首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J C Adams  F M Watt 《Cell》1990,63(2):425-435
During terminal differentiation keratinocytes move out of the basal layer of the epidermis and thereby lose contact with the basement membrane. We show that terminal differentiation in culture involves loss of adhesiveness to fibronectin, laminin, and collagen types I and IV. The adhesive changes precede, by several hours, loss of the alpha 2 beta 1, alpha 3 beta 1, and alpha 5 beta 1 integrins from the cell surface. Keratinocyte adhesion to fibronectin is mediated by the alpha 5 beta 1 integrin, and the decrease in adhesion of intact cells to fibronectin is correlated with a decrease in the ability of alpha 5 beta 1 receptors to bind fibronectin. Thus modulation of integrin function early in terminal differentiation may be an early event determining cell migration out of the basal layer.  相似文献   

2.
Tumor cell binding to components of the basement membrane is well known to trigger intracellular signaling pathways. Signaling ultimately results in the modulation of gene expression, facilitating metastasis. Type IV collagen is the major structural component of the basement membrane and is known to be a polyvalent ligand, possessing sequences bound by the alpha1beta1, alpha2beta1, and alpha3beta1 integrins, as well as cell surface proteoglycan receptors, such as CD44/chondroitin sulfate proteoglycan (CSPG). The role of alpha2beta1 integrin and CD44/CSPG receptor binding on human melanoma cell activation has been evaluated herein using triple-helical peptide ligands incorporating the alpha1(IV)382-393 and alpha1(IV)1263-1277 sequences, respectively. Gene expression and protein production of matrix metalloproteinases-1 (MMP-1), -2, -3, -13, and -14 were modulated with the alpha2beta1-specific sequence, whereas the CD44-specific sequence yielded significant stimulation of MMP-8 and lower levels of modulation of MMP-1, -2, -13, and -14. Analysis of enzyme activity confirmed different melanoma cell proteolytic potentials based on engagement of either the alpha2beta1 integrin or CD44/CSPG. These results are indicative of specific activation events that tumor cells undergo upon binding to select regions of basement membrane collagen. Based on the present study, triple-helical peptide ligands provide a general approach for monitoring the regulation of proteolysis in cellular systems.  相似文献   

3.
The small GTPase RhoA modulates the adhesive nature of many cell types; however, despite high levels of expression in platelets, there is currently limited evidence for an important role for this small GTPase in regulating platelet adhesion processes. In this study, we have examined the role of RhoA in regulating the adhesive function of the major platelet integrin, alpha(IIb)beta(3). Our studies demonstrate that activation of RhoA occurs as a general feature of platelet activation in response to soluble agonists (thrombin, ADP, collagen), immobilized matrices (von Willebrand factor (vWf), fibrinogen) and high shear stress. Blocking the ligand binding function of integrin alpha(IIb)beta(3), by pretreating platelets with c7E3 Fab, demonstrated the existence of integrin alpha(IIb)beta(3)-dependent and -independent mechanisms regulating RhoA activation. Inhibition of RhoA (C3 exoenzyme) or its downstream effector Rho kinase had no effect on integrin alpha(IIb)beta(3) activation induced by soluble agonists or adhesive substrates, however, both inhibitors reduced shear-dependent platelet adhesion on immobilized vWf and shear-induced platelet aggregation in suspension. Detailed analysis of the sequential adhesive steps required for stable platelet adhesion on a vWf matrix under shear conditions revealed that RhoA did not regulate platelet tethering to vWf or the initial formation of integrin alpha(IIb)beta(3) adhesion contacts but played a major role in sustaining stable platelet-matrix interactions. These studies define a critical role for RhoA in regulating the stability of integrin alpha(IIb)beta(3) adhesion contacts under conditions of high shear stress.  相似文献   

