首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Ca2+ release triggered by inositol trisphosphate (Ins(1,4,5)P3) has been measured in saponin-permeabilized hepatocytes with 45Ca2+ or Quin 2. The initial rate of Ca2+ release was not greatly affected by the incubation temperature (175 +/- 40 pmol X s-1 X mg dry weight-1, at 30 degrees C versus 133 +/- 24 pmol X s-1 X mg dry weight-1 at 4 degrees C). The amount of Ca2+ released by Ins(1,4,5)P3 was not affected by pH (6.5-8.0). La3+ (100 microM) markedly inhibited the effect of 1 microM Ins(1,4,5)P3. The possibility that La3+ chelates Ins(1,4,5)P3 cannot be excluded since the effect of La3+ could be overcome by increasing the Ins(1,4,5)P3 concentration. Ins(1,4,5)P3-mediated Ca2+ release showed a requirement for permeant cations in the incubation medium. Optimal release was observed with potassium gluconate. Other monovalent cations, with the exception of Li+, can substitute for K+. Permeant anions, at concentrations above 40 mM, inhibited Ca2+ release produced by Ins(1,4,5)P3. Cl-, Br-, I-, and SO2-4 were equally effective as inhibitors. Ins(1,4,5)P3 also caused the release of 54Mn2+ and 85Sr2+ accumulated by the permeabilized hepatocytes. Our results are consistent with Ins(1,4,5)P3 promoting the membrane translocation of divalent cations through an ion channel rather than an ion carrier. The translocation of positive charge through this channel is balanced by ancillary movements of monovalent cations and anions across the reticular membranes. The transport systems responsible for these compensatory ion movements may represent a potential site for the regulation of the hormone-mediated Ca2+ signal.  相似文献   

2.
The effect of inositol 1,4,5-trisphosphate (IP3) on Ca2+ release in the transformed murine mast cells, mastocytoma P-815 cells permeabilized with digitonin was studied. Ca2+ was sequestered by intracellular organelles in the presence of ATP until the medium free Ca2+ concentration was lowered to a new steady-state level. The subsequent addition of IP3 caused a rapid Ca2+ release, which was followed by a slow re-uptake of Ca2+. Fifty percent of the sequestered Ca2+ was released by 10 μM IP3. Maximal Ca2+ release occurred at 10 μM and half maximal activity was at 1.3 μM. These results indicate that IP3 may function as a messenger of intracellular Ca2+ mobilization in mastocytoma cells.  相似文献   

3.
A P Dawson 《FEBS letters》1985,185(1):147-150
Low concentrations of GTP (10-50 microM) greatly enhance the inositol 1,4,5-trisphosphate stimulated Ca2+ release from rat liver microsomal vesicles. The effect of GTP depends on the presence of low concentrations of polyethylene glycol in the incubation medium. Guanylyl imidodiphosphate is ineffective at mimicking the GTP effect and inhibits the action of GTP added subsequently.  相似文献   

4.
Effects of Ca2+ ions on the mobilization of Ca2+ from intracellular stores of intact and permeabilized (15 microM digitonin) Ehrlich ascites tumour cells (EATC) have been compared. For permeabilized cells, the dependences of the initial rate and amplitude of Ca2+ mobilization evoked by the addition of 100 nM inositol 1,4,5-trisphosphate (IP3) on preexisting [Ca2+] were bell-shaped within a [Ca2+] range 10(-7)-10(-6) M with the maxima at [Ca2+] = 166 nM. In intact cells, different concentrations of free cytosolic Ca2+ ([Ca2+]i) were produced using low (up to 0.005%) concentrations of digitonin which selectively increased the permeability of the plasma membrane. Stimulation of cells by exogenous ATP at [Ca2+]i = 10(-8)-10(-6) M resulted in Ca2+ mobilization the rate and amplitude of which were maximal at 102-115 nM Ca2+. The experimental Ca2+ dependences were fit by a model which includes channel opening upon Ca2+ binding and transition to the inactive states upon Ca2+ binding to the closed and open channel forms. Three inactivation types (including two particular cases) demonstrate a slight priority of inhibitory binding of Ca2+ only to the open channel, but predict markedly different parameter values. We conclude that an increase in [Ca2+] can stimulate IP3-induced mobilization, but in intact EATC, deviations of [Ca2+]i from the resting level (about 100 nM) attenuate responses to the agonist stimulation.  相似文献   

