首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Cellular interactions of advanced glycation end products (AGE) are mediated by AGE receptors. We demonstrated previously that class A scavenger receptor types I and II (SR-A) and CD36, a member of class B scavenger receptor family, serve as the AGE receptors. In this study, we investigated whether scavenger receptor class B type I (SR-BI), another receptor belonging to class B scavenger receptor family, was also an AGE receptor. We used Chinese hamster ovary (CHO) cells overexpressed hamster SR-BI (CHO-SR-BI cells). (125)I-AGE-bovine serum albumin (AGE-BSA) was endocytosed in a dose-dependent fashion and underwent lysosomal degradation by CHO-SR-BI cells. (125)I-AGE-BSA exhibited saturable binding to CHO-SR-BI cells (K(d) = 8.3 microg/ml). Endocytic uptake of (125)I-AGE-BSA by CHO-SR-BI cells was completely inhibited by oxidized low density lipoprotein (LDL) and acetylated LDL, whereas LDL exerted only a weak inhibitory effect (<20%). Cross-competition experiments showed that AGE-BSA had no effect on HDL binding to these cells and vice versa. Interestingly, however, SR-BI-mediated selective uptake of HDL-CE was completely inhibited by AGE-BSA in a dose-dependent manner (IC(50) <10 microg/ml). Furthermore, AGE-BSA partially inhibited (by <30%) the selective uptake of HDL-CE in human hepatocarcinoma HepG2 cells (IC(50) <30 microg/ml). In addition, [(3)H]cholesterol efflux from CHO-SR-BI cells to HDL was significantly inhibited by AGE-BSA in a dose-dependent manner (IC(50) <30 microg/ml). Our results indicate that AGE proteins, as ligands for SR-BI, effectively inhibit both SR-BI-mediated selective uptake of HDL-CE and cholesterol efflux from peripheral cells to HDL, suggesting that AGE proteins might modulate SR-BI-mediated cholesterol metabolism in vivo.  相似文献   

3.
The murine class B, type I scavenger receptor mSR-BI is a high and low density lipoprotein (HDL and LDL) receptor that mediates selective uptake of cholesteryl esters. Here we describe a reconstituted phospholipid/cholesterol liposome assay of the binding and selective uptake activities of SR-BI derived from detergent-solubilized cells. The assay, employing lysates from epitope-tagged receptor (mSR-BI-t1)-expressing mammalian and insect cells, recapitulated many features of SR-BI activity in intact cells, including high affinity and saturable (125)I-HDL binding, selective lipid uptake from [(3)H]cholesteryl ether-labeled HDL, and poor inhibition of HDL receptor activity by LDL. The novel properties of a mutated receptor (Q402R/Q418R, normal LDL binding but loss of most HDL binding) were reproduced in the assay, as was the ability of the SR-BI homologue CD36 to bind HDL but not mediate efficient lipid uptake. In this assay, essentially homogeneously pure mSR-BI-t1, prepared by single-step immunoaffinity chromatography, mediated high affinity HDL binding and efficient selective lipid uptake from HDL. Thus, SR-BI-mediated HDL binding and selective lipid uptake are intrinsic properties of the receptor that do not require the intervention of other proteins or specific cellular structures or compartments.  相似文献   

4.
In blood circulation, low density lipoproteins (LDL) can undergo modification, such as oxidation, and become key factors in the development of atherosclerosis. Although the liver is the major organ involved in the elimination of oxidized LDL (oxLDL), the identity of the receptor(s) involved remains to be defined. Our work aims to clarify the role of the scavenger receptor class B type I (SR-BI) in the hepatic metabolism of mildly and standardly oxLDL as well as the relative contribution of parenchymal (hepatocytes) and nonparenchymal liver cells with a special emphasis on CE-selective uptake. The association of native LDL and mildly or standardly oxLDL labeled either in proteins or in cholesteryl esters (CE) was measured on primary cultures of mouse hepatocytes from normal and SR-BI knock-out (KO) mice. These in vitro assays demonstrated that hepatocytes are able to mediate CE-selective uptake from both LDL and oxLDL and that SR-BI KO hepatocytes have a 60% reduced ability to selectively take CE from LDL but not towards mildly or standardly oxLDL. When lipoproteins were injected in the mouse inferior vena cava, parenchymal and nonparenchymal liver cells accumulated more CE than proteins from native, mildly and standardly oxLDL, indicating that selective uptake of CE from these lipoproteins occurs in vivo in these two cell types. The parenchymal cells contribute near 90% of the LDL-CE selective uptake and SR-BI for 60% of this pathway. Nonparenchymal cells capture mainly standardly oxLDL while parenchymal and nonparenchymal cells equally take up mildly oxLDL. An 82% reduction of standardly oxLDL-CE selective uptake by the nonparenchymal cells of SR-BI KO mice allowed emphasizing the contribution of SR-BI in hepatic metabolism of standardly oxLDL. However, SR-BI is not responsible for mildly oxLDL metabolism. Thus, SR-BI is involved in LDL- and standardly oxLDL-CE selective uptake in parenchymal and nonparenchymal cells, respectively.  相似文献   

