首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A comparative method based on an analysis of accumulation of starvation-induced Ade+ reversions and cell death during adenine starvation was developed and exploited for estimating the role ofRAD6 in the starvation-induced reversions. It was shown that inactivation ofRAD6 function inSaccharomyces cerevisiœ markedly enhances the accumulation of Ade+ reversions, and therefore it is likely that this gene is taking part in maintaining the low level of starvation-induced mutations in yeast cells. This work was supported by a grant 204-1080-1993 from GACR to the last author andCharles University grant 274/1996 to the first author.  相似文献   

4.
Summary Diploid prototrophs were obtained from protoplast fusion of Bacillus subtilis strains. They are unstable but upon further cultivation they stabilize retaining diploidy but are genetically inactive. It has been suggested that recombination between the parental chomosomes is involved in the production of stable prototrophs and recombinants. In this work the occurrence of this recombination was searched for by determining genetic linkages in transformation experiments. In prototrophs two alleles: hisH2 and trpE8 carried originally on each parental chromosome, were shown to be 48% co-transformable in a stable clone whereas they were only cotransformed in 10% of the unstable colonies. For Trp- recombinants (the most frequent type of a Leu- Met- Thr- x Ade- Ura- Trp- fusion pair) lysed protoplasts were used as donor DNA for the transformations. High values of co-transfer for Ura+ Met+ were obtained. These results confirm the occurrence of recombination in stable diploid clones, prototrophs or recombinants.  相似文献   

5.
Mutants of two strains of Pseudomonas putida expressed two cryptic chloroamidases (C-amidase and Hamidase) and one cryptic dehalogenase (DehII). The mutants were selected on either 2-chloropropionamide (2CPA) or 2-monochloropropionate (2MCPA), developing as papillae in parental colonies growing on a metabolisable support substrate. Mutants expressing C-amidase were selected if 2CPA was utilised as either a carbon or a nitrogen source. H-amidase mutants were selected only if 2CPA was used as a nitrogen source. Growth temperature and pH affected the frequency of papillae production, although different temperatures and pHs did not affect the overall growth characteristics of the parental colonies. Decreasing growth temperature increased the frequency of 2cpa+ papillae formation, but decreased the frequency of 2mcpa+ papillae formation. Low pH (6.0) prevented the formation of 2mcpa+ and 2cpa+ papillae. However, in the case of the 2cpa+ papillae, decreasing the growth temperature also allowed papillae formation at pH 6.0.Abbreviations CAA Chloroacetamide - 2CPA 2-Chloropropionamide - DCA Dichloroacetic acid - HAA Halogenated alkanoic acid - 2MCPA 2-Monochloropropionic acid  相似文献   

6.
In appropriate environments containing 2-monochloropropionic acid (2MCPA), mutations in a population of nondehalogenatingPseudomonas putida, strain PP40-040 (parent population), resulted in the formation of 2mcpa+ papillae as a result of the decryptification of adehII gene. Increasing the size of the parent population, for example by increasing the availability of a metabolizable substrate such as succinate or lactate, increased the number of 2mcpa+ papillae formed because there were more parent cells available for mutation to the 2mcpa+ phenotype. The presence of a dehalogenating population, such asP. putida strain PP3, in close proximity to the non-dehalogenating population, also increased the number of 2mcpa+ papillae formed. This was due to the excretion of dehalogenases into the growth medium, which caused localized dehalogenation of the available 2MCPA, yielding a metabolizable substrate. This substrate stimulated the growth of the non-dehalogenating population, in turn increasing the number of 2mcpa+ papillae formed. Barriers, such as dialysis membranes, which prevented the excretion of the dehalogenases into the growth medium, prevented the stimulation of 2mcpa+ papillae formation by preventing release of metabolizable substrates from 2MCPA breakdown. Cell-free extracts (CFE) from dehalogenase-producing populations had a similar effect for the same reason. CFE without dehalogenase activity or in which the dehalogenase activity had been destroyed by heating failed to stimulate parent population growth and 2mcpa+ papillae formation. In the case ofPseudomonas putida strain PP3, which carries an easily transposed dehalogenase-encoding transposon, treatment of CFE with DNAase eliminated an additional factor involved in the formation of 2mcpa+ papillae.The authors are with the School of Pure and Applied Biology, University of Wales-Cardiff, P.O. Box 915, Cardiff CF1 3TL, UK  相似文献   

