首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arachidonate 12-lipoxygenases of porcine and bovine leukocytes were different in substrate specificity and immunogenicity from the enzyme of bovine platelets (Arch. Biochem. Biophys. (1988) 266, 613). In order to extend the comparative studies on the two types of 12-lipoxygenase, we purified the enzyme from the cytosol of human platelets by immunoaffinity chromatography to a specific activity of about 0.3 mumol/min per mg protein at 37 degrees C. The purified enzyme was active with eicosapolyenoic acids and docosahexaenoic acid. Linoleic and linolenic acids were poor substrates in contrast to the high reactivity of the leukocyte enzymes with these octadecapolyenoic acids. The finding that the human platelet enzyme catalyzed 15-oxygenation of 5S-hydroxy-6,8,11,14-eicosatetraenoic acid, raised a question if lipoxins were produced by incubation of the enzyme with leukotriene A4. However, the leukotriene A4 was scarcely transformed to lipoxin isomers by 12-lipoxygenases of human and bovine platelets. In sharp contrast, the porcine and bovine leukocyte enzymes converted leukotriene A4 to various lipoxin isomers by the reaction rates of 3% and 2% of the arachidonate 12-oxygenation. Thus, 12-lipoxygenases of human and bovine platelets were catalytically distinct from the porcine and bovine leukocyte enzymes in terms of their reactivities not only with linoleic and linolenic acids, but also with leukotriene A4 as lipoxin precursor.  相似文献   

2.
We examined the characteristics of an arachidonate 12-lipoxygenase in bovine tracheal epithelial cells in relation to the enzyme expressed in leukocytes and platelets. Homogenous preparations of intact or disrupted tracheal epithelial cells metabolized arachidonic acid predominantly to (12S)-hydroxyeicosatetraenoic acid, and subcellular fractionation by differential centrifugation demonstrated that the 12-lipoxygenase activity was localized predominantly to the 100,000 x g supernatant (cytosol fraction). Analysis of cytosolic enzymatic activity for pH dependence (maximum activity at pH 7.4-8.0), divalent cation effects (no dependence on cations), and kinetic characteristics (lag phase elimination by addition of hydroperoxide) exhibited similarity to leukocyte and platelet 12-lipoxygenases. Immunoprecipitation experiments demonstrated that the epithelial 12-lipoxygenase reacted with a monoclonal antibody (lox-2) directed against leukocyte 12-lipoxygenase but not with an antibody (HPLO-3) against the platelet enzyme. Immunoaffinity chromatography of the epithelial 100,000 x g supernatant fraction using lox-2 linked to Affi-Prep 10 yielded a single predominant protein band (Mr = 72,000) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis identical in apparent mass to the bovine leukocyte lipoxygenase. Western blotting using a polyclonal antibody to leukocyte 12-lipoxygenase showed peroxidase staining of the same 72-kDa protein band. Activity assays of the purified enzymes demonstrated that substrate specificity for the epithelial 12-lipoxygenase was similar to that of the leukocyte enzyme, but the epithelial enzyme more efficiently converted 18-carbon fatty acids to the corresponding monohydroxylated conjugated dienes. We conclude that bovine tracheal epithelial cells express a 12-lipoxygenase that has immunological reactivity similar to leukocyte and distinct from platelet 12-lipoxygenase and possesses substrate specificity distinct from both enzymes. We further suggest that lipoxygenase heterogeneity may provide a basis for different functional roles for the enzyme in different cell types.  相似文献   

3.
12-Lipoxygenases oxygenate arachidonic acid producing its 12S-hydroperoxy derivative and are well known as platelet and leukocyte enzymes. When a peroxidase-linked immunoassay of the enzyme according to the avidin-biotin method was applied to the cytosol fractions from various parts of porcine brain, a considerable amount of the enzyme was found in the anterior pituitary. The enzyme level (about 200 ng/mg cytosol protein) corresponded to about 6% of the enzyme content in porcine peripheral leukocytes. Posterior and intermediate lobes showed about one-tenth of the enzyme level of anterior pituitary. Other parts of porcine brain contained the 12-lipoxygenase in amounts below 7 ng/mg cytosol protein. The cytosol fraction (0.7 mg of protein) of anterior pituitary produced 12S-hydroxy-5,8,10,14-eicosatetraenoic acid from 25 microM arachidonic acid in about 34% conversion at 24 degrees C for 5 min, giving a specific enzyme activity about 3 nmol/min/mg protein. Furthermore, various octadecapolyenoic acids were oxygenated almost as fast as the arachidonate 12-oxygenation. When anterior pituitary was investigated immunohistochemically with anti-12-lipoxygenase antibody, most of the immunostained cells were certain parenchymal cells with granules, which were not blood cells. These biochemical and immunohistochemical results provide a good reason for considering that 12-lipoxygenase does play an important role in pituitary function.  相似文献   

4.
The cytosol fraction from a thoroughly irrigated canine cerebrum was subjected to immunoaffinity chromatography using a monoclonal antibody against porcine leukocyte 12-lipoxygenase. Arachidonate 12-lipoxygenase eluted from the column with some retardation. The enzyme, with a specific activity of 9 nmol/min/mg of protein, converted arachidonic acid to 12(S)-hydroperoxy-5,8,10,14-eicosatetraenoic acid. The enzyme was active not only with arachidonic acid, but also with linoleic and alpha-linolenic acids. In contrast, 12-lipoxygenase of canine platelets was almost inactive with linoleic and alpha-linolenic acids, and the platelet enzyme was also distinguished from the cerebral enzyme in terms of reactivity with the anti-12-lipoxygenase antibody. 12-Lipoxygenase activity was also detected in the cytosol fractions of other parts of canine brain: basal ganglia, hippocampus, cerebellum, olfactory bulb, and medulla oblongata.  相似文献   

