term in a manner consistent with the rate of instantaneous decline in the population given by the model. We provide a complete global analysis, showing that, unlike the dynamics of the classical logistic delay differential equation (DDE) model, no sustained oscillations are possible. Just as for the classical logistic ordinary differential equation (ODE) growth model, all solutions approach a globally asymptotically stable equilibrium. However, unlike both the logistic ODE and DDE growth models, the value of this equilibrium depends on all of the parameters, including the delay, and there is a threshold that determines whether the population survives or dies out. In particular, if the delay is too long, the population dies out. When the population survives, i.e., the attracting equilibrium has a positive value, we explore how this value depends on the parameters. When this value is positive, solutions of our DDE model seem to be well approximated by solutions of the logistic ODE growth model with this carrying capacity and an appropriate choice for the intrinsic growth rate that is independent of the initial conditions.  相似文献   

2.
The problem of density dependence appears in all approaches to the modelling of population dynamics. It is pertinent to classic models (i.e., Lotka-Volterra's), and also population genetics and game theoretical models related to the replicator dynamics. There is no density dependence in the classic formulation of replicator dynamics, which means that population size may grow to infinity. Therefore the question arises: How is unlimited population growth suppressed in frequency-dependent models? Two categories of solutions can be found in the literature. In the first, replicator dynamics is independent of background fitness. In the second type of solution, a multiplicative suppression coefficient is used, as in a logistic equation. Both approaches have disadvantages. The first one is incompatible with the methods of life history theory and basic probabilistic intuitions. The logistic type of suppression of per capita growth rate stops trajectories of selection when population size reaches the maximal value (carrying capacity); hence this method does not satisfy selective neutrality. To overcome these difficulties, we must explicitly consider turn-over of individuals dependent on mortality rate. This new approach leads to two interesting predictions. First, the equilibrium value of population size is lower than carrying capacity and depends on the mortality rate. Second, although the phase portrait of selection trajectories is the same as in density-independent replicator dynamics, pace of selection slows down when population size approaches equilibrium, and then remains constant and dependent on the rate of turn-over of individuals.  相似文献   

3.
An examination is made of some of the ways populations can grow in response to changes in their own density. Under two different assumptions on birth and death rates, models for single-species population growth that incorporate intraspecific competition by interference but not exploitation are of logistic form. Where an individual's net energy input from feeding is inversely proportional to population size, population growth follows a convex curve, whether interference is included or not. Data of Smith (1963) on Daphnia populations are fit well by this kind of curve. Combination of the two kinds of growth can produce S-shaped curves whose inflection is displaced from that value—half the carrying capacity—given by the logistic; an upward displacement is favored by a high ratio of metabolic and replacement costs to feeding input. Inflection points from real curves are much more often higher than expected from the logistic. Nonmonotonic growth curves can arise when there is instantaneous feedback between consumers and resource availability; certain of these equations are of logistic or convex form at equilibrium. The possible effect of r- and K-selection on the biological parameters, such as feeding efficiency, used to construct the monotonie equations is discussed, and the equations are extended to 2-species competition. Table III characterizes some simple single-species growth curves.  相似文献   

4.
Disease transmission models with density-dependent demographics   总被引:13,自引:0,他引:13  
The models considered for the spread of an infectious disease in a population are of SIRS or SIS type with a standard incidence expression. The varying population size is described by a modification of the logistic differential equation which includes a term for disease-related deaths. The models have density-dependent restricted growth due to a decreasing birth rate and an increasing death rate as the population size increases towards its carrying capacity. Thresholds, equilibria and stability are determined for the systems of ordinary differential equations for each model. The persistence of the infectious disease and disease-related deaths can lead to a new equilibrium population size below the carrying capacity and can even cause the population to become extinct.Research supported in part by Centers for Disease Control contract 200-87-0515  相似文献   

5.
Summary Theorems are given which guarantee the bifurcation of non-constant, periodic solutions (of fixed period) of a scalar functional equation with two independent parameters. These results are applied to a single, isolated species growth model of general form with a general Volterra (Stieltjes) delay using the ‘magnitudes’ of the instantaneous and delayed growth rate responses as the independent bifurcation parameters. The case of linear growth rate responses (i.e. delay logistic models) is considered in more detail, particularly the often studied single lag logistic equation.  相似文献   