7.
Both uracilless death and papillae formation during uracil starvation are markedly more extensive inrad6-1 than inRAD6 strains. Osmotic stabilization with 1 mol/L glucitol improves the growth ofrad6-1 polyauxotrophic strains in supplemented minimal medium and partially suppresses both the uracilless death and canibalistic growth of papillae on colonies.  相似文献   

8.
We have cloned, sequenced and disrupted the checkpoint genes RAD17, RAD24 and MEC3 of Saccharomyces cerevisiae. Mec3p shows no strong similarity to other proteins currently in the database. Rad17p is similar to Rec1 from Ustilago maydis, a 3′ to 5′ DNA exonuclease/checkpoint protein, and the checkpoint protein Rad1p from Schizosaccharomyces pombe (as we previously reported). Rad24p shows sequence similarity to replication factor C (RFC) subunits, and the S. pombe Rad17p checkpoint protein, suggesting it has a role in DNA replication and/or repair. This hypothesis is supported by our genetic experiments which show that overexpression of RAD24 strongly reduces the growth rate of yeast strains that are defective in the DNA replication/repair proteins Rfc1p (cdc44), DNA polα (cdc17) and DNA polδ (cdc2) but has much weaker effects on cdc6, cdc9, cdc15 and CDC + strains. The idea that RAD24 overexpression induces DNA damage, perhaps by interfering with replication/repair complexes, is further supported by our observation that RAD24 overexpression increases mitotic chromosome recombination in CDC + strains. Although RAD17, RAD24 and MEC3 are not required for cell cycle arrest when S phase is inhibited by hydroxyurea (HU), they do contribute to the viability of yeast cells grown in the presence of HU, possibly because they are required for the repair of HU-induced DNA damage. In addition, all three are required for the rapid death of cdc13 rad9 mutants. All our data are consistent with models in which RAD17, RAD24 and MEC3 are coordinately required for the activity of one or more DNA repair pathways that link DNA damage to cell cycle arrest. Received: 8 April 1997 / Accepted: 10 May 1997  相似文献   

9.
Rad52 plays a pivotal role in double-strand break (DSB) repair and genetic recombination in Saccharomyces cerevisiae, where mutation of this gene leads to extreme X-ray sensitivity and defective recombination. Yeast Rad51 and Rad52 interact, as do their human homologues, which stimulates Rad51-mediated DNA strand exchange in vitro, suggesting that Rad51 and Rad52 act cooperatively. To define the role of Rad52 in vertebrates, we generated RAD52−/− mutants of the chicken B-cell line DT40. Surprisingly, RAD52−/− cells were not hypersensitive to DNA damages induced by γ-irradiation, methyl methanesulfonate, or cis-platinum(II)diammine dichloride (cisplatin). Intrachromosomal recombination, measured by immunoglobulin gene conversion, and radiation-induced Rad51 nuclear focus formation, which is a putative intermediate step during recombinational repair, occurred as frequently in RAD52−/− cells as in wild-type cells. Targeted integration frequencies, however, were consistently reduced in RAD52−/− cells, showing a clear role for Rad52 in genetic recombination. These findings reveal striking differences between S. cerevisiae and vertebrates in the functions of RAD51 and RAD52.  相似文献   