4.
Functions of alpha3beta1 integrin   总被引:6,自引:0,他引:6  
alpha3beta1 integrin is a laminin receptor with apparently diverse functions. In epithelial cells it acts as a receptor for the basement membrane, whereas in neuronal and possibly tumor cells it mediates migration. Interactions of alpha3beta1 integrin with tetraspanin proteins may provide clues to how it transduces signals that affect cell behavior.  相似文献   

5.
The differentiation of chondrocytes and of several other cell types is associated with a switch from the alpha(6B) to the alpha(6A) isoform of the laminin alpha(6)beta(1) integrin receptor. To define whether this event plays a functional role in cell differentiation, we used an in vitro model system that allows chick chondrogenic cells to remain undifferentiated when cultured in monolayer and to differentiate into chondrocytes when grown in suspension culture. We report that: (i) upon over-expression of the human alpha(6B), adherent chondrogenic cells differentiate to stage I chondrocytes (i.e. increased type II collagen, reduced type I collagen, fibronectin, alpha(5)beta(1) and growth rate, loss of fibroblast morphology); (ii) the expression of type II collagen requires the activation of p38 MAP kinase; (iii) the over-expression of alpha(6A) induces an incomplete differentiation to stage I chondrocytes, whereas no differentiation was observed in alpha(5) and mock-transfected control cells; (iv) a prevalence of the alpha(6A) subunit is necessary to stabilize the differentiated phenotype when cells are transferred to suspension culture. Altogether, these results indicate a functional role for the alpha(6B) to alpha(6A) switch in chondrocyte differentiation; the former promotes chondrocyte differentiation, and the latter is necessary in stabilizing the differentiated phenotype.  相似文献   

6.
7.
Our previous work indicates intestinal epithelial cell ERK activation by collagen IV, a major component of the intestinal epithelial basement membrane, requires focal adhesion kinase (FAK) and suggests FAK and ERK may have important roles in regulating intestinal epithelial cell migration. We therefore sought to identify FAK downstream targets regulating intestinal epithelial cell spreading, migration, and ERK activation on collagen IV and the integrins involved. Both dominant-negative Src and Src inhibitor PP2 strongly inhibited collagen IV ERK activation in Caco-2 intestinal epithelial cells. Collagen IV stimulated Grb2 binding site FAK Y925 phosphorylation, which was inhibited by PP2 and required FAK Y397 autophosphorylation. Additionally, FAK Y925F expression blocked collagen IV ERK activation. alpha(1)beta(1)- Or alpha(2)beta(1)-integrin blockade with alpha(1)- or alpha(2)-integrin subunit antibodies indicated that either integrin can mediate adhesion, cell spreading, and FAK, Src, and ERK activation on collagen IV. Both dominant-negative Src and PP2 inhibited Caco-2 spreading on collagen IV. PP2 inhibited p130(Cas) tyrosine phosphorylation, but dominant-negative p130(Cas) did not inhibit cell spreading. PP2 inhibited Caco-2 migration on collagen IV much more strongly than the mitogen-activated protein kinase kinase inhibitor PD-98059, which completely inhibited collagen IV ERK activation. These results suggest a pathway for collagen IV ERK activation requiring Src phosphorylation of FAK Y925 not previously described for this matrix protein and suggest either alpha(1)beta(1)- or alpha(2)beta(1)-integrins can regulate Caco-2 spreading and ERK activation on collagen IV via Src. Additionally, these results suggest Src regulates Caco-2 migration on collagen IV primarily through ERK-independent pathways.  相似文献   