5.
Hypochlorous acid/hypochlorite (HOCl/OCl(-)), a potent oxidant generated in vivo by the myeloperoxidase-H(2)O(2)-chloride system of activated phagocytes, alters the physiological properties of high density lipoprotein (HDL) by generating a proatherogenic lipoprotein particle. On endothelial cells lectin-like oxidized low density lipoprotein receptor 1 (LOX-1) and scavenger receptor class B, type I (SR-BI), act in concert by mediating the holoparticle of and selective cholesteryl ester uptake from HOCl-HDL. We therefore investigated the ligand specificity of HOCl-HDL to SR-BI-overexpressing Chinese hamster ovary cells. Binding of HOCl-HDL was saturable, and the degree of HOCl modification was the determining factor for increased binding affinity to SR-BI. Competition experiments further confirmed that HOCl-HDL binds with increased affinity to the same or overlapping domain(s) of SR-BI as does native HDL. Furthermore, SR-BI-mediated selective HDL-cholesteryl ester association as well as time- and concentration-dependent cholesterol efflux from SR-BI overexpressing Chinese hamster ovary cells were, depending on the degree of HOCl modification of HDL, markedly impaired. The most significant findings of this study were that the presence of very low concentrations of HOCl-HDL severely impaired SR-BI-mediated bidirectional cholesterol flux mediated by native HDL. The colocalization of immunoreactive HOCl-modified epitopes with apolipoprotein A-I along with deposits of lipids in serial sections of human atheroma shown here indicates that the myeloperoxidase-H(2)O(2)-halide system contributes to oxidative damage of HDL in vivo.  相似文献   

6.
Scavenger receptor class B type I (SR-BI) plays a critical role in the delivery of HDL cholesterol and cholesteryl esters (CEs) to liver and steroidogenic tissues by a selective process that does not result in significant degradation of HDL protein. Recently, SR-BI-mediated endocytosis and recycling of HDL have been demonstrated. However, it remains unclear whether efficient SR-BI-mediated selective uptake occurs strictly at the plasma membrane or at additional sites along its endocytic itinerary. To examine the requirement for SR-BI endocytosis in HDL selective uptake, we determined the effects of energy depletion on the levels of cell-associated HDL protein and CE in primary mouse hepatocytes. Compared with CHO cells, we observed a much larger energy-dependent effect on CE uptake in primary mouse hepatocytes. Although varying the levels of caveolin-1 and carboxyl ester lipase altered the efficiency of selective uptake, neither was able to account for the energy-dependent component of HDL-CE uptake. Finally, we demonstrate that the hepatocyte-specific, energy-dependent effects on HDL-apolipoprotein A-I and -CE uptake are independent of SR-BI and are not required to achieve efficient SR-BI-mediated selective uptake of CE. Together, these data support the conclusion that neither the intracellular trafficking of HDL nor any energy-dependent cellular process affects the ability of the cell to maximally acquire CE through SR-BI-mediated selective uptake from HDL.  相似文献   