6.
Most of the population growth models comprise the concept of carrying capacity presume that a stable population would have a saturation level characteristic. This indicates that the population growth models have a common implicit feature of resource-limited growth, which contributes at a later stage of population growth by forming a numerical upper bound on the population size. However, a general underlying resource dynamics of the models has not been previously explored, which is the focus of present study. In this paper, we found that there exists a conservation of energy relationship comprising the terms of available resource and population density, jointly interpreted here as total available vital energy in a confined environment. We showed that this relationship determines a density-dependent functional form of relative population growth rate and consequently the parametric equations are in the form depending upon the population density, resource concentration, and time. Thus, the derived form of relative population growth rate is essentially a feedback type, i.e., updating parametric values for the corresponding population density. This resource dynamics-based feedback approach has been implemented for formulating variable carrying capacity in a confined environment. Particularly, at a constant resource replenishment rate, a density-dependent population growth equation similar to the classic logistic equation is derived, while one of the regulating factors of the underlying resource dynamics is that the resource consumption rate is directly proportional to the resource concentration. Likewise two other population growth equations similar to two known popular growth equations are derived based on this resource dynamics-based feedback approach. Using microcosm-derived data of fungus T. virens, we fitted one derived population growth model against the datasets, and concluded that this approach is practically implementable for studying a single population growth regulation in a confined environment.  相似文献   

7.
Understanding and quantifying the temperature dependence of population parameters, such as intrinsic growth rate and carrying capacity, is critical for predicting the ecological responses to environmental change. Many studies provide empirical estimates of such temperature dependencies, but a thorough investigation of the methods used to infer them has not been performed yet. We created artificial population time series using a stochastic logistic model parameterized with the Arrhenius equation, so that activation energy drives the temperature dependence of population parameters. We simulated different experimental designs and used different inference methods, varying the likelihood functions and other aspects of the parameter estimation methods. Finally, we applied the best performing inference methods to real data for the species Paramecium caudatum. The relative error of the estimates of activation energy varied between 5% and 30%. The fraction of habitat sampled played the most important role in determining the relative error; sampling at least 1% of the habitat kept it below 50%. We found that methods that simultaneously use all time series data (direct methods) and methods that estimate population parameters separately for each temperature (indirect methods) are complementary. Indirect methods provide a clearer insight into the shape of the functional form describing the temperature dependence of population parameters; direct methods enable a more accurate estimation of the parameters of such functional forms. Using both methods, we found that growth rate and carrying capacity of Paramecium caudatum scale with temperature according to different activation energies. Our study shows how careful choice of experimental design and inference methods can increase the accuracy of the inferred relationships between temperature and population parameters. The comparison of estimation methods provided here can increase the accuracy of model predictions, with important implications in understanding and predicting the effects of temperature on the dynamics of populations.  相似文献   

8.
Recent theoretical studies have analyzed the evolution of habitat specialization using either the logistic or the Ricker equation. These studies have implemented evolutionary change directly in population-level parameters such as habitat-specific intrinsic growth rates r or carrying capacities K. This approach is a shortcut to a more detailed analysis where evolutionary change is studied in underlying morphological, physiological, or behavioral traits at the level of the individual that contribute to r or K. Here we describe two pitfalls that can occur when such a shortcut is employed. First, population-level parameters that appear as independent variables in a population dynamical model might not be independent when derived from processes at the individual level. Second, patterns of covariation between individual-level traits are usually not conserved when mapped to the level of demographic parameters. Nonlinear mappings constrain the curvature of trade-offs that can sensibly be assumed at the population level. To illustrate these results, we derive a two-habitat version of the logistic and Ricker equations from individual-level processes and compare the evolutionary dynamics of habitat-specific carrying capacities with those of underlying individual-level traits contributing to the carrying capacities. Finally, we sketch how our viewpoint affects the results of earlier studies.  相似文献   

9.
A logistic density-dependent matrix model is developed in which the matrices contain only parameters and recruitment is a function of adult population density. The model was applied to simulate introductions of white-tailed deer into an area; the fitted model predicted a carrying capacity of 215 deer, which was close to the observed carrying capacity of 220 deer. The rate of population increase depends on the dominant eigenvalue of the Leslie matrix, and the age structure of the simulated population approaches a stable age distribution at the carrying capacity, which was similar to that generated by the Leslie matrix. The logistic equation has been applied to study many phenomena, and the matrix model can be applied to these same processes. For example, random variation can be added to life history parameters, and population abundances generated with random effects on fecundity show both the affect of annual variation in fecundity and a longer-term pattern resulting from the age structure.  相似文献   