8.
9.
The ability of cells to undergo shape changes is essential for diverse cellular functions including cell growth, differentiation, and movement. The present study examines how an integration of the function of alpha2beta1 integrin with that of the receptor for epidermal growth factor (EGFR) modulates EGF-stimulated morphological changes in human rhabdomyosarcoma RD transfectant cells. Upon EGF stimulation, RD transfectant cells that lacked alpha2beta1 integrin expression (RDpF) underwent contraction; in contrast, expression of alpha2beta1 on RD cells (RDX2C2) resulted in transient cell spreading. Integrin alpha2 cytoplasmic domain played a critical role in the observed alpha2beta1-mediated conversion from a cell rounding to a cell spreading phenotype. Thus, the expression of an alpha2 cytoplasmic domain deletion variant (X2C0) or a chimeric alpha2beta1 containing the cytoplasmic domain of alpha4 (X2C4) or alpha5 (X2C5), instead of alpha2, failed to mediate spreading upon EGF stimulation. Using dominant negative (DN) mutants of RhoGTPases, results revealed that RhoA activation was required for both EGF-stimulated responses of cell rounding and spreading, Cdc42 functioned in the re-spreading of cells after undergoing EGF-stimulated contraction, and Rac1 was required in alpha2beta1-mediated RD cell spreading. Therefore, alpha2beta1 integrin function can switch the Rho GTPase-dependent cell shape changes in RD cells from an EGF-stimulated cell contraction to a spreading morphology. Together, results show that integrin alpha2 cytoplasmic domain plays an indispensable role in the ability of integrin alpha2beta1 to modulate EGF stimulation of Rho-GTPase-dependent morphological changes in RD cells.  相似文献   

10.
Alpha4beta1 integrin is highly expressed in lymphocytes and is essential in hematopoiesis, extravasation, and the inflammatory response. Alpha4beta1 can be activated by intracellular signals elicited upon T-cell activation by phorbol esters, CD3 crosslinking, or certain chemokine/receptor interactions (inside-out activation). Divalent cations or certain anti-beta1 mAbs (i.e., TS2/16) can also bind and activate integrins directly (outside-in activation). In both cases, activation results in increased adhesion and/or affinity for ligands. It is not known if these various stimuli produce the same or different post-adhesion events. To address this, we have studied the cytoskeleton organization and intracellular signaling following activation of 41 in Jurkat cells and in human T-lymphoblasts. Treatment with Mn2+, alpha-CD3 mAb or the chemokine SDF-1alpha followed by attachment to the fibronectin fragment H89 or the endothelial molecule VCAM-1 (alpha4beta1 ligands), resulted in cell polarization and migration. In contrast, activation with PMA or TS2/16 induced cell spreading and strong adherence. Video microscopy and Transwell analyses confirmed these results, which correlated with different resistance to detachment under flow. Activation of the small GTPase RhoA or transfection with the constitutively active mutants V14RhoA or V12Rac1, abolished the alpha4beta1-induced cell polarization but did not affect cell spreading. Moreover, Rac1 activity was distinctly modulated by agents that induce a polarized or spread phenotype. The tyrosine kinase Pyk2 was highly phosphorylated upon induction of cell polarity but not during cell spreading. These results reveal novel properties of alpha4beta1 integrin, namely the ability to trigger two types of T-cell cytoskeletal response with different signaling requirements.  相似文献   