7.
Scavenger receptor, class B, type I (SR-BI) mediates binding and internalization of a variety of lipoprotein and nonlipoprotein ligands, including HDL. Studies in genetically engineered mice revealed that SR-BI plays an important role in HDL reverse cholesterol transport and protection against atherosclerosis. Understanding how SR-BI's function is regulated may reveal new approaches to therapeutic intervention in atherosclerosis and heart disease. We utilized a model cell system to explore pathways involved in SR-BI-mediated lipid uptake from and signaling in response to distinct lipoprotein ligands: the physiological ligand, HDL, and a model ligand, acetyl LDL (AcLDL). In Chinese hamster ovary-derived cells, murine SR-BI (mSR-BI) mediates lipid uptake via distinct pathways that are dependent on the lipoprotein ligand. Furthermore, HDL and AcLDL activate distinct signaling pathways. Finally, mSR-BI-mediated selective lipid uptake versus endocytic uptake are differentially regulated by protein kinase signaling pathways. The protein kinase C (PKC) activator PMA and the phosphatidyl inositol 3-kinase inhibitor wortmannin increase the degree of mSR-BI-mediated selective lipid uptake, whereas a PKC inhibitor has the opposite effect. These data demonstrate that SR-BI's selective lipid uptake activity can be acutely regulated by intracellular signaling cascades, some of which can originate from HDL binding to murine SR-BI itself.  相似文献   

8.
The transport of HDL cholesteryl esters (CE) from plasma to the liver involves a direct uptake pathway, mediated by hepatic scavenger receptor B-I (SR-BI), and an indirect pathway, involving the exchange of HDL CE for triglycerides (TG) of TG-rich lipoproteins by cholesteryl ester transfer protein (CETP). We carried out HDL CE turnover studies in mice expressing human CETP and/or human lecithin:cholesterol acyltransferase (LCAT) transgenes on a background of human apoA-I expression. The fractional clearance of HDL CE by the liver was delayed by LCAT transgene, while the CETP transgene increased it. However, there was no incremental transfer of HDL CE radioactivity to the TG-rich lipoprotein fraction in mice expressing CETP, suggesting increased direct removal of HDL CE in the liver. To evaluate the possibility that this might be mediated by SR-BI, HDL isolated from plasma of the different groups of transgenic mice was incubated with SR-BI transfected or control CHO cells. HDL isolated from mice expressing CETP showed a 2- to 4-fold increase in SR-BI-mediated HDL CE uptake, compared to HDL from mice lacking CETP. The addition of pure CETP to HDL in cell culture did not lead to increased selective uptake of HDL CE by cells. However, when human HDL was enriched with TG by incubation with TG-rich lipoproteins in the presence of CETP, then treated with hepatic lipase, there was a significant enhancement of HDL CE uptake. Thus, the remodeling of human HDL by CETP, involving CE;-TG interchange, followed by the action of hepatic lipase (HL), leads to the enhanced uptake of HDL CE by cellular SR-BI.These observations suggest that in animals such as humans in which both the selective uptake and CETP pathways are active, the two pathways could operate in a synergistic fashion to enhance reverse cholesterol transport.  相似文献   

9.
Lipoprotein lipase (LpL) hydrolyzes chylomicron and very low density lipoprotein triglycerides to provide fatty acids to tissues. Aside from its lipolytic activity, LpL promotes lipoprotein uptake by increasing the association of these particles with cell surfaces allowing for the internalization by receptors and proteoglycans. Recent studies also indicate that LpL stimulates selective uptake of lipids from high density lipoprotein (HDL) and very low density lipoprotein. To study whether LpL can mediate selective uptake of lipids from low density lipoprotein (LDL), LpL was incubated with LDL receptor negative fibroblasts, and the uptake of LDL protein, labeled with (125)I, and cholesteryl esters traced with [(3)H]cholesteryl oleoyl ether, was compared. LpL mediated greater uptake of [(3)H]cholesteryl oleoyl ether than (125)I-LDL protein, a result that indicated selective lipid uptake. Lipid enrichment of cells was confirmed by measuring cellular cholesterol mass. LpL-mediated LDL selective uptake was not affected by the LpL inhibitor tetrahydrolipstatin but was nearly abolished by heparin, monoclonal anti-LpL antibodies, or chlorate treatment of cells and was not found using proteoglycan-deficient Chinese hamster ovary cells. Selective uptake from HDL, but not LDL, was 2-3-fold greater in scavenger receptor class B type I overexpressing cells (SR-BI cells) than compared control cells. LpL, however, induced similar increases in selective uptake from LDL and HDL in either control or SR-BI cells, indicative of the SR-BI-independent pathway. This was further supported by ability of LpL to promote selective uptake from LDL in human embryonal kidney 293 cells, cells that do not express SR-BI. In Chinese hamster ovary cell lines that overexpress LpL, we also found that selective uptake from LDL was induced by both endogenous and exogenous LpL. Transgenic mice that overexpress human LpL via a muscle creatine kinase promoter had more LDL selective uptake in muscle than did wild type mice. In summary LpL stimulates selective uptake of cholesteryl esters from LDL via pathways that are distinct from SR-BI. Moreover this process also occurs in vivo in tissues where abundant LpL is present.  相似文献   