10.
It was assumed previously that the mutator phenotype of the hms3 mutant was determined by processes taking place in the D-loop. As a next step, genetic analysis was performed to study the interactions between the hsm3 mutation and mutations of the genes that control the initial steps of the D-loop formation. The mutations of the MMS4 and XRS2 genes, which initiate the double-strand break formation and subsequent repair, were shown to completely block HSM3-dependent UV-induced mutagenesis. Mutations of the RAD51, RAD52, and RAD54 genes, which are also involved in the D-loop formation, only slightly decreased the level of UV-induced mutagenesis in the hsm3 mutant. Similar results were observed for the interaction of hsm3 with the mph1 mutation, which stabilizes the D-loop. In contrast, the shu1 mutation, which destabilizes the D-loop structure, led to an extremely high level of UV-induced mutagenesis and displayed epistatic interactions with the hsm3 mutation. The results made it possible to assume that the hsm3 mutation destabilizes the D-loop, which is a key substrate of both Rad5- and Rad52-dependent postreplicative repair pathways.  相似文献   

11.
Repair of DNA double-strand break (DSB) is an evolutionary conserved Rad51-mediated mechanism. In yeasts, Rad51 paralogs, Saccharomyces cerevisiae Rad55-Rad57 and Schizosaccharomyces pombe Rhp55-Rhp57 are mediators of the nucleoprotein Rad51 filament formation. As shown in this work, a novel Rad51Sp-dependent pathway of DSB repair acts in S. pombe parallel to the pathway mediated by Rad51 paralogs. A new gene dds20 + that controls this pathway was identified. The overexpression of dds20 + partially suppresses defects of mutant rhp55Δ in DNA repair. Cells of dds20Δ manifest hypersensitivity to a variety of genotoxins. Epistatic analysis revealed that dds20 + is a gene of the recombinational repair group. The role of Dds20 in repair of spontaneous damages occurring in the process of replication and mating-type switching remains unclear. The results obtained suggest that Dds20 has functions beyond the mitotic S phase. The Dds20 protein physically interacts with Rhp51(Rad51Sp). Dds20 is assumed to operate at early recombinational stages and to play a specific role in the Rad51 protein filament assembly differing from that of Rad51 paralogs.__________Translated from Genetika, Vol. 41, No. 6, 2005, pp. 736–745.Original Russian Text Copyright © 2005 by Salakhova, Savchenko, Khasanov, Chepurnaya, Korolev, Bashkirov.  相似文献   

12.
An unusual new purine-requiring mutant, Ade?PAB, of Chinese hamster ovary cells (CHO-K1) is described. Ade?PAB will grow in medium supplemented with hypoxanthine, adenine, or aminoimidazole carboxamide. Ade?PAB fails to show genetic complementation with either Ade?A, defective in amidophosphoribosyltransferase (E.C. 2.4.2.14), or Ade?B, defective in phosphoribosylformylglycinamidine FGAM) synthetase (E.C. 6.3.5.3.), but will complement all five of our other hypoxanthine-requiring Ade? complementation groups. Analysis of purine synthesis in wild-type, mutant, and revertant cells and analysis of relevant enzyme activities in cell-free extracts prepared from these cells demonstrates that Ade?PAB is similar to Ade?B in that it has lost FGAM synthetase activity, and is similar to Ade?A in that it has lost glutamine-dependent amidophosphoribosyltransferase activity. Unlike Ade?A, however, Ade?PAB retains the ability to synthesize phosphoribosylamine (PRA), the product of the amidophosphoribosyltransferase reaction, if NH4Cl is substituted for glutamine as the nitrogen donor. Moreover, partial revertants of Ade?PAB can apparently synthesize sufficient purines for growth using the NH4Cl-dependent reaction. The available evidence indicates that neither a double mutation nor a deletion is probable in Ade?PAB. We discuss the relevance of these observations for our understanding of both the regulation of purine biosynthesis in mammalian cells and the structural organization of the enzymes defective in Ade?PAB and the genes coding for these enzymes.  相似文献   