10.
The non-autonomous logistic equation
dx(t)dt = r(t)x(t)[1 ? x(t)K(t)]
is studied under conditions that include an environment which is completely deteriorating. In this setting, when the population's growth rate, r, is large on the average, solutions track the environment with a consequent extinction of the population. However, when both r and rK?1 are small in the sense that they are in L1[0,∞) then an asymptotic equivalence, where all solutions tend to positive limits as t approaches infinity, results and the population is persistent, independent of initial density. The asymptotic equivalence produces an unreasonable overshoot of carrying capacity which leads to concern about employing the logistic equation in the above form as a population model when growth rates are close to zero.A re-interpretation of the parameters of the logistic equation leads to the alternative logistic formulation
dx(t)dt = x(t)[r(t) ? cB(t) x(t)], (c > 0)
. A biological interpretation of the parameters is presented and this equation is compared with the classical logistic model in the case where the parameters are constant. If the alternative logistic model is applied in a situation with time-varying parameters, then a deteriorating environment always leads to extinction of the population regardless of the behavior of r. Similarly, a growth rate which is small on the average results in extinction regardless of the behavior of B. Furthermore, r and B have limiting values as t approaches infinity then so does x and the terminal value of x is equal to the terminal value of the carrying capacity of the population. In general, the alternative formulation seems to be the more reasonable model in situations where perturbations lead to severe decreases in environmental quality and growth rates.  相似文献   

11.
Ulf Heyman 《Hydrobiologia》1983,101(1-2):89-103
Production and biomass values from phytoplankton populations in four different Swedish lakes were analysed. The production in all lakes was directly proportional to biomass during homothermal periods. When the lakes were stratified there was a strong negative relation between specific growth rate and biomass. The data fitted to a logistic density dependent growth equation of the form: dB/ dt = µmB(1-B · K–1) where B is the biomass, µm the maximum specific growth rate and K the carrying capacity. The equation was used to derive the parameters µ · µm –1 and carrying capacity (the maximum possible biomass). These parameters were then discussed in relation to light climate, phosphorus concentration and humic content.  相似文献   

12.
A method is given for studying realistic random fluctuations in the carrying capacity of the logistic population growth model. This method is then applied using an environmental noise based on a Poisson process, and the time-dependent moments of the population probability density calculated. These moments are expressed in terms of a parameter obtained by dividing the correlation time of the environmental fluctuations by the characteristic response time of the population. When this quotient is large (very slow fluctuations tracked by the population) or small (very rapid fluctuations which are averaged), exact solutions are obtained for the probability density itself. It is also shown that at equilibrium, the average population sizes given by these two exact solutions bound all other cases.Numerical simulations confirm these developments and point to a trade-off between population stability and average population size. Additional simulations show that the probability of becoming extinct in a given time is greatest for populations intermediate between tracking and averaging the carrying capacity fluctuations. In addition to specifying when environmental noise can be ignored, these results indicate the direction in which growth parameters evolve in a fluctuating environment.  相似文献   

13.
The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the population. One important class of regulatory functions is the theta-logistic, which generalizes the logistic equation. Using this model as a motivation, this paper introduces a simple dynamical reformulation that generalizes many growth functions. The reformulation consists of two equations, one for population size, and one for the growth rate. Furthermore, the model shows that although population is density-dependent, the dynamics of the growth rate does not depend either on population size, nor on the carrying capacity. Actually, the growth equation is uncoupled from the population size equation, and the model has only two parameters, a Malthusian parameter rho and a competition coefficient theta. Distinct sign combinations of these parameters reproduce not only the family of theta-logistics, but also the van Bertalanffy, Gompertz and Potential Growth equations, among other possibilities. It is also shown that, except for two critical points, there is a general size-scaling relation that includes those appearing in the most important allometric theories, including the recently proposed Metabolic Theory of Ecology. With this model, several issues of general interest are discussed such as the growth of animal population, extinctions, cell growth and allometry, and the effect of environment over a population.  相似文献   

14.
Two competing populations in spatially heterogeneous but temporarily constant environment are investigated: one is subject to regular movements to lower density areas (random diffusion) while the dispersal of the other is in the direction of the highest per capita available resources (carrying capacity driven diffusion). The growth of both species is subject to the same general growth law which involves Gilpin–Ayala, Gompertz and some other equations as particular cases. The growth rate, carrying capacity and dispersal rate are the same for both population types, the only difference is the dispersal strategy. The main result of the paper is that the two species cannot coexist (unless the environment is spatially homogeneous), and the carrying capacity driven diffusion strategy is evolutionarily stable in the sense that the species adopting this strategy cannot be invaded by randomly diffusing population. Moreover, once the invasive species inhabits some open nonempty domain, it would spread over any available area bringing the native species diffusing randomly to extinction. One of the important technical results used in the proofs can be interpreted in the form that the limit solution of the equation with a regular diffusion leads to lower total population fitness than the ideal free distribution.  相似文献   

