首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Peptide interactions with G-protein coupled receptors.   总被引:3,自引:0,他引:3  
G R Marshall 《Biopolymers》2001,60(3):246-277
Peptide recognition by G-protein coupled receptors (GPCRs) is reviewed with an emphasis on the indirect approach used to determine the receptor-bound conformation of peptide ligands. This approach was developed in response to the lack of detailed structural information available for these receptors. Recent advances in the structural determination of rhodopsin (the GPCR of the visual system) by crystallography have provided a scaffold for homology modeling of the inactive state of a wide variety of GPCRs that interact with peptide messages. Additionally, the ability to mutate GPCRs and assay compounds of similar chemical structure to test a common binding site on the receptor provides a firm experimental basis for structure-activity studies. Recognition motifs, common in other well-studied systems such as proteolytic enzymes and major histocompatibility class receptors (MHC) are reviewed briefly to provide a basis of comparison. Finally, the development of true peptidomimetics is contrasted with nonpeptide ligands, discovered through combinatorial chemistry. In many systems, the evidence suggests that the peptide ligands bind at the interface between the transmembrane segments and the extracellular loops, while nonpeptide antagonists bind within the transmembrane segments. Plausible models of GPCRs and the mechanism by which they activate G-proteins on binding peptides are beginning to emerge.  相似文献   

2.
3.
Classifying G-protein coupled receptors with support vector machines   总被引:7,自引:0,他引:7  
MOTIVATION: The enormous amount of protein sequence data uncovered by genome research has increased the demand for computer software that can automate the recognition of new proteins. We discuss the relative merits of various automated methods for recognizing G-Protein Coupled Receptors (GPCRs), a superfamily of cell membrane proteins. GPCRs are found in a wide range of organisms and are central to a cellular signalling network that regulates many basic physiological processes. They are the focus of a significant amount of current pharmaceutical research because they play a key role in many diseases. However, their tertiary structures remain largely unsolved. The methods described in this paper use only primary sequence information to make their predictions. We compare a simple nearest neighbor approach (BLAST), methods based on multiple alignments generated by a statistical profile Hidden Markov Model (HMM), and methods, including Support Vector Machines (SVMs), that transform protein sequences into fixed-length feature vectors. RESULTS: The last is the most computationally expensive method, but our experiments show that, for those interested in annotation-quality classification, the results are worth the effort. In two-fold cross-validation experiments testing recognition of GPCR subfamilies that bind a specific ligand (such as a histamine molecule), the errors per sequence at the Minimum Error Point (MEP) were 13.7% for multi-class SVMs, 17.1% for our SVMtree method of hierarchical multi-class SVM classification, 25.5% for BLAST, 30% for profile HMMs, and 49% for classification based on nearest neighbor feature vector Kernel Nearest Neighbor (kernNN). The percentage of true positives recognized before the first false positive was 65% for both SVM methods, 13% for BLAST, 5% for profile HMMs and 4% for kernNN.  相似文献   

4.
G-protein-coupled receptor function involves interactions between the receptor, G-proteins and effectors in the cell plasma membrane. The main biochemical processes have been individually identified but the mechanisms governing the successive protein–protein interactions of this complex multi-molecular machinery have yet to be established. We discuss advances in understanding the functional dynamics of the receptor resulting from diffusion measurements, and in the context of the plasma membrane organization. Aurélie Baker and Aude Saulière contributed equally to this work. Presented at the joint biannual meeting of the SFB-GEIMM-GRIP, Anglet France, 14–19 October, 2006.  相似文献   

5.
孤儿G蛋白偶联受体研究进展   总被引:3,自引:0,他引:3  
孤儿G蛋白偶联受体的研究意味着发现其尚未了解的内源性配体,是后基因组时代功能基因组学研究的热点之一,对生命科学的发展具有深 影响。本文介绍孤儿G蛋白偶联受体的概念、研究策略及其应用。  相似文献   

6.

Background  

Because a priori knowledge about function of G protein-coupled receptors (GPCRs) can provide useful information to pharmaceutical research, the determination of their function is a quite meaningful topic in protein science. However, with the rapid increase of GPCRs sequences entering into databanks, the gap between the number of known sequence and the number of known function is widening rapidly, and it is both time-consuming and expensive to determine their function based only on experimental techniques. Therefore, it is vitally significant to develop a computational method for quick and accurate classification of GPCRs.  相似文献   

7.
Summary The conformation of the C-terminus of the α-subunit of transducin, the G-protein of vision, has been determined by transfer NOE when bound to activated (MII) rhodopsin. One hundred three new NOE constraints are apparent when light is shown on a mixture of rhodopsin bilayers and the undecapeptide. Analogs of the α-peptide with covalent constraints were designed restricting the bound conformation; they stabilize MII thus supporting the deduced structure. The NMR structure of a complex of the intracellular loops of rhodopsin facilitates docking of the α-peptide and also shows proximity of residues known by mutational analysis to interact to generate the activated rhodopsin-transducin interface. This constrains the location of transmembrane helices in the structure of activated rhodopsin. Methods for the prediction of affinity have been used to estimate the relative binding constants of peptide analogs with the loop complex and show strong correlation with experimental data. Various models of the rhodopsin-transmembrane helical segments have been computationally fused with distance geometry to determine the overall model which best fits the experimental data on the rhodopsin-transducin interface.  相似文献   

