共查询到20条相似文献,搜索用时 0 毫秒
1.
Peter Norberg Daniel P. Depledge Samit Kundu Claire Atkinson Julianne Brown Tanzina Haque Yusuf Hussaini Eithne MacMahon Pamela Molyneaux Vassiliki Papaevangelou Nitu Sengupta Evelyn S. C. Koay Julian W. Tang Gillian S. Underhill Anna Grahn Marie Studahl Judith Breuer Tomas Bergstr?m 《Journal of virology》2015,89(14):7133-7146
2.
Phylogenetic Analysis of Deformed Wing Virus Genotypes from Diverse Geographic Origins Indicates Recent Global Distribution of the Virus 总被引:4,自引:0,他引:4
下载免费PDF全文

Olga Bernyi Tams Bakonyi Irmgard Derakhshifar Hemma Kglberger Grayna Topolska Wolfgang Ritter Hermann Pechhacker Norbert Nowotny 《Applied microbiology》2007,73(11):3605-3611
3.
Recently, we introduced a distinct Mycobacterium intracellulare INT-5 genotype, distantly related to other genotypes of M. intracellulare (INT-1 to -4). The aim of this study is to determine the exact taxonomic status of the M. intracellulare INT-5 genotype via genome-based phylogenetic analysis. To this end, genome sequences of the two INT-5 strains, MOTT-H4Y and MOTT-36Y were compared with M. intracellulare ATCC 13950T and Mycobacterium yongonense DSM 45126T. Our phylogenetic analysis based on complete genome sequences, multi-locus sequence typing (MLST) of 35 target genes, and single nucleotide polymorphism (SNP) analysis indicated that the two INT-5 strains were more closely related to M. yongonense DSM 45126T than the M. intracellulare strains. These results suggest their taxonomic transfer from M. intracellulare into M. yongonense. Finally, we selected 5 target genes (argH, dnaA, deaD, hsp65, and recF) and used SNPs for the identification of M. yongonese strains from other M. avium complex (MAC) strains. The application of the SNP analysis to 14 MAC clinical isolates enabled the selective identification of 4 M. yongonense clinical isolates from the other MACs. In conclusion, our genome-based phylogenetic analysis showed that the taxonomic status of two INT-5 strains, MOTT-H4Y and MOTT-36Y should be revised into M. yongonense. Our results also suggest that M. yongonense could be divided into 2 distinct genotypes (the Type I genotype with the M. parascrofulaceum rpoB gene and the Type II genotype with the M. intracellulare rpoB gene) depending on the presence of the lateral gene transfer of rpoB from M. parascrofulaceum. 相似文献
4.
Although there has been extensive debate about whether Trichuris suis and Trichuris trichiura are separate species, only one species of the whipworm T. trichiura has been considered to infect humans and non-human primates. In order to investigate potential cross infection of Trichuris sp. between baboons and humans in the Cape Peninsula, South Africa, we sequenced the ITS1-5.8S-ITS2 region of adult Trichuris sp. worms isolated from five baboons from three different troops, namely the Cape Peninsula troop, Groot Olifantsbos troop and Da Gama Park troop. This region was also sequenced from T. trichiura isolated from a human patient from central Africa (Cameroon) for comparison. By combining this dataset with Genbank records for Trichuris isolated from other humans, non-human primates and pigs from several different countries in Europe, Asia, and Africa, we confirmed the identification of two distinct Trichuris genotypes that infect primates. Trichuris sp. isolated from the Peninsula baboons fell into two distinct clades that were found to also infect human patients from Cameroon, Uganda and Jamaica (named the CP-GOB clade) and China, Thailand, the Czech Republic, and Uganda (named the DG clade), respectively. The divergence of these Trichuris clades is ancient and precedes the diversification of T. suis which clustered closely to the CP-GOB clade. The identification of two distinct Trichuris genotypes infecting both humans and non-human primates is important for the ongoing treatment of Trichuris which is estimated to infect 600 million people worldwide. Currently baboons in the Cape Peninsula, which visit urban areas, provide a constant risk of infection to local communities. A reduction in spatial overlap between humans and baboons is thus an important measure to reduce both cross-transmission and zoonoses of helminthes in Southern Africa. 相似文献
5.