5.
Inositol 1,4,5-trisphosphate (Ins (1,4,5)P3)-stimulated Ca2+ release is inhibited by low concentrations of heparin (IC50 = 4.5 micrograms/ml). GTP-stimulated Ca2+ release is unaffected at a heparin concentration of 16 micrograms/ml. Addition of heparin after Ins (1,4,5)P3 causes the rapid re-uptake of Ins (1,4,5)P3-releasable Ca2+.  相似文献   

6.
The effects of Ca2+ and GTP on the release of Ca2+ from the inositol 1,4,5-trisphosphate (IP3) sensitive Ca2+ compartment were investigated with digitonin permeabilized rat pancreatic acinar cells. The amount of Ca2+ released due to IP3 directly correlated with the amount of stored Ca2+ and was found to be inversely proportional to the medium free Ca2+ concentration. Ca2+ release induced by 0.18 microM IP3 was half maximally inhibited at 0.5 microM free Ca2+, i.e. at concentrations observed in the cytosol of pancreatic acinar cells. GTP did not cause Ca2+ release on its own, but a single addition of GTP (20 microM) abolished the apparent desensitization of the Ca2+ release which was observed during repeated IP3 applications. This effect of GTP was reversible. GTP gamma S could not replace GTP. Desensitization still occurred when GTP gamma S was added prior to GTP. The reported data indicate that GTP, stored Ca2+ and cytosolic free Ca2+ modulate the IP3 induced Ca2+ release.  相似文献   

7.
J Kleineke  A Schr?der  H D S?ling 《FEBS letters》1989,245(1-2):274-278
The GTP-dependent calcium release from rat liver microsomes is known to be promoted in the presence of colloids like polyethyleneglycol (PEG), polyvinylpyrrolidine, or albumin. Dawson et al. [(1987) Biochem. J. 244, 87-92] using the 'fusogen' PEG have concluded that both GTP-induced calcium efflux and the enhancement of InsP3-promoted calcium release in the presence of GTP could be attributed to a GTP-dependent vesicle fusion. Here, using the more physiological colloid albumin we report that GTP-induced calcium release from rat liver microsomes may not be linked to vesicle fusion.  相似文献   

8.
Ca2+ uptake and IP3-induced Ca2+ release in permeabilized human lymphocytes   总被引:1,自引:0,他引:1  
G Eberl  K Schnell 《FEBS letters》1987,222(2):349-352
The 45Ca2+ uptake and 45Ca2+ release in saponin-permeabilized human lymphocytes were studied. An ATP-dependent Ca2+ uptake into a nonmitochondrial, intracellular Ca2+ store is observed which is approx. 2 orders of magnitude greater than the ATP-independent Ca2+ uptake. The Ca2+ uptake is inhibited by vanadate, but it is insensitive to oligomycin and ruthenium red. IP3 induces dose-dependent 45Ca2+ release. For half-maximum Ca2+ release 0.25-0.5 microM IP3 is required. The results of our studies suggest that 45Ca2+ is predominantly stored within the endoplasmic reticulum of the lymphocytes.  相似文献   

9.
Microsomes derived from pregnant uterine sarcoplasmic reticulum, isolated by differential and sucrose density gradient centrifugation, accumulates Ca2+ in the presence of ATP. Inositol trisphosphate caused release of this Ca2+, in a dose dependent manner. 40% of the Ca2+ that can be released by the ionophore A23187 was released by 5 microM inositol trisphosphate. Removal of Mg by EDTA prior to addition of inositol trisphosphate did not change the course of Ca2+ release. These results indicate that by mobilizing intracellular Ca2+, inositol trisphosphate may be the link between hormonal stimuli and smooth muscle contraction.  相似文献   

10.
Human liver microsomal fractions exhibit ATP-supported Ca2+ uptake which is half-maximal at 7 X 10(-7) M free Ca2+ in the presence of oxalate. Ca2+ uptake is coupled to a Ca2+-stimulated ATPase activity, which is half-maximal at 4 X 10(-7) M free Ca2+. Catalysis involves formation of an Mr = 116,000 phosphoprotein with stability characteristics of an acylphosphate compound suggested to represent a phosphoryl protein intermediate of the Ca2+-ATPase. Phosphorylation is half-maximal at about 10(-6) M free Ca2+. The Mr = 116,000 protein is highly susceptible to proteolysis with trypsin. The phosphorylated active site was localized in an Mr = 58,000 primary tryptic fragment and in an Mr = 34,000 subfragment. Analyses on the mechanism of the Ca2+-ATPase suggest the following reaction sequence: formation of an ADP-reactive phosphoenzyme (Mr = 116,000) with bound Ca2+, which can transphosphorylate its Pi to ADP, giving rise to synthesis of ATP; reversible transformation of the ADP-reactive phosphoenzyme into an isomer without bound Ca2+, which cannot further react with ADP; hydrolytical cleavage, probably catalyzed by Mg2+, of the ADP-unreactive phosphoenzyme with liberation of Pi. Comparison with the Ca2+-transport ATPase in sarcoplasmic reticulum of skeletal muscle led us to suggest that the Mr = 116,000 Ca2+-ATPase belongs to the class of E1P . E2P-ATPases and might be operative as a Ca2+-transport ATPase at the level of the endoplasmic reticulum in human liver.  相似文献   