10.
Serum amyloid A is an acute phase protein that is carried in the plasma largely as an apolipoprotein of high density lipoprotein (HDL). In this study we investigated whether SAA is a ligand for the HDL receptor, scavenger receptor class B type I (SR-BI), and how SAA may influence SR-BI-mediated HDL binding and selective cholesteryl ester uptake. Studies using Chinese hamster ovary cells expressing SR-BI showed that (125)I-labeled SAA, both in lipid-free form and in reconstituted HDL particles, functions as a high affinity ligand for SR-BI. SAA also bound with high affinity to the hepatocyte cell line, HepG2. Alexa-labeled SAA was shown by fluorescence confocal microscopy to be internalized by cells in a SR-BI-dependent manner. To assess how SAA association with HDL influences HDL interaction with SR-BI, SAA-containing HDL was isolated from mice overexpressing SAA through adenoviral gene transfer. SAA presence on HDL had little effect on HDL binding to SR-BI but decreased (30-50%) selective cholesteryl ester uptake. Lipid-free SAA, unlike lipid-free apoA-I, was an effective inhibitor of both SR-BI-dependent binding and selective cholesteryl ester uptake of HDL. We have concluded that SR-BI plays a key role in SAA metabolism through its ability to interact with and internalize SAA and, further, that SAA influences HDL cholesterol metabolism through its inhibitory effects on SR-BI-mediated selective lipid uptake.  相似文献   

11.
The scavenger receptor-BI (SR-BI) delivers sterols from circulating lipoproteins to tissues, but the relative potency of individual lipoproteins and the transported cholesterol has not been studied in detail. In this study, we used Chinese hamster ovary cells that express recombinant mouse SR-BI but have no functional low density lipoprotein (LDL) receptors (ldlA7-SRBI cells) to compare the fate of lipids transferred from high or low density lipoproteins to cells by SR-BI. HDL and LDL were equally effective in mediating the transfer of [(3)H]cholesterol to cells. Only 5% of the free cholesterol transferred to cells was esterified, in direct contrast to the findings in the cells that express LDL receptors in which 50% of the transported cholesterol was esterified. Almost all the free cholesterol transferred from lipoproteins to cells was rapidly excreted when the ldlA7-SRBI cells were switched to media containing unlabeled lipoproteins. SR-BI expression was associated with an increase in selective cholesteryl ester uptake from both lipoproteins, but HDL was a more effective donor. HDL and LDL were equally effective in delivering cholesterol to the intracellular regulatory pool via SR-BI. These data indicate that SR-BI is able to exchange cholesterol rapidly between lipoproteins and cell membranes and can mediate the uptake of cholesteryl esters from both classes of lipoproteins.  相似文献   

12.
The murine scavenger receptor class B, type I (mSR-BI) is a receptor for high density lipoprotein (HDL), low density lipoprotein (LDL), and acetylated LDL (AcLDL). It mediates selective uptake of lipoprotein lipid and stimulates efflux of [(3)H]cholesterol to lipoproteins. SR-BI-mediated [(3)H]cholesterol efflux was proposed to be independent of ligand binding. In this study, using anti-mSR-BI antibody KKB-1 and two mSR-BI mutants with altered ligand binding properties, we demonstrated that SR-BI-mediated [(3)H]cholesterol efflux to lipoproteins was correlated with ligand binding and lipid uptake activities of the receptor. The KKB-1 antibody, which blocked lipoprotein binding without substantially altering the cholesterol oxidase-accessible cellular [(3)H]cholesterol, also blocked [(3)H]cholesterol efflux to HDL and LDL. One of the SR-BI mutants, which has a double substitution of arginines for glutamines at positions 402 and 418 (Q402R/Q418R), exhibited a high level of LDL binding and lipid uptake from LDL, but lost most of the corresponding HDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to LDL, but not to HDL. Another mutant, M158R, with an arginine in place of methionine at position 158, exhibited reduced HDL and LDL receptor activities, but apparently normal AcLDL receptor activity. This mutant could mediate efficient [(3)H]cholesterol efflux to AcLDL, but not to HDL or LDL. These results suggest that SR-BI-stimulated [(3)H]cholesterol efflux to lipoproteins critically depends on ligand binding to this receptor and raise the possibility that the mechanisms of selective lipid uptake and [(3)H]cholesterol efflux may be intimately related.  相似文献   