Ganesh R. Pant Rachel Lavenir Frank Y. K. Wong Andrea Certoma Florence Larrous Dwij R. Bhatta Hervé Bourhy Vittoria Stevens Laurent Dacheux 《PLoS neglected tropical diseases》2013,7(11)
Rabies is a zoonotic disease that is endemic in many parts of the developing world, especially in Africa and Asia. However its epidemiology remains largely unappreciated in much of these regions, such as in Nepal, where limited information is available about the spatiotemporal dynamics of the main etiological agent, the rabies virus (RABV). In this study, we describe for the first time the phylogenetic diversity and evolution of RABV circulating in Nepal, as well as their geographical relationships within the broader region. A total of 24 new isolates obtained from Nepal and collected from 2003 to 2011 were full-length sequenced for both the nucleoprotein and the glycoprotein genes, and analysed using neighbour-joining and maximum-likelihood phylogenetic methods with representative viruses from all over the world, including new related RABV strains from neighbouring or more distant countries (Afghanistan, Greenland, Iran, Russia and USA). Despite Nepal''s limited land surface and its particular geographical position within the Indian subcontinent, our study revealed the presence of a surprising wide genetic diversity of RABV, with the co-existence of three different phylogenetic groups: an Indian subcontinent clade and two different Arctic-like sub-clades within the Arctic-related clade. This observation suggests at least two independent episodes of rabies introduction from neighbouring countries. In addition, specific phylogenetic and temporal evolution analysis of viruses within the Arctic-related clade has identified a new recently emerged RABV lineage we named as the Arctic-like 3 (AL-3) sub-clade that is already widely spread in Nepal. 相似文献
6.
水痘-带状疱疹病毒(Varicella-zoster virus,VZV)又称人类疱疹病毒3型,属疱疹病毒科,与单纯疱疹病毒HSV-1、HSV-2一起归入α亚科。人类是其唯一的自然宿主,对其普遍易感。VZV引起的原发感染表现为水痘,并在宿主的感觉神经节内潜伏,再激活时可引起带状疱疹。近年来VZV分子流行病学的研究涉及流行病学、病毒学、生物信息学等相关领域,通过监测、研究VZV的基因变异,区分疫苗株或野生株引起的感染,探讨世界范围内各VZV病毒株的系统发育关系和各遗传支之间的分子进化史。现将近年来有关VZV不同的地理分布和遗传支进化的研究状况综述如下。 相似文献
7.
8.
Comprehensive Analysis of Varicella-Zoster Virus Proteins Using a New Monoclonal Antibody Collection
Tihana Lenac Rovi? Susanne M. Bailer Venkata R. Pothineni Werner J. D. Ouwendijk Hrvoje ?imi? Marina Babi? Karmela Mikli? Suzana Mali? Marieke C. Verweij Armin Baiker Orland Gonzalez Albrecht von Brunn Ralf Zimmer Klaus Früh Georges M. G. M. Verjans Stipan Jonji? Jürgen Haas 《Journal of virology》2013,87(12):6943-6954
Varicella-zoster virus (VZV) is the etiological agent of chickenpox and shingles. Due to the virus''s restricted host and cell type tropism and the lack of tools for VZV proteomics, it is one of the least-characterized human herpesviruses. We generated 251 monoclonal antibodies (MAbs) against 59 of the 71 (83%) currently known unique VZV proteins to characterize VZV protein expression in vitro and in situ. Using this new set of MAbs, 44 viral proteins were detected by Western blotting (WB) and indirect immunofluorescence (IF); 13 were detected by WB only, and 2 were detected by IF only. A large proportion of viral proteins was analyzed for the first time in the context of virus infection. Our study revealed the subcellular localization of 46 proteins, 14 of which were analyzed in detail by confocal microscopy. Seven viral proteins were analyzed in time course experiments and showed a cascade-like temporal gene expression pattern similar to those of other herpesviruses. Furthermore, selected MAbs tested positive on human skin lesions by using immunohistochemistry, demonstrating the wide applicability of the MAb collection. Finally, a significant portion of the VZV-specific antibodies reacted with orthologs of simian varicella virus (SVV), thus enabling the systematic analysis of varicella in a nonhuman primate model system. In summary, this study provides insight into the potential function of numerous VZV proteins and novel tools to systematically study VZV and SVV pathogenesis. 相似文献
9.