11.
Hormonal and phorbol ester pretreatment of pancreatic acinar cells markedly decreases the Ins(1,4,5)P3-induced release of actively stored Ca2+ [Willems, Van Den Broek, Van Os & De Pont (1989) J. Biol. Chem. 264, 9762-9767]. Inhibition occurred at an ambient free Ca2+ concentration of 0.1 microM, suggesting a receptor-mediated increase in Ca2(+)-sensitivity of the Ins(1,4,5)P3-operated Ca2+ channel. To test this hypothesis, the Ca2(+)-dependence of Ins(1,4,5)P3-induced Ca2+ release was investigated. In the presence of 0.2 microM free Ca2+, permeabilized cells accumulated 0.9 nmol of Ca2+/mg of acinar protein in an energy-dependent pool. Uptake into this pool increased 2.2- and 3.3-fold with 1.0 and 2.0 microM free Ca2+ respectively. At 0.2, 1.0 and 2.0 microM free Ca2+, Ins(1,4,5)P3 maximally released 0.53 (56%), 0.90 (44%) and 0.62 (20%) nmol of Ca2+/mg of acinar protein respectively. Corresponding half-maximal stimulatory Ins(1,4,5)P3 concentrations were calculated to be 0.5, 0.6 and 1.4 microM, suggesting that the affinity of Ins(1,4,5)P3 for its receptor decreases beyond 1.0 microM free Ca2+. The possibility that an inhibitory effect of sub-micromolar Ca2+ is being masked by the concomitant increase in size of the releasable store is excluded, since Ca2+ release from cells loaded in the presence of 0.1 or 0.2 microM free Ca2+ and stimulated at higher ambient free Ca2+ was not inhibited below 1.0 microM free Ca2+. At 2.0 and 10.0 microM free Ca2+, Ca2+, Ca2+ release was inhibited by approx. 30% and 75% respectively. The results presented show that hormonal pretreatment does not lead to an increase in Ca2(+)-sensitivity of the release mechanism. Such an increase in Ca2(+)-sensitivity to sub-micromolar Ca2+ is required to explain sub-micromolar oscillatory changes in cytosolic free Ca2+ by a Ca2(+)-dependent negative-feedback mechanism.  相似文献   

12.
The possibility that inositol 1,4,5-trisphosphate (IP3) may act as a Ca2+-mobilizing second messenger in cardiac muscle in a manner analogous to its actions in other cell types has been examined using saponin-permeabilized myocytes and isolated cardiac sarcoplasmic reticulum. Myocytes permeabilized in the presence of MgATP2- sequestered Ca2+ to a level of about 200 nM, similar to the cytosolic free Ca2+ concentration of intact cells, but addition of IP3 was ineffective in causing Ca2+ release from intracellular stores. Similarly, IP3 (up to 50 microM) was unable to inhibit Ca2+ uptake or cause Ca2+ release from isolated canine cardiac sarcoplasmic reticulum vesicles in the presence of either EGTA or sodium vanadate. These results indicate that IP3 is unlikely to mediate mobilization of intracellular Ca2+ stores in myocardial cells.  相似文献   

13.
We have previously shown that inositol trisphosphate (IP3) releases Ca2+ from a nonmitochondrial pool of permeabilized rat pancreatic acinar cells (Streb, H., Irvine, R. F., Berridge, M. J., and Schulz, I. (1984) Nature 306, 67-69). This pool was later identified as endoplasmic reticulum (Streb, H., Bayerdorffer, E., Haase, W., Irvine, R. F., and Schulz, I. (1984) J. Membr. Biol. 81, 241-253). As IP3 is produced by hydrolysis of phosphatidylinositol bisphosphate on activation of many "Ca2+-mobilizing receptors," our observation supported the proposal that IP3 functions as a second messenger to release Ca2+ from the endoplasmic reticulum. We have here used the same preparation of permeabilized acinar cells to study the relationship of secretagogue-induced Ca2+ release and IP3 production. We show that: 1) secretagogue-induced Ca2+ release in permeabilized cells is accompanied by a parallel production of inositol trisphosphate. 2) When the secretagogue-induced increase in intracellular free Ca2+ concentration was abolished by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid buffering, secretagogue-induced IP3 production was unimpaired. 3) When secretagogue-induced IP3 production was reduced by inhibiting phospholipase C with neomycin, secretagogue-induced Ca2+ release was also abolished. 4) When the IP3 breakdown was reduced either by lowering the free Mg2+ concentration of the incubation medium or by adding 2.3-diphosphoglyceric acid, the rise in IP3 and the release of Ca2+ induced by secretagogues were both increased. These results further support the role of IP3 as a second messenger to induce Ca2+ mobilization.  相似文献   