13.
P Cejka  V Vondrejs  Z Storchová 《Genetics》2001,159(3):953-963
The RAD6 postreplicative repair group participates in various processes of DNA metabolism. To elucidate the contribution of RAD6 to starvation-associated mutagenesis, which occurs in nongrowing cells cultivated under selective conditions, we analyzed the phenotype of strains expressing various alleles of the RAD6 gene and single and multiple mutants of the RAD6, RAD5, RAD18, REV3, and MMS2 genes from the RAD6 repair group. Our results show that the RAD6 repair pathway is also active in starving cells and its contribution to starvation-associated mutagenesis is similar to that of spontaneous mutagenesis. Epistatic analysis based on both spontaneous and starvation-associated mutagenesis and UV sensitivity showed that the RAD6 repair group consists of distinct repair pathways of different relative importance requiring, besides the presence of Rad6, also either Rad18 or Rad5 or both. We postulate the existence of four pathways: (1) nonmutagenic Rad5/Rad6/Rad18, (2) mutagenic Rad5/Rad6 /Rev3, (3) mutagenic Rad6/Rad18/Rev3, and (4) Rad6/Rad18/Rad30. Furthermore, we show that the high mutation rate observed in rad6 mutants is caused by a mutator different from Rev3. From our data and data previously published, we suggest a role for Rad6 in DNA repair and mutagenesis and propose a model for the RAD6 postreplicative repair group.  相似文献   

14.
7,8-Dihydro-8-oxoguanine (8-oxoG) is an abundant and mutagenic lesion produced in DNA exposed to free radicals and reactive oxygen species. In Saccharomyces cerevisiae, the OGG1 gene encodes the 8-oxoG DNA N-glycosylase/AP lyase (Ogg1), which is the functional homologue of the bacterial Fpg. Ogg1-deficient strains are spontaneous mutators that accumulate GC to TA transversions due to unrepaired 8-oxoG in DNA. In yeast, DNA mismatch repair (MMR) and translesion synthesis (TLS) by DNA polymerase η also play a role in the prevention of the mutagenic effect of 8-oxoG. In the present study, we show the RAD18 and RAD6 genes that are required to initiate post-replication repair (PRR) are also involved in the prevention of mutations by 8-oxoG. Consistently, a synergistic increase in spontaneous CanR and Lys+ mutation rates is observed in the absence of Rad6 or Rad18 proteins in ogg1 mutant strains. Spectra of CanR mutations in ogg1 rad18 and ogg1 rad6 double mutants show a strong bias in the favor of GC to TA transversions, which are 137- and 189-fold higher than in the wild-type, respectively. The results also show that Polη (RAD30 gene product) plays a critical role on the prevention of mutations at 8-oxoG, whereas Polζ (REV3 gene product) does not. Our current model suggests that the Rad6–Rad18 complex targets Polη at DNA gaps that result from the MMR-mediated excision of adenine mispaired with 8-oxoG, allowing error-free dCMP incorporation opposite to this lesion.  相似文献   

15.
Genes in the RAD52 epistasis group are involved in repairing DNA double-stranded breaks via homologous recombination. We have previously shown that RAD50 is involved in mitotic nonhomologous integration but not in homologous integration. However, the role of Rad50 in nonhomologous integration has not previously been examined. In the current work, we report that the rad50∆ mutation caused a tenfold decrease in the frequency of nonhomologous integration with the majority of nonhomologous integrants showing an unstable Ura+ phenotype. Sequencing analysis of the integration target sites showed that integration events of both ends of the integrating vector in the rad50∆ mutant occurred at different chromosomal locations, resulting in large deletions or translocations on the genomic insertion sites. Interestingly, 47% of events in the rad50∆ mutant were integrated into repetitive sequences including rDNA locus, telomeres and Ty elements and 27% of events were integrated into non-repetitive sequences as compared to 11% of events integrated into rDNA and 70% into non-repetitive sequences in the wild-type cells. These results showed that deletion of RAD50 significantly changes the distribution of different classes of integration events, suggesting that Rad50 is required for nonhomologous integration at non-repetitive sequences more so than at repetitive ones. Furthermore, Southern analysis indicated that half of the events contained deletions at one or at both ends of the integrating DNA fragment, suggesting that Rad50 might have a role in protecting free ends of double-strand breaks. In contrast to the rad50∆ mutant, the rad50S mutant (separation of function allele) slightly increases the frequency of nonhomologous integration but the distribution of integration events is similar to that of wild-type cells with the majority of events integrated into a chromosomal locus. Our results suggest that deletion of RAD50 may block the major pathway of nonhomologous integration into a non-repetitive chromosomal locus and Rad50 may be involved in tethering two ends of the integrating DNA into close proximity that facilitates nonhomologous integration of both ends into a single chromosomal locus.  相似文献   