15.
Results are summarized from the literature on three commonly used stochastic population models with regard to persistence time. In addition, several new results are introduced to clearly illustrate similarities between the models. Specifically, the relations between the mean persistence time and higher-order moments for discrete-time Markov chain models, continuous-time Markov chain models, and stochastic differential equation models are compared for populations experiencing demographic variability. Similarities between the models are demonstrated analytically, and computational results are provided to show that estimated persistence times for the three stochastic models are generally in good agreement when the models are consistently formulated. As an example, the three stochastic models are applied to a population satisfying logistic growth. Logistic growth is interesting as different birth and death rates can yield the same logistic differential equation. However, the persistence behavior of the population is strongly dependent on the explicit forms for the birth and death rates. Computational results demonstrate how dramatically the mean persistence time can vary for different populations that experience the same logistic growth.  相似文献   

16.
The logistic equation for population growth N = K/(1 + bert) with modifications for environmentally influenced changes in habitat carrying capacity K, and species intrinsic growth rate r, can satisfactorily simulate density levels of real populations of herbivores. The model assumes that carrying capacity is a function of incident solar energy while intrinsic growth rate is a function of temperature and salinity.Test animals were Cerithidea and Assiminea from Mission Bay, San Diego, California.  相似文献   

17.
E. L. Astrachan 《Oecologia》1977,31(1):131-132
Summary A simple stochastic model of logistic population growth is considered. The criterion for eventual extinction is a function of population growth rate, not of carrying capacity.  相似文献   

18.
Invasive species offer ecologists the opportunity to study the factors governing species distributions and population growth. The Eurasian Collared-Dove (Streptopelia decaocto) serves as a model organism for invasive spread because of the wealth of abundance records and the recent development of the invasion. We tested whether a set of environmental variables were related to the carrying capacities and growth rates of individual populations by modeling the growth trajectories of individual populations of the Collared-Dove using Breeding Bird Survey (BBS) and Christmas Bird Count (CBC) data. Depending on the fit of our growth models, carrying capacity and growth rate parameters were extracted and modeled using historical, geographical, land cover and climatic predictors. Model averaging and individual variable importance weights were used to assess the strength of these predictors. The specific variables with the greatest support in our models differed between data sets, which may be the result of temporal and spatial differences between the BBS and CBC. However, our results indicate that both carrying capacity and population growth rates are related to developed land cover and temperature, while growth rates may also be influenced by dispersal patterns along the invasion front. Model averaged multivariate models explained 35–48% and 41–46% of the variation in carrying capacities and population growth rates, respectively. Our results suggest that widespread species invasions can be evaluated within a predictable population ecology framework. Land cover and climate both have important effects on population growth rates and carrying capacities of Collared-Dove populations. Efforts to model aspects of population growth of this invasive species were more successful than attempts to model static abundance patterns, pointing to a potentially fruitful avenue for the development of improved invasive distribution models.  相似文献   

19.
We show that for a k-periodic difference equation, if a periodic orbit of period r is globally asymptotically stable (GAS), then r must be a divisor of k. Moreover, if r divides k we construct a non-autonomous dynamical system having minimum period k and which has a GAS periodic orbit with minimum period r. Our method uses the technique of skew-product dynamical systems. Our methods are then applied to prove two conjectures of Cushing and Henson concerning a non-autonomous Beverton-Holt equation which arises in the study of the response of a population to a periodically fluctuating environmental force such as seasonal fluctuations in carrying capacity or demographic parameters like birth or death rates. We give an equality linking the average population with the growth rates and carrying capacities (in the 2-periodic case) which shows that out-of-phase oscillations in these quantities always have a deleterious effect on the average population. We give an example where in-phase oscillations cause the opposite to occur.  相似文献   

20.
The analysis of a structured population according to three (juvenile, mature and senescent) cellular states is carried out within the framework of Delattre's transformation systems theory. Growth in number, with the dissymmetry of cell divisions, is determined by an autocatalysis process under the constraint of the availability of a source. Two models are presented: their dynamics results in a growth of the exponential type or of the sigmoidal type, respectively. In the sigmoidal case, the logistic equation (Richards-Nelder's function with adjunction of a lower asymptote Y not equal to 0) fits satisfactorily the simulated data of the total cell number Y. The growth potential is defined as the instantaneous capacity of autocatalysis, which is expressed in relation to the present 'mitotic resources' (source + non-senescing mature cells). The acceleration variations d2Y/dt2 are in close agreement with the growth potential gradient. The analysis is then generalized to other population structuring. As a result, the logistic equation can be interpreted in terms of a formal model of growth of a structured population submitted to autocatalysis and competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号