14.
Recent evidence indicates that unesterified arachidonic acid functions as a mediator of intracellular Ca2+ mobilization by inducing Ca2+ release from the endoplasmic reticulum of pancreatic islet beta cells in a manner closely similar to that of inositol 1,4,5-trisphosphate. To test the generality and explore the mechanism of this phenomenon we have examined the effects of arachidonic acid on calcium accumulation and release by hepatocyte subcellular fractions enriched in endoplasmic reticulum (microsomes). At concentrations above 0.017 mumol/mg microsomal protein, arachidonate induced rapid (under 2 min) 45Ca2+ release from microsomes that had been preloaded with 45Ca2+. Arachidonate also suppressed microsomal 45Ca2+ accumulation when present during the loading period, as reflected by reduction both of 45Ca2+ accumulation at steady state and of the rate of uptake. Neither the cyclooxygenase inhibitor indomethacin nor the lipoxygenase/cyclooxygenase inhibitor BW755C suppressed arachidonate-induced 45Ca2+ release, indicating that this effect was not dependent upon oxygenation of the fatty acid to metabolites. The long-chain unsaturated fatty acids oleate and linoleate were less potent than arachidonate in inducing 45Ca2+ release, and the saturated fatty acid stearate did not exert this effect. Albumin prevented 45Ca2+ release by arachidonate, presumably by binding the fatty acid. As is the case for inositol 1,4,5-trisphosphate, the ability of arachidonate to induce 45Ca2+ release was dependent on the ambient free Ca2+ concentration. Arachidonate did not influence microsomal membrane permeability or Ca2+-ATPase activity and may exert its effects on microsomal Ca2+ handling by activation of a Ca2+ extrusion mechanism or by dissociating Ca2+ uptake from Ca2+-ATPase activity.  相似文献   

15.
16.
Adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) was used to examine the role of phosphorylation in the regulation of norepinephrine secretion by digitonin-permeabilized PC12 cells. While most kinases will use ATP gamma S to thiophosphorylate proteins, thiophosphorylated proteins are relatively resistant to dethiophosphorylation by protein phosphatases. Norepinephrine secretion by permeabilized PC12 cells was ATP- and Ca2+-dependent but resistant to calmodulin antagonists. Half-maximum secretion was obtained in 0.75 microM Ca2+. Permeabilized PC12 cells were incubated with ATP gamma S in the absence of Ca2+, the ATP gamma S was removed, and norepinephrine secretion was determined. Preincubation with ATP gamma S increased the amount of norepinephrine secreted in the absence of Ca2+, but it had no effect on the amount released in the presence of Ca2+. After a 15-min preincubation in 1 mM ATP gamma S, there was almost as much secretion in the absence of Ca2+ as in its presence. Inclusion of ATP in the preincubation inhibited the effect of ATP gamma S. Ca2+ stimulated the rate of modification by ATP gamma S as brief preincubations with ATP gamma S in the presence of Ca2+ resulted in higher levels of Ca2+-independent secretion than did preincubations with ATP gamma S in the absence of Ca2+. Similarly, brief preincubations of permeabilized cells with ATP in the presence of Ca2+ resulted in elevated levels of Ca2+-independent secretion. Secretion of norepinephrine from ATP gamma S-treated cells was ATP-dependent. These results suggest that norepinephrine secretion by PC12 cells is regulated by a Ca2+-dependent phosphorylation. Once this phosphorylation has occurred, secretion is still ATP-dependent, but it no longer requires Ca2+.  相似文献   