Sang-Won Lee Joanne M. Devlin John F. Markham Amir H. Noormohammadi Glenn F. Browning Nino P. Ficorilli Carol A. Hartley Philip F. Markham 《PloS one》2013,8(2)
In contrast to the RNA viruses, the genome of large DNA viruses such as herpesviruses have been considered to be relatively stable. Intra-specific recombination has been proposed as an important, but underestimated, driving force in herpesvirus evolution. Recently, two distinct field strains of infectious laryngotracheitis virus (ILTV) have been shown to have arisen from independent recombination events between different commercial ILTV vaccines. In this study we sequenced the genomes of additional ILTV strains and also utilized other recently updated complete genome sequences of ILTV to confirm the existence of a number of ILTV recombinants in nature. Multiple recombination events were detected in the unique long and repeat regions of the genome, but not in the unique short region. Most recombinants contained a pair of crossover points between two distinct lineages of ILTV, corresponding to the European origin and the Australian origin vaccine strains of ILTV. These results suggest that there are two distinct genotypic lineages of ILTV and that these commonly recombine in the field. 相似文献
10.
Michael D Bowen Clarence J Peters Stuart T Nichol 《Molecular phylogenetics and evolution》1997,8(3):301-316
Viruses of theArenaviridaecause hemorrhagic fevers and neurologic disease in humans. Historically, the arenaviruses have been divided into two complexes (LASV-LCMV, Tacaribe) through the use of antigenic typing. The phylogeny of theArenaviridaeas a whole has not been estimated previously due to a lack of sequence data for all members of the family. In this study, nucleocapsid protein gene sequence data were obtained for all currently known arenaviruses and used to estimate, for the first time, a phylogeny of the entire virus family. The LCMV-LASV complex arenaviruses are monophyletic and comprise three distinct lineages. The Tacaribe complex viruses also are monophyletic and occupy three distinct lineages. Comparisons of arenavirus phylogeny with rodent host phylogeny and taxonomic relationships provide several examples in which virus–host cospeciation is potentially occurring. The pathogenic arenaviruses do not appear to be monophyletic, suggesting that the pathogenic phenotype has arisen in multiple independent events during virus evolution. 相似文献
11.
12.
Experiments designed to determine why cell-free varicella-zoster virus replicated in cell culture is noninfectious were performed. Electron micrographs in which varicella-zoster virus (a herpesvirus) was compared to herpes simplex virus in primary human amnion cell cultures showed that the viruses were morphologically indistinguishable inside the nucleus. However, extranuclear varicella-zoster viruses were distinguished from herpes simplex virus by the presence of pleomorphism, incomplete coats, and a resultant loss of central dense cores. This result indicates that varicella-zoster virus possesses a labile coat which is degraded outside the nucleus. It is suggested that the labile coat is a principal reason for the lack of cell-free infectious virus in this system. 相似文献
13.
Yasushi Akahori Kazuhiro Suzuki Tohru Daikoku Masae Iwai Yoshihiro Yoshida Yoshizo Asano Yoshikazu Kurosawa Kimiyasu Shiraki 《Journal of virology》2009,83(4):2020-2024
Varicella-zoster virus (VZV) glycoprotein H (gH) is the major neutralization target of VZV, and its neutralizing epitope is conformational. Ten neutralizing human monoclonal antibodies to gH were used to map the epitopes by immunohistochemical analysis and were categorized into seven epitope groups. The combinational neutralization efficacy of two epitope groups was not synergistic. Each epitope was partially or completely resistant to concanavalin A blocking of the glycomoiety of gH, and their antibodies inhibited the cell-to-cell spread of infection. The neutralization epitope comprised at least seven independent protein portions of gH that served as the target to inhibit cell-to-cell spread. 相似文献
14.