11.
We have recently identified integrin alpha(v)beta(3) and the associated CD47/integrin-associated protein (IAP) together with three other proteins as the potential tumor cell receptors for the alpha(3) chain of basement membrane type IV collagen (Shahan, T.A., Ziaie, Z., Pasco, S., Fawzi, A., Bellon, G., Monboisse, J. C., and Kefalides, N. A. (1999) Cancer Res. 59, 4584-4590). Using different cell lines expressing alpha(v)beta(3), alpha(IIb)beta(3), and/or CD47 and a liquid phase receptor capture assay, we now provide direct evidence that the synthetic and biologically active alpha3(IV)185-206 peptide, derived from the alpha3(IV) chain, interacts with the beta(3) subunit of integrin alpha(v)beta(3), independently of CD47. Increased alpha3(IV) peptide binding was observed on transforming growth factor-beta(1)-stimulated HT-144 cells shown to up-regulate alpha(v)beta(3) independently of CD47. Also, incubation of HT-144 melanoma cells in suspension induced de novo exposure of ligand-induced binding site epitopes on the beta(3) subunit similar to those observed following Arg-Gly-Asp-Ser (RGDS) stimulation. However, RGDS did not prevent HT-144 cell attachment and spreading on the alpha3(IV) peptide, suggesting that the alpha3(IV) binding domain on the beta(3) subunit is distinct from the RGD recognition site. alpha3(IV) peptide binding to HT-144 cells in suspension stimulated time-dependent tyrosine phosphorylation, while the RGDS peptide did not. Two major phosphotyrosine proteins of 120-130 and 85 kDa were immunologically identified as focal adhesion kinase and phosphatidylinositol 3-kinase (PI3-kinase). A direct involvement of PI3-kinase in alpha3(IV)-dependent beta(3) integrin signaling could be documented, since pretreatment of HT-144 cells with wortmannin, a PI3-kinase inhibitor, reverted the known inhibitory effect of alpha3(IV) on HT-144 cell proliferation as well as membrane type 1-matrix metalloproteinase gene expression. These results provide evidence that the alpha3(IV)185-206 peptide, by directly interacting with the beta(3) subunit of alpha(v)beta(3), activates a signaling cascade involving focal adhesion kinase and PI3-kinase.  相似文献   

12.
Clone A colon carcinoma cells develop fan-shaped lamellae and exhibit random migration when plated on laminin, processes that depend on the ligation of the alpha6beta4 integrin. Here, we report that expression of a dominant negative RhoA (N19RhoA) in clone A cells inhibited alpha6beta4-dependent membrane ruffling, lamellae formation, and migration. In contrast, expression of a dominant negative Rac (N17Rac1) had no effect on these processes. Using the Rhotekin binding assay to assess RhoA activation, we observed that engagement of alpha6beta4 by either antibody-mediated clustering or laminin attachment resulted in a two- to threefold increase in RhoA activation, compared with cells maintained in suspension or plated on collagen. Antibody-mediated clustering of beta1 integrins, however, actually suppressed Rho A activation. The alpha6beta4-mediated interaction of clone A cells with laminin promoted the translocation of RhoA from the cytosol to membrane ruffles at the edges of lamellae and promoted its colocalization with beta1 integrins, as assessed by immunofluorescence microscopy. In addition, RhoA translocation was blocked by inhibiting phosphodiesterase activity and enhanced by inhibiting the activity of cAMP-dependent protein kinase. Together, these results establish a specific integrin-mediated pathway of RhoA activation that is regulated by cAMP and that functions in lamellae formation and migration.  相似文献   

13.
The fibronectin receptors alpha(5)beta(1) integrin and syndecan-4 cocluster in focal adhesions and coordinate cell migration by making individual contributions to the suppression of RhoA activity during matrix engagement. p190Rho-guanosine triphosphatase-activating protein (GAP) is known to inhibit RhoA during the early stages of cell spreading in an Src-dependent manner. This paper dissects the mechanisms of p190RhoGAP regulation and distinguishes the contributions of alpha(5)beta(1) integrin and syndecan-4. Matrix-induced tyrosine phosphorylation of p190RhoGAP is stimulated solely by engagement of alpha(5)beta(1) integrin and is independent of syndecan-4. Parallel engagement of syndecan-4 causes redistribution of the tyrosine-phosphorylated pool of p190RhoGAP between membrane and cytosolic fractions by a mechanism that requires direct activation of protein kinase C alpha by syndecan-4. Activation of both pathways is necessary for the efficient regulation of RhoA and, as a consequence, focal adhesion formation. Accordingly, we identify p190RhoGAP as the convergence point for adhesive signals mediated by alpha(5)beta(1) integrin and syndecan-4. This molecular mechanism explains the cooperation between extracellular matrix receptors during cell adhesion.  相似文献   