17.
NAADP (nicotinic acid-adenine dinucleotide phosphate) is fast emerging as a new intracellular Ca2+-mobilizing messenger. NAADP induces Ca2+ release by a mechanism that is distinct from IP3 (inositol 1,4,5-trisphosphate)- and cADPR (cADP-ribose)-induced Ca2+ release. In the present study, we demonstrated that micromolar concentrations of NAADP trigger Ca2+ release from rat hepatocyte microsomes. Cross-desensitization to IP3 and cADPR by NAADP did not occur in liver microsomes. We report that non-activating concentrations of NAADP can fully inactivate the NAADP-sensitive Ca2+-release mechanism in hepatocyte microsomes. The ability of thapsigargin to block the NAADP-sensitive Ca2+ release is not observed in sea-urchin eggs or in intact mammalian cells. In contrast with the Ca2+ release induced by IP3 and cADPR, the Ca2+ release induced by NAADP was completely independent of the free extravesicular Ca2+ concentration and pH (in the range 6.4-7.8). The NAADP-elicited Ca2+ release cannot be blocked by the inhibitors of the IP3 receptors and the ryanodine receptor. On the other hand, verapamil and diltiazem do inhibit the NAADP- (but not IP3- or cADPR-) induced Ca2+ release.  相似文献   

18.
A possible role in secretory processes is proposed for inositol 1,4,5-triphosphate (IP3), based upon investigations of the Ca2+ steady state maintained by "leaky', insulin-secreting RINm5F cells. These cells had been treated with digitonin to permeabilize their plasma membranes and thereby ensure that only intracellular Ca2+ buffering mechanisms were active. When placed in a medium with a cation composition resembling that of the cytosol, cells rapidly took up Ca2+ as measured by a Ca2+-specific minielectrode. Two Ca2+ steady states were observed. A lower level of around 120nM required ATP-dependent Ca2+ uptake and was probably determined by the endoplasmic reticulum. The higher steady state (approx. 800 nM), seen only in the absence of ATP, was shown to be due to mitochondrial activity. IP3 specifically released Ca2+ accumulated in the ATP-dependent pool, but not from mitochondria, since Ca2+ release was demonstrated in the presence of the respiratory poison antimycin. The IP3-induced Ca2+ release was rapid, with 50% of the response being seen within 15s. The apparent Km was 0.5 microM and maximal concentrations of IP3 (2.5 microM) produced a peak Ca2+ release of 10 nmol/mg of cell protein, which was followed by re-uptake. A full Ca2+ response was seen if sequential pulses of 2.5 microM-IP3 were added at 20 min intervals, although there was a slight (less than 20%) attenuation if the intervening period was decreased to 10 min. These observations could be related to the rate of IP3 degradation which, in this system, corresponded to a 25% loss of added 32P label within 2 min, and a 75% loss within 20 min. The results suggest that IP3 might act as a link between metabolic, cationic and secretory events during the stimulation of insulin release.  相似文献   

19.
Heparin was found to inhibit the Ca2+ release induced by inositol 1,4,5-trisphosphate (IP3) in permeabilized pancreatic beta-cells obtained from obese hyperglycemic mice. The effect of heparin was dose-dependent and not due to inhibition of Ca2+ uptake into the IP3-sensitive pool. The effect appeared specific for heparin and was not reproduced by other polysaccharides such as chondroitin sulfates. Heparin might consequently be a useful tool when investigating the molecular mechanism whereby IP3 mobilizes Ca2+.  相似文献   

20.
Mobilization of Ca2+ from intracellular stores is an important mechanism for generating cytoplasmic Ca2+ signals [1]. Two families of intracellular Ca(2+)-release channels - the inositol-1,4, 5-trisphosphate (IP3) receptors and the ryanodine receptors (RyRs) - have been described in mammalian tissues [2]. Recently, nicotinic acid adenine dinucleotide phosphate (NAADP), a molecule derived from NADP+, has been shown to trigger Ca2+ release from intracellular stores in invertebrate eggs [3] [4] [5] [6] and pancreatic acinar cells [7]. The nature of NAADP-induced Ca2+ release is unknown but it is clearly distinct from the IP3- and cyclic ADP ribose (cADPR)-sensitive mechanisms in eggs (reviewed in [8] [9]). Furthermore, mammalian cells can synthesize and degrade NAADP, suggesting that NAADP-induced Ca2+ release may be widespread and thus contribute to the complexity of Ca2+ signalling [10] [11]. Here, we show for the first time that NAADP evokes Ca2+ release from rat brain microsomes by a mechanism that is distinct from those sensitive to IP3 or cADPR, and has a remarkably similar pharmacology to the action of NAADP in sea urchin eggs [12]. Membranes prepared from the same rat brain tissues are able to support the synthesis and degradation of NAADP. We therefore suggest that NAADP-mediated Ca2+ signalling could play an important role in neuronal Ca2+ signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号