Grose C 《Journal of virology》2012,86(18):9558-9565
The goal of this minireview is to provide an overview of varicella-zoster virus (VZV) phylogenetics and phylogeography when placed in the broad context of geologic time. Planet Earth was formed over 4 billion years ago, and the supercontinent Pangaea coalesced around 400 million years ago (mya). Based on detailed tree-building models, the base of the phylogenetic tree of the Herpesviridae family has been estimated at 400 mya. Subsequently, Pangaea split into Laurasia and Gondwanaland; in turn, Africa rifted from Gondwanaland. Based on available data, the hypothesis of this minireview is that the ancestral alphaherpesvirus VZV coevolved in simians, apes, and hominins in Africa. When anatomically modern humans first crossed over the Red Sea 60,000 years ago, VZV was carried along in their dorsal root ganglia. Currently, there are five VZV clades, distinguishable by single nucleotide polymorphisms. These clades likely represent continued VZV coevolution, as humans with latent VZV infection left Arabia and dispersed into Asia (clades 2 and 5) and Europe (clades 1, 3, and 4). The prototype VZV sequence contains nearly 125,000 bp, divided into 70 open reading frames. Generally, isolates within a clade display >99.9% identity to one another, while members of one clade compared to a second clade show 99.8% identity to one another. Recently, four different VZV genotypes that do not segregate into the previously defined five clades have been identified, a result indicating a wider than anticipated diversity among newly collected VZV strains around the world. 相似文献
15.
16.
Phylogenetic Analysis of Buggy Creek Virus: Evidence for Multiple Clades in the Western Great Plains, United States of America
下载免费PDF全文

Martin Pfeffer Jerome E. Foster Eric A. Edwards Mary Bomberger Brown Nicholas Komar Charles R. Brown 《Applied microbiology》2006,72(11):6886-6893
We present the first detailed phylogenetic analysis of Buggy Creek virus (BCRV), a poorly known alphavirus with transmission cycles involving a cimicid swallow bug (Oeciacus vicarius) vector and cliff swallows (Petrochelidon pyrrhonota) and house sparrows (Passer domesticus) as the principal avian hosts. Nucleotide sequences of a 2,075-bp viral envelope glycoprotein-coding region, covering the entire PE2 gene, were determined for 33 BCRV isolates taken from swallow bugs at cliff swallow colonies in Nebraska and Colorado in the summer of 2001 and were compared with the corresponding region of BCRV isolates collected from Oklahoma in the 1980s. We also analyzed isolates of the closely related Fort Morgan virus (FMV) collected from Colorado in the 1970s. Phylogenetic analysis indicated that BCRV falls into the western equine encephalomyelitis complex of alphaviruses, in agreement with antigenic results and a previous alphavirus phylogeny based on the E1 coding region. We found four distinct BCRV/FMV clades, one each unique to Nebraska, Colorado, and Oklahoma and one containing isolates from both Nebraska and Colorado. BCRV isolates within the two clades from Nebraska showed 5.7 to 6.2% nucleotide divergence and 0.7 to 1.9% amino acid divergence, and within these clades, we found multiple subclades. Nebraska subclades tended to be confined to one or a few cliff swallow colonies that were close to each other in space, although in some cases, near-identical isolates were detected at sites up to 123 km apart. Viral gene flow occurs when cliff swallows move (bugs) between colony sites, and the genetic structure of BCRV may reflect the limited dispersal abilities of its insect vector. 相似文献
17.
D. M. McLean Patricia A. Smith Sandra E. Livingstone W. E. Wilson A. G. Wilson 《CMAJ》1966,94(11):532-536
Powassan virus was isolated from seven pools of Ixodes cookei ticks removed from groundhogs (Marmota monax) collected near North Bay, Ontario, between May and August 1965, including five pools obtained during spring. Tick pools, each comprising one to nine ticks, contained 2.0 to 5.5 log10 TCD50 of virus upon titration in monolayer cultures of primary swine kidney cells. Powassan virus neutralizing antibody prevalence in sera of the current season''s groundhogs increased steadily from zero during May to 25% during August but remained relatively unchanged (42% to 58%) in the previous season''s groundhogs, thereby confirming that active infection had occurred particularly amongst juvenile groundhogs mainly during spring 1965. Isolation of one strain of Silverwater virus from Haemaphysalis leporis-palustris ticks and detection of neutralizing antibody in three of nine snowshoe hares (Lepus americanus) confirmed the active spread of this agent during 1965. 相似文献
18.