8.
The conformation of the C-terminus of the -subunit of transducin, the G-protein of vision, has been determined by transfer NOE when bound to activated (MII) rhodopsin. One hundred three new NOE constraints are apparent when light is shown on a mixture of rhodopsin bilayers and the undecapeptide. Analogs of the -peptide with covalent constraints were designed restricting the bound conformation; they stabilize MII thus supporting the deduced structure. The NMR structure of a complex of the intracellular loops of rhodopsin facilitates docking of the -peptide and also shows proximity of residues known by mutational analysis to interact to generate the activated rhodopsin-transducin interface. This constrains the location of transmembrane helices in the structure of activated rhodopsin. Methods for the prediction of affinity have been used to estimate the relative binding constants of peptide analogs with the loop complex and show strong correlation with experimental data. Various models of the rhodopsin-transmembrane helical segments have been computationally fused with distance geometry to determine the overall model which best fits the experimental data on the rhodopsin-transducin interface.  相似文献   

9.
10.
We have developed a quantitative assay of calmodulin (CaM) binding to S-Tag labeled peptides derived from G-protein coupled receptor (GPCR) sequences. CaM binding of peptides derived from the third intracellular loop (i3) of mu opioid receptor (MOR) was confirmed and the CaM-binding motif refined. A MORi3 peptide with a Lys > Ala substitution--shown to reduce CaM-binding of intact MOR--bound fivefold less avidly than the wild-type peptide. Screening peptides derived from i3 loops of other GPCR families confirmed 5HT1A, and identified muscarinic receptor 3, and melanocortin receptor 1, as proteins carrying CaM-binding domains. The use of S-Tag labeling can serve for rapid screening of putative CaM-binding domains in GPCRs.  相似文献   

11.
A correlated mutation analysis has been performed on the aligned protein sequences of a number of class A G-protein coupled receptor families, including the chemokine, neurokinin, opioid, somatostatin, thyrotrophin and the whole biogenic amine family. Many of the correlated mutations are observed flanking or neighbouring conserved residues. The correlated residues have been plotted onto the transmembrane portion of the rhodopsin crystal structure. The structure shows that a significant proportion of the correlated mutations are located on the external (lipid-facing) region of the helices. The occurrence of these highly correlated patterns of change amongst the external residues suggest that they are sites for protein-protein interactions. In particular, it is suggested that the correlated residues may be involved in either large conformational changes, the formation of heterodimers or homodimers (which may be domain swapped) or oligomers required for activation or internalization. The results are discussed in the light of the subtype-specific heterodimerization observed for the chemokine, opioid and somatostatin receptors.  相似文献   

12.
Relaxin-1 is a heterodimeric peptide hormone primarily produced by the pregnant corpus luteum and/or placenta and is involved in many essential physiological processes centered on its action as a potent extracellular matrix (ECM) remodeling agent. Insulin-like peptide 3 (INSL3), also known as relaxin-like factor, is predominantly expressed in the Leydig cells of the testes and is an important mediator of testicular descent. The relaxin-1 equivalent peptide in humans is actually the product of the human RLN2 gene, human 2 (H2) relaxin. Recently identified and thought to be the ancestral relaxin, relaxin-3 is specifically expressed in the nucleus incertus of the mouse and rat brain and is most likely an important neuropeptide. Each of the hormones above act on cell membrane G-protein coupled receptors (GPCRs). The relaxin-1 receptor is leucine-rich repeat-containing GPCR 7 (LGR7) whereas INSL3 acts on the closely related LGR8. These receptors have large extra-cellular domains containing multiple leucine-rich repeats (LRRs) and a unique LDL receptor-like cysteine-rich motif (LDLR-domain). Relaxin-3 will bind and activate LGR7 with 50-fold lower activity than H2 relaxin. Two relaxin-3 selective GPCRs; somatostatin and angiotensin like peptide receptor (SALPR) and GPCR 142 were recently identified, these type I GPCRs are unrelated to LGR7 and LGR8. The discovery and characterisation of these receptors is greatly aiding the quest to unravel the mechanics of these important hormones, however with three other family members, insulin-like peptides 4–6 (INSL4, INSL5 and INSL6) with unknown functions and unidentified receptors, there is still much to be learnt about this hormone family.  相似文献   

13.
14.
In this paper, the most popular proposed mechanism for activation of G-protein coupled receptors (GPCRs) - the shuttling mechanism - is modelled mathematically. An asymptotic analysis of this model clarifies the dynamics of the system in the presence of a drug, in particular identifying which reactions dominate during the different timescales. The modelling also reveals challenging behaviour in the form of a peak response. This new mechanism gives simple explanations for complex, possibly misunderstood, behaviour.  相似文献   