13.
A triantennary galactose-terminated cholesterol derivative, N-(tris(beta-D-galactopyranosyloxymethyl) methyl)-N alpha-(4(5-cholesten-3 beta-yloxy)succinyl)glycinamide (Tris-Gal-Chol), which dissolves easily in water, was added to human apolipoprotein E-free high density lipoproteins (HDL) in varying quantities. Incorporation of 5 or 13 micrograms of Tris-Gal-Chol into HDL (20 micrograms of protein) stimulates the liver association of the HDL apoprotein radioactivity 24- and 55-fold, respectively, at 10 min after intravenous injection into rats. The increased interaction of Tris-Gal-Chol HDL with the liver is blocked by preinjection of asialofetuin or N-acetylgalactosamine but not influenced by N-acetylglucosamine. The parenchymal liver cell uptake of HDL is stimulated 42- or 105-fold, respectively, by incorporation of 5 or 13 micrograms of Tris-Gal-Chol into HDL (20 micrograms of protein), while the association with nonparenchymal cells is stimulated only 1.7- or 5-fold. It can be calculated that 98.0% of the Tris-Gal-Chol HDL is associated with parenchymal cells. In contrast, incorporation of 13 micrograms of Tris-Gal-Chol into LDL (20 micrograms of protein) leads to a selective association of LDL with nonparenchymal cells (92.3% of the total liver uptake). It is concluded that Tris-Gal-Chol incorporation into HDL leads to a specific interaction of HDL with the asialoglycoprotein (galactose) receptor on parenchymal cells whereas Tris-Gal-Chol incorporation into LDL leads mainly to an interaction with a galactose receptor from Kupffer cells. Probably this highly selective cellular targeting of LDL and HDL by Tris-Gal-Chol is caused by the difference in size between these lipoproteins. The increased interaction of HDL with the parenchymal cells upon Tris-Gal-Chol incorporation is followed by degradation of the apolipoprotein in the lysosomes. It is concluded that Tris-Gal-Chol incorporation into LDL or HDL leads to a markedly increased catabolism of LDL by way of the Kupffer cells and HDL by parenchymal cells which might be used for lowering serum cholesterol levels. The use of Tris-Gal-Chol might also find application for targeting drugs or other compounds of interest to either Kupffer or parenchymal liver cells.  相似文献   

14.
The liver is the major site of cholesterol synthesis and metabolism, and the only substantive route for eliminating blood cholesterol. Scavenger receptor class B, type I (SR-BI) has been reported to be responsible for mediating the selective uptake of high-density lipoprotein cholesteryl esters (HDL-CE) in liver parenchymal cells (PC). We analysed the expression of SR-BI in isolated rat liver cells, and found the receptor to be highly expressed in liver PC at both the mRNA and protein levels. We also found SR-BI to be expressed in liver endothelial cells (LEC) and Kupffer cells (KC). SR-BI has not previously been reported to be present in LEC. CD36 mRNA was expressed in all three liver cell types. Since caveolin-1 appears to colocalize with SR-BI and CD36 in caveolae of several cell lines, the distribution and expression of caveolin-1 in the liver cells were investigated. Caveolin-1 was not detected in PC but was found in both LEC and KC. This led to the suggestion that caveolin-1 may be more important in the efflux of cholesterol than in the selective uptake of cholesterol in the liver.  相似文献   