14.
15.
Functions of small GTPases in integrin expression were investigated when the interaction of nonadherent human colon carcinoma 201 cells with the extracellular matrix (ECM) was examined. By transfection of the constitutively active form of a small GTPase Rac1, Rac V12, adhesion of cells to the ECM increased with concomitant cell spreading and formation of membrane ruffles. Activated Cdc42 and Cdc42 V12, but not wild-type Rac1, Cdc42, or RhoA, also induced the adhesion and spreading of Colo201 cells. This adhesion is integrin beta4 dependent since an antibody for integrin beta4 inhibited the RacV12-dependent cell adhesion and numbers of adhesive cells on laminin-coated plates exceeded those on collagen- and fibronectin-coated plates. By immunofluorescence, in addition to clustering of integrin molecules, expression of integrin alpha6beta4 on the cell surface of Rac V12- and Cdc42 V12-expressing cells was selectively up-regulated without an increase in biosynthesis of alpha6beta4 integrin. Treatment of Rac V12-expressing cells with wortmannin or LY294002, specific inhibitors of phosphoinositide 3-OH kinase, decreased the up-regulated alpha6beta4 and cell adhesion. In light of this evidence, we propose that the regulation of integrin alpha6beta4 expression induced by Rac1 and Cdc42 may play an important role in cell adhesion and tumorigenesis of colon carcinoma cells.  相似文献   

16.
We addressed the potential role of cell-laminin interactions during epaxial myotome formation in the mouse embryo. Assembly of the myotomal laminin matrix occurs as epaxial myogenic precursor cells enter the myotome. Most Myf5-positive and myogenin-negative myogenic precursor cells localise near assembled laminin, while myogenin-expressing cells are located either away from this matrix or in areas where it is being assembled. In Myf5(nlacZ/nlacZ) (Myf5-null) embryos, laminin, collagen type IV and perlecan are present extracellularly near myogenic precursor cells, but do not form a basement membrane and cells are not contained in the myotomal compartment. Unlike wild-type myogenic precursor cells, Myf5-null cells do not express the alpha6beta1 integrin, a laminin receptor, suggesting that integrin alpha6beta1-laminin interactions are required for myotomal laminin matrix assembly. Blocking alpha6beta1-laminin binding in cultured wild-type mouse embryo explants resulted in dispersion of Myf5-positive cells, a phenotype also seen in Myf5(nlacZ/nlacZ) embryos. Furthermore, inhibition of alpha6beta1 resulted in an increase in Myf5 protein and ectopic myogenin expression in dermomyotomal cells, suggesting that alpha6beta1-laminin interactions normally repress myogenesis in the dermomyotome. We conclude that Myf5 is required for maintaining alpha6beta1 expression on myogenic precursor cells, and that alpha6beta1 is necessary for myotomal laminin matrix assembly and cell guidance into the myotome. Engagement of laminin by alpha6beta1 also plays a role in maintaining the undifferentiated state of cells in the dermomyotome prior to their entry into the myotome.  相似文献   

17.
Collagen XVI is integrated tissue-dependently into distinct fibrillar aggregates, such as D-banded cartilage fibrils and fibrillin-1-containing microfibrils. In skin, the distribution of collagen XVI overlaps that of the collagen-binding integrins alpha1 beta1 and alpha2 beta1. Basal layer keratinocytes express integrin alpha2 beta1, whereas integrin alpha1 beta1 occurs in smooth muscle cells surrounding blood vessels, in hair follicles, and on adipocytes. Cells bearing the integrins alpha1 beta1 and alpha2 beta1 attach and spread on recombinant collagen XVI. Furthermore, collagen XVI induces the recruitment of these integrins into focal adhesion plaques, a principal step in integrin signaling. Of potential physiological relevance, these integrin-collagen XVI interactions may connect cells with specialized fibrils, thus contributing to the organization of fibrillar and cellular components within connective tissues. In cell-free binding assays, collagen XVI is more avidly bound by alpha1 beta1 integrin than by alpha2 beta1 integrin. Both integrins interact with collagen XVI via the A domain of their alpha subunits. A tryptic collagen XVI fragment comprising the collagenous domains 1-3 is recognized by alpha1 beta1 integrin. Electron microscopy of complexes of alpha1 beta1 integrin with this tryptic collagen XVI fragment or with full-length collagen XVI revealed a unique alpha1 beta1 integrin-binding site within collagen XVI located close to its C-terminal end.  相似文献   