15.
Nematode Chemosensory G-Protein Coupled Receptors have expanded within nematodes, where they play important roles in foraging and host-seeking behaviour. Nematode Chemosensory G-Protein Coupled Receptors are most highly expressed during free-living stages when chemosensory signalling is required for host detection and nematode activation in various parasitic nematodes, and therefore position Nematode Chemosensory G-Protein Coupled Receptors at the transition from infective to parasitic stages, making them important regulators to study in terms of host-seeking and host specificity. To facilitate the analysis of Nematode Chemosensory G-Protein Coupled Receptors, here we describe an integrative database of nematode chemoreceptors called NemChR-DB. This database enables users to study diverse parasitic nematode chemoreceptors, functionally explore sequence entries through structural and literature-based annotations, and perform cross-species comparisons.  相似文献   

16.
Cytomegaloviruses (CMVs) are species-specific beta-herpesviruses whose replicative success is largely due to establishment of novel mechanisms for altering the host immune response. CMV encodes 3 families of putative G-protein coupled receptors (GPCRs) likely pirated from the host cell. While the functions of these virally encoded GPCRs remain unclear, the receptors possess potent signaling abilities. Understanding the molecular regulation of these GPCRs will provide important insight into CMV pathogenesis.  相似文献   

17.
MOTIVATION: Previous work had established that it was possible to derive sparse signatures (essentially sequence-length motifs) by examining points of contact between residues in proteins of known three-dimensional (3D) structure. Many interesting protein families have very little tertiary structural information. Methods for deriving signatures using only primary and secondary-structural information were therefore developed. RESULTS: Two methods for deriving protein signatures using protein sequence information and predicted secondary structures are described. One method is based on a scoring approach, the other on the Genetic Algorithm (GA). The effectiveness of the method was tested on the superfamily of GPCRs and compared with the established hidden Markov model (HMM) method. The signature method is shown to perform well, detecting 68% of superfamily members before the first false positive sequence and detecting several distant relationships. The GA population was used to provide information on alignment regions of particular importance for selection of key residues.  相似文献   

18.
We have developed a mammalian expression system suitable for the production of enzymatically biotinylated integral membrane proteins. The key feature of this system is the doxycycline (dox)-regulated co-expression of a secreted variant of Escherichia coli biotin ligase (BirA) and a target protein with a 13-residue biotin acceptor peptide (BioTag) appended to its extracellular domain. Here we describe the expression and functional analysis of three G-protein coupled receptors (GPCRs): protease-activated receptors (PARs) 1 and 2, and the platelet ADP receptor, P2Y(12). Clonal Chinese hamster ovary (CHO) Tet-On cell lines that express biotinylated GPCRs were rapidly isolated by fluorescence-activated cell sorting following streptavidin-FITC staining, thereby circumventing the need for manual colony picking. Analysis by Western blotting with streptavidin-HRP following endoglycosidase treatment revealed that all three GPCRs undergo N-linked glycosylation. The expression of biotinylated GPCRs on the cell surface was regulated by the concentration of dox in the medium, reaching a maximum at approximately 1 microg/mL dox. Similarly, the extent of GPCR biotinylation was dependent on biotin concentration, with maximum and complete biotinylation achieved upon supplementation with 50 microM biotin. Biotinylated PAR1 and PAR2 were readily and specifically cleaved on the surface of intact cells by their cognate proteases, and were capable of transducing extracellular stimuli, resulting in the downstream phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, P2Y(12) mediated agonist-induced ERK phosphorylation only when it was expressed at low levels on the cell surface, highlighting the utility of regulated expression for the production of functionally active GPCRs in mammalian cells.  相似文献   

19.
Progestin, estrogen and androgen G-protein coupled receptors in fish gonads   总被引:5,自引:0,他引:5  
The identities of the membrane receptors mediating the majority of rapid, cell surface-initiated, nongenomic (i.e. nonclassical) steroid actions described to date are unclear. Two novel 7-transmembrane spanning proteins, representing two distinct classes of steroid membrane receptors, membrane progestin receptor alpha (mPRalpha) and a membrane estrogen receptor (mER), GPR30, have recently been identified in several vertebrate species. Evidence that both receptors activate G-proteins and function as G-protein coupled receptors (GPCRs) is briefly reviewed. New data on progestin actions on fish gametes suggest a widespread involvement of mPRalpha in oocyte maturation and sperm hyperactivity in this vertebrate group. Information on the second messenger pathways activated upon estrogen binding to a membrane estrogen receptor in croaker gonads and preliminary evidence for the presence of a GPR30-like protein in fish gonads are discussed. Finally, initial characterization of the ligand binding, G-protein activation and molecular size of a membrane androgen receptor (mAR) in croaker ovaries suggests the presence of a third unique steroid receptor in fish gonads that also may function as a GPCR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号