Jenna Christensen Megan Steain Barry Slobedman Allison Abendroth 《Journal of virology》2013,87(24):13719-13728
Neurons of the sensory ganglia are the major site of varicella-zoster virus (VZV) latency and may undergo productive infection during reactivation. Although the VZV glycoprotein E/glycoprotein I (gE/gI) complex is known to be critical for neurovirulence, few studies have assessed the roles of these proteins during infection of dorsal root ganglia (DRG) due to the high human specificity of the virus. Here, we show that the VZV glycoprotein I gene is an important neurotropic gene responsible for mediating the spread of virus in neuronal cultures and explanted DRG. Inoculation of differentiated SH-SY5Y neuronal cell cultures with a VZV gI gene deletion strain (VZV rOkaΔgI) showed a large reduction in the percentage of cells infected and significantly smaller plaque sizes in a comparison with cultures infected with the parental strain (VZV rOka). In contrast, VZV rOkaΔgI was not significantly attenuated in fibroblast cultures, demonstrating a cell type-specific role for VZV gI. Analysis of rOkaΔgI protein localization by immunofluorescent staining revealed aberrant localization of viral glycoprotein and capsid proteins, with little or no staining present in the axons of differentiated SH-SY5Y cells infected with rOkaΔgI, yet axonal vesicle trafficking was not impaired. Further studies utilizing explanted human DRG indicated that VZV gI is required for the spread of virus within DRG. These data demonstrate a role for VZV gI in the cell-to-cell spread of virus during productive replication in neuronal cells and a role in facilitating the access of virion components to axons. 相似文献
19.
Temperature-Sensitive Mutants of Murine Leukemia Virus IV. Further Physiological Characterization and Evidence for Genetic Recombination 总被引:2,自引:5,他引:2
下载免费PDF全文

Several temperature-sensitive mutants of the Rauscher strain of murine leukemia virus representing three distinct physiological groups have been further characterized. Genetic recombination between different pairs of these mutants has been demonstrated. Several representative genetic recombinants were isolated and shown to replicate equally well at the permissive (31 C) and nonpermissive (38 C) temperatures and to have serological characteristics of the wild-type parental virus. Alternative models for the mechanisms involved in recombination between type C RNA viruses are discussed. 相似文献
20.
Complex Formation Facilitates Endocytosis of the Varicella-Zoster Virus gE:gI Fc Receptor 总被引:1,自引:10,他引:1
下载免费PDF全文

Open reading frames within the unique short segment of alphaherpesvirus genomes participate in egress and cell-to-cell spread. The case of varicella-zoster virus (VZV) is of particular interest not only because the virus is highly cell associated but also because its most prominent cell surface protein, gE, bears semblance to the mammalian Fc receptor FcγRII. A previous study demonstrated that when expressed alone in cells, VZV gE was endocytosed from the cell surface through a tyrosine localization motif in its cytoplasmic tail (J. K. Olson and C. Grose, J. Virol. 71:4042–4054, 1997). Since VZV gE is normally found in association with gI in the infected cell, the present study was directed at defining the trafficking of the VZV gE:gI protein complex. First, VZV gI underwent endocytosis and recycling when it was expressed alone in cells, and interestingly, VZV gI contained a methionine-leucine internalization motif in its cytoplasmic tail. Second, VZV gI was found by confocal microscopy to colocalize with VZV gE during endocytosis and recycling in cells. Third, by a quantitative internalization assay, VZV gE:gI was shown to undergo endocytosis more efficiently (steady state, 55 to 60%) than either gE alone (steady state, ~32%) or gI alone (steady state, ~45%). Further, examination of endocytosis-deficient mutant proteins demonstrated that VZV gI exerted a more pronounced effect than gE on internalization of the complex. Most importantly, therefore, these studies suggest that VZV gI behaves as an accessory component by facilitating the endocytosis of the major constituent gE and thereby modulating the trafficking of the entire cell surface gE:gI Fc receptor complex. 相似文献