16.
Summary The types of base pair substitutions induced by the uvr502 mutator activity were studied using the isogenic uvr + and uvr502 strains bearing an ochre or missense mutations in the trp operon. It was found that the uvr502 mutation increased the frequency of both structural gene (true) reversions and suppressor mutations in the trp oc mutant. The trpA58 missense mutation was also reverted by the uvr502 allele and 5-methyl tryptophane resistant as well as 5-methyl tryptophane sensitive Trp+ revertants were formed. However the uvr502 mutation was unable to increase significantly the frequency of Trp+ revertants in the rpA78 mutant. With the help of key of Yanofsky et al. (1966b) and codon catalogue it could be concluded that the uvr502 mutation induces transitions in both directions but not A:TC:G and probably not G:CT:A transversions. Incubation of the uvr502 mutant with either of four deoxyribonucleosides has no effect on its spontaneous mutability while deoxyguanosine and deoxyadenosine reduce the mutagenic effect of 2-aminopurine in the uvr + strain, suggesting that the mutator effect of the uvr502 mutation has nothing to do with the formation of mutagenic base analogue or insufficient synthesis of bases.  相似文献   

17.

Background

Mutagenesis induced in the yeast Saccharomyces cerevisiae by starvation for nutrilites is a well-documented phenomenon of an unknown mechanism. We have previously shown that the polymerase delta proofreading activity controls spontaneous mutagenesis in cells starved for histidine. To obtain further information, we compared the effect of adenine starvation on mutagenesis in wild-type cells and, in cells lacking the proofreading activity of polymerase delta (phenotype Exo-, mutation pol3-01).

Results

Ade+ revertants accumulated at a very high rate on adenine-free plates so that their frequency on day 16 after plating was 1.5 × 10-4 for wild-type and 1.0 × 10-2 for the Exo- strain. In the Exo- strain, all revertants arising under adenine starvation are suppressors of the original mutation, most possessed additional nutritional requirements, and 50% of them were temperature sensitive.

Conclusions

Adenine starvation is highly mutagenic in yeast. The deficiency in the polymerase delta proofreading activity in strains with the pol3-01 mutation leads to a further 66-fold increase of the rate of mutations. Our data suggest that adenine starvation induces genome-wide hyper-mutagenesis in the Exo- strain.  相似文献   

18.
Colony formation by variant Chinese hamster cells highly resistant to adenine analogs and deficient in adenine phosphoribosyltransferase (APRT) activity was measured after co-cultivation with APRT+, CHO-K1 cells in medium containing one of three different adenine analogs. Depending upon the density of APRT+ cells and the specific adenine analog, large differences in the recovery of APRT? colonies were observed. The particular adenine analog and APRT+ cell density were more significant factors in the recovery of APRT? colonies than the concentration of the analog or the level of APRT activity. The number of wild-type cells (CHO-K1) required to inhibit formation of APRT? colonies by 50% (mean lethal density; MLD50) with 65 μg/ml 8-aza-adenine (AzA) as the selective drug was 8.0 × 105 cells/100 mm dish (1.5 × 104/cm2). With 100 μg/ml 2,6-diaminopurine (DAP) the MLD50 for CHO-K1 was 4.0 × 105 cells/100 mm dish (7.3 × 103/cm2). The MLD50 for CHO-K1 when the DAP concentration was decreased to 50 μg/ml was only slightly higher, 5 × 105 cells/100 mm dish (9.1 × 103/cm2). The most toxic effect was observed with 2-fluoroadenine (FA). The MLD50 for CHO-K1 in 2 μg/ml FA was 4.5 × 104 cells/100 mm dish (8.2 × 102/cm2), a cell density which permits minimal direct contact between APRT+ and APRT? cells. The toxic effects of FA on individually resistant, APRT? cells were found to be mediated by metabolites released into the medium by dying APRT+ cells. This metabolite toxicity to APRT? cells was also demonstrated in mixtures with cells having only 8% of wild-type APRT activity. The MLD50 for these APRT+ (8%) cells in 2 μg/ml FA was 7.5 × 104 cells/100 dish (1.4 × 103/cm2), a small difference from the MLD50 for cells with wild-type levels of APRT activity. The differences in the recovery of APRT? colonies from mixtures with APRT+ cells in these three adenine analogs are critical to the design of procedures for the selection of APRT? cells from populations of APRT+ cells and emphasize the importance of establishing the parameters of metabolic cooperation, not only in terms of cell density but also with regard to the particular selective agent, in any experiment designed to determine precise mutation rates or to test putative mutagens upon mammalian cells in culture.  相似文献   