18.
Glycosylation of integrins has been implicated in the modulation of their function. Characterisation of carbohydrate moieties of alpha(3) and beta(1) subunits from non-metastatic (WM35) and metastatic (A375) human melanoma cell lines was carried out on peptide-N-glycosidase F-released glycans using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). beta(1) integrin subunit from both cell lines displayed tri- and tetraantennary oligosaccharides complex type glycans, but only in A375 cell line was the sialylated tetraantennary complex type glycan (Hex(7)HexNAc(6)FucSia(4)) present. In contrast, only alpha(3) subunit from metastatic cells possessed beta1-6 branched structures. Our data indicate that the beta(1) and alpha(3) subunits expressed by the metastatic A375 cell line carry beta1-6 branched structures, suggesting that these cancer-associated glycan chains may modulate tumor cell adhesion by affecting the ligand binding properties of alpha(3)beta(1) integrin. In direct ligand binding assays, alpha(3)beta(1) integrin from both cell lines binds strongly to fibronectin and to much lesser degree to placental laminin. No binding to collagen IV was observed. Enzymatic removal of sialic acid residues from purified alpha(3)beta(1) integrin stimulates its adhesion to all examined ECM proteins. Our data suggest that the glycosylation profile of alpha(3)beta(1) integrin in human melanoma cells correlates with the acquisition of invasive capacity during melanoma progression.  相似文献   

19.
Arrest of circulating tumor cells in distant organs is required for hematogenous metastasis, but the tumor cell surface molecules responsible have not been identified. Here, we show that the tumor cell alpha3beta1 integrin makes an important contribution to arrest in the lung and to early colony formation. These analyses indicated that pulmonary arrest does not occur merely due to size restriction, and raised the question of how the tumor cell alpha3beta1 integrin contacts its best-defined ligand, laminin (LN)-5, a basement membrane (BM) component. Further analyses revealed that LN-5 is available to the tumor cell in preexisting patches of exposed BM in the pulmonary vasculature. The early arrest of tumor cells in the pulmonary vasculature through interaction of alpha3beta1 integrin with LN-5 in exposed BM provides both a molecular and a structural basis for cell arrest during pulmonary metastasis.  相似文献   

20.
The chemokine stromal cell-derived factor-1alpha (SDF-1alpha) is expressed by bone marrow (BM) stromal cells and plays key roles in cell homing to and retention into the bone marrow. In multiple myeloma, blood-borne malignant plasma cells home to the BM and accumulate in contact with stromal cells, implicating myeloma cell migration across endothelium. Myeloma cells express the SDF-1alpha receptor CXCR4, as well as the integrin alpha4beta1, which mediates their attachment to BM stroma. We show here that SDF-1alpha promotes transendothelial migration of purified BM myeloma cells and myeloma-derived NCI-H929 cells, involving a transient upregulation of alpha4beta1-dependent cell adhesion to the endothelium. Characterization of intracellular signaling pathways involved in the modulation by SDF-1alpha of alpha4beta1-mediated myeloma cell adhesion revealed that intracellular cAMP amounts associated with the activation of protein kinase A play key roles in this modulation. Furthermore, a functional link between cAMP actions on the dynamics of actin cytoskeleton, RhoA activation, and alpha4beta1-dependent cell adhesion in response to SDF-1alpha has been found. The regulation of alpha4beta1-mediated myeloma cell adhesion by SDF-1alpha could play key roles during myeloma cell homing into and trafficking inside the BM, and characterization of the molecular events involved in SDF-1alpha-activated modulation of this adhesion will contribute to a better understanding of mechanisms participating in cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号