15.
Scavenger receptor, class B, type I (SR-BI) is a cell-surface glycoprotein that mediates selective uptake of high density lipoprotein cholesteryl ester (CE) without the concomitant uptake and degradation of the particle. We have investigated the endocytic and selective uptake of low density lipoprotein (LDL)-CE by SR-BI using COS-7 cells transiently transfected with mouse SR-BI. Analysis of lipoprotein uptake data showed a concentration-dependent LDL-CE-selective uptake when doubly labeled LDL particles were incubated with SR-BI-expressing COS-7 cells. In contrast to vector-transfected cells, SR-BI-expressing COS-7 cells showed marked increases in LDL cell association and CE uptake by the selective uptake pathway, but only a modest increase in CE uptake by the endocytic pathway. SR-BI-mediated LDL-CE-selective uptake exceeded LDL endocytic uptake by 50-100-fold. SR-BI-mediated LDL-CE-selective uptake was not inhibited by the proteoglycan synthesis inhibitor, p-nitrophenyl-beta-D-xylopyranoside or by the sulfation inhibitor sodium chlorate, indicating that SR-BI-mediated LDL-CE uptake occurs independently of LDL interaction with cell-surface proteoglycan. Analyses with subclones of Y1 adrenocortical cells showed that LDL-CE-selective uptake was proportional to the level of SR-BI expression. Furthermore, antibody directed to the extracellular domain of SR-BI blocked LDL-CE-selective uptake in adrenocortical cells. Thus, in cells that normally express SR-BI and in transfected COS-7 cells SR-BI mediates the efficient uptake of LDL-CE via the selective uptake mechanism. These results suggest that SR-BI may influence the metabolism of apoB-containing lipoproteins in vivo by mediating LDL-CE uptake into SR-BI-expressing cells.  相似文献   

16.
Very low density lipoprotein (VLDL)-remnants, prepared by extrahepatic circulation of VLDL, labeled biosynthetically in the cholesterol (ester) moiety, were injected intravenously into rats in order to determine the relative contribution of parenchymal and non-parenchymal liver cells to the hepatic uptake of VLDL-remnant cholesterol (esters). 82.7% of the injected radioactivity is present in liver, measured 30 min after injection. The non-parenchymal liver cells contain 3.1±0.1 times the amount of radioactivity per mg cell protein as compared to parenchymal cells. The hepatic uptake of biosynthetically labeled (screened) low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterolesters amounts to 26.8% and 24.4% of the injected dose, measured 6 h after injection. The non-parenchymal cells contain 4.3±0.8 and 4.1±0.7 times the amount of radioactivity per mg cell protein as compared to parenchymal cells for LDL and HDL, respectively. It is concluded that in addition to parenchymal cells, the non-parenchymal cells play an important role in the hepatic uptake of cholesterolesters from VLDL-remnants, LDL and HDL.  相似文献   

17.
The HDL receptor scavenger receptor class B type I (SR-BI), which mediates selective HDL cholesterol uptake, plays a role in murine HDL metabolism, reverse cholesterol transport and whole-body cholesterol homeostasis. SR-BI is found in the liver, where its expression is regulated by estrogen, dietary cholesterol and fat, and controls murine plasma HDL cholesterol levels and bile cholesterol secretion. SR-BI is also highly expressed in rodent steroidogenic cells, where it facilitates cholesterol uptake for storage or steroid hormone synthesis and where its expression is regulated by trophic hormones. The detailed mechanism(s) underlying SR-BI-mediated selective cholesterol uptake have not yet been elucidated. Further analysis of the molecular and cellular bases of SR-BI regulation and function should provide new insights into the physiology and pathophysiology of cholesterol metabolism.  相似文献   

18.
Human low density lipoprotein (LDL), radiolabeled in the cholesteryl ester moiety, was injected into estrogen-treated and -untreated rats. The hepatic and extrahepatic distribution and biliary secretion of [3H]cholesteryl esters were determined at various times after injection. In order to follow the intrahepatic metabolism of the cholesteryl esters of LDL in vivo, the liver was subfractioned into parenchymal and Kupffer cells by a low temperature cell isolation procedure. In control rats, the LDL cholesteryl esters were mainly taken up by the Kupffer cells. After uptake, the [3H]cholesteryl esters are rapidly hydrolyzed, followed by release of [3H]cholesterol from the cells to other sites in the body. Up to 24 h after injection of LDL, only 9% of the radioactivity appeared in the bile, whereas after 72 h, this value was 30%. Hepatic and especially the parenchymal cell uptake of [3H]cholesteryl esters from LDL was strongly increased upon 17 alpha-ethinylestradiol treatment (3 days, 5 mg/kg). After rapid hydrolysis of the esters, [3H]cholesterol was both secreted into bile (28% of the injected dose in the first 24 h) as well as stored inside the cells as re-esterified cholesterol ester. It is concluded that uptake of human LDL by the liver in untreated rats is not efficiently coupled to biliary secretion of cholesterol (derivatives), which might be due to the anatomical localization of the principal uptake site, the Kupffer cells. In contrast, uptake of LDL cholesterol ester by liver hepatocytes is tightly coupled to bile excretion. The Kupffer cell uptake of LDL might be necessary in order to convert LDL cholesterol (esters) into a less toxic form. This activity can be functional in animals with low receptor activity on hepatocytes, as observed in untreated rats, or after diet-induced down-regulation of hepatocyte LDL receptors in other animals.  相似文献   