19.
The role of rice (Oryza sativa) COM1 in meiotic homologous recombination (HR) is well understood, but its part in somatic double‐stranded break (DSB) repair remains unclear. Here, we show that for rice plants COM1 conferred tolerance against DNA damage caused by the chemicals bleomycin and mitomycin C, while the COM1 mutation did not compromise HR efficiencies and HR factor (RAD51 and RAD51 paralogues) localization to irradiation‐induced DSBs. Similar retarded growth at the post‐germination stage was observed in the com1‐2 mre11 double mutant and the mre11 single mutant, while combined mutations in COM1 with the HR pathway gene (RAD51C) or classic non‐homologous end joining (NHEJ) pathway genes (KU70, KU80, and LIG4) caused more phenotypic defects. In response to γ‐irradiation, COM1 was loaded normally onto DSBs in the ku70 mutant, but could not be properly loaded in the MRE11RNAi plant and in the wortmannin‐treated wild‐type plant. Under non‐irradiated conditions, more DSB sites were occupied by factors (MRE11, COM1, and LIG4) than RAD51 paralogues (RAD51B, RAD51C, and XRCC3) in the nucleus of wild‐type; protein loading of COM1 and XRCC3 was increased in the ku70 mutant. Therefore, quite differently to its role for HR in meiocytes, rice COM1 specifically acts in an alternative NHEJ pathway in somatic cells, based on the Mre11–Rad50–Nbs1 (MRN) complex and facilitated by PI3K‐like kinases. NHEJ factors, not HR factors, preferentially load onto endogenous DSBs, with KU70 restricting DSB localization of COM1 and XRCC3 in plant somatic cells.  相似文献   

20.
Genetic analysis has suggested that RAD17, RAD24, MEC3, and DDC1 play similar roles in the DNA damage checkpoint control in budding yeast. These genes are required for DNA damage-induced Rad53 phosphorylation and considered to function upstream of RAD53 in the DNA damage checkpoint pathway. Here we identify Mec3 as a protein that associates with Rad17 in a two-hybrid screen and demonstrate that Rad17 and Mec3 interact physically in vivo. The amino terminus of Rad17 is required for its interaction with Mec3, and the protein encoded by the rad17-1 allele, containing a missense mutation at the amino terminus, is defective for its interaction with Mec3 in vivo. Ddc1 interacts physically and cosediments with both Rad17 and Mec3, indicating that these three proteins form a complex. On the other hand, Rad24 is not found to associate with Rad17, Mec3, and Ddc1. DDC1 overexpression can partially suppress the phenotypes of the rad24Δ mutation: sensitivity to DNA damage, defect in the DNA damage checkpoint and decrease in DNA damage-induced phosphorylation of Rad53. Taken together, our results suggest that Rad17, Mec3, and Ddc1 form a complex which functions downstream of Rad24 in the DNA damage checkpoint pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号