19.
Scavenger receptor BI (SR-BI) is a multi-ligand lipoprotein receptor that mediates selective lipid uptake from HDL, and plays a central role in hepatic HDL metabolism. In this report, we investigated the extent to which SR-BI selective lipid uptake contributes to LDL metabolism. As has been reported for human LDL, mouse SR-BI expressed in transfected cells mediated selective lipid uptake from mouse LDL. However, LDL-cholesteryl oleoyl ester (CE) transfer relative to LDL-CE bound to the cell surface (fractional transfer) was approximately 18-fold lower compared with HDL-CE. Adenoviral vector-mediated SR-BI overexpression in livers of human apoB transgenic mice ( approximately 10-fold increased expression) reduced plasma HDL-cholesterol (HDL-C) and apolipoprotein (apo)A-I concentrations to nearly undetectable levels 3 days after adenovirus infusion. Increased hepatic SR-BI expression resulted in only a modest depletion in LDL-C that was restricted to large LDL particles, and no change in steady-state concentrations of human apoB. Kinetic studies showed a 19% increase in the clearance rate of LDL-CE in mice with increased SR-BI expression, but no change in LDL apolipoprotein clearance. Quantification of hepatic uptake of LDL-CE and LDL-apolipoprotein showed selective uptake of LDL-CE in livers of human apo B transgenic mice. However, such uptake was not significantly increased in mice over-expressing SR-BI. We conclude that SR-BI-mediated selective uptake from LDL plays a minor role in LDL metabolism in vivo.  相似文献   

20.
1. Hepatic uptake of low-density lipoprotein (LDL) in parenchymal cells and non-parenchymal cells was studied in control-fed and cholesterol-fed rabbits after intravenous injection of radioiodinated native LDL (125I-TC-LDL) and methylated LDL (131I-TC-MetLDL). 2. LDL was taken up by rabbit liver parenchymal cells, as well as by endothelial and Kupffer cells. Parenchymal cells, however, were responsible for 92% of the hepatic LDL uptake. 3. Of LDL in the hepatocytes, 89% was taken up via the B,E receptor, whereas 16% and 32% of the uptake of LDL in liver endothelial cells and Kupffer cells, respectively, was B,E receptor-dependent. 4. Cholesterol feeding markedly reduced B,E receptor-mediated uptake of LDL in parenchymal liver cells and in Kupffer cells, to 19% and 29% of controls, respectively. Total uptake of LDL in liver endothelial cells was increased about 2-fold. This increased uptake is probably mediated via the scavenger receptor. The B,E receptor-independent association of LDL with parenchymal cells was not affected by the cholesterol feeding. 5. It is concluded that the B,E receptor is located in parenchymal as well as in the non-parenchymal rabbit liver cells, and that this receptor is down-regulated by cholesterol feeding. Parenchymal cells are the main site of hepatic uptake of LDL, both under normal conditions and when the number of B,E receptors is down-regulated by cholesterol feeding. In addition, LDL is taken up by B,E receptor-independent mechanism(s) in rabbit liver parenchymal, endothelial and Kupffer cells. The non-parenchymal liver cells may play a quantitatively important role when the concentration of circulating LDL is maintained at a high level in plasma, being responsible for 26% of hepatic uptake of LDL in cholesterol-fed rabbits as compared with 8% in control-fed rabbits. The proportion of hepatic LDL uptake in endothelial cells was greater than 5-fold higher in the diet-induced hypercholesterolaemic rabbits than in controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号