5.
Human milk peroxidase is derived from milk leukocytes   总被引:5,自引:0,他引:5  
Peroxidase enzymes present in human colostrum, saliva, polymorphonuclear leukocytes, and bovine milk were compared with respect to their molecular exclusion chromatographic behavior and immunological cross-reactivity. Human milk peroxidase gave an elution profile similar to myeloperoxidase derived from blood polymorphonuclear leukocytes. Human salivary peroxidase reacted with an antibody directed against bovine lactoperoxidase, but with the same antibody preparation no reaction was detected either with human milk peroxidase or leukocyte myeloperoxidase. We conclude that the peroxidase enzyme in human milk is different from the human salivary and the bovine enzymes and is probably derived from milk leukocytes.  相似文献   

6.
Lipoxygenases of bovine and human corneal epithelia were investigated. The bovine epithelium contained an arachidonate 12-lipoxygenase and a 15-lipoxygenase. The 12-lipoxygenase was found in the microsomal fraction, while the 15-lipoxygenase was mainly present in the cytosol (100 000 × g supernatant). 12S-Hydroxyeicosatetraenoic acid (12S-HETE) and 15S-hydroxyeicosa-tetraenoic acid (15S-HETE) were identified by GC-MS and chiral HPLC. BW A4C, an acetohydroxamic acid lipoxygenase inhibitor, reduced the biosynthesis of 12S-HETE and 15S-HETE by over 90% at 10 μ M. IC50 for the 12-lipoxygenase was 0.3 μM. The bovine corneal 12-lipoxygenase was compared with the 12-lipoxygenases of bovine platelets and leukocytes. All three enzymes metabolized 14C-labelled linoleic acid and α-linolenic acid poorly (5–16%) in comparison with [l4C]arachidonic acid. [14C]Docosahexaenoic acid and [14C]4,7,10,13,16-docosapentaenoic acid appeared to be less efficiently converted by the corneal enzyme than by the platelet and leukocyte enzymes. Immunohistochemical analysis of the bovine corneal epithelium using a polyconal antibody against porcine leukocyte 12-lipoxygenase gave positive staining. The cytosol of human corneal epithelium converted [14C]arachidonic acid to one prominent metabolite. The product co-chromatographed with 15S-HETE on reverse phase HPLC, straight phase HPLC and chiral HPLC. Our results suggest that human corneal epithelium contains a 15-lipoxygenase and that bovine corneal epithelium contains both a 15-lipoxygenase and a 12-lipoxygenase. The corneal 12-lipoxygenase appears to differ catalytically from earlier described bovine 12-lipoxygenases.  相似文献   

7.
Evidence is presented that the IIb-IIIa glycoprotein complex, which functions as the receptor for fibrinogen on platelets and is central to platelet aggregation, is expressed on the surface of leukocytes where it may function as a receptor for fibronectin. F(ab')2 fragments of a monoclonal antibody, 25E11, raised against activated large granular lymphocytes, inhibited killing by natural killer cells, blocked the binding of fibronectin-coated particles by monocytes, and stimulated neutrophils to exhibit increased antibody-dependent killing. Immunoprecipitation studies of leukocytes and platelets, and the ability of 25E11 to inhibit platelet aggregation, identified the antigen as an epitope on the IIb-IIIa complex. This glycoprotein thus constitutes the first example of a receptor mediating both platelet aggregation and leukocyte adhesion.  相似文献   

8.
A peroxidase-linked immunoassay of the sandwich type was developed for a quantitative determination of the amount of human cyclooxygenase. Two species of monoclonal antibodies (hPES01 against the human enzyme and PES-5 against the bovine enzyme) were utilized, which recognized different epitopes on the cyclooxygenase of human platelets. The peroxidase activity of the immunoprecipitate was correlated with the amount of cyclooxygenase. The enzyme immunoassay was applied to platelets from 15 normal subjects and a clinical case of platelet cyclooxygenase abnormality with a prolonged bleeding time. Almost the same level of immunoreactive protein was found in platelets of both normal subjects and the patient. However, the solubilized enzyme from the patient's platelets did not transform arachidonic acid to prostaglandin H2 (PGH2) while thromboxane production from PGH2 was observed at a normal level.  相似文献   

9.
The human monoclonal autoantibody HF2-1/17, produced by a human-human hybridoma derived from lymphocytes of a lupus patient with thrombocytopenia, reacts with single stranded DNA and platelets. To determine the chemical nature of the autoantigen against which this antibody is directed on platelets, this platelet antigen was purified by the lipid extraction of sonicated platelets, DEAE-Sephadex chromatography, and high performance liquid chromatography. The purified glycolipids, a trace component in platelets, demonstrated high reactivity with the HF2-1/17 antibody using a competition enzyme-linked immunosorbent assay system or immunostaining of thin layer chromatograms. The purified glycolipids co-migrated with bovine sulfatides by thin layer chromatography. The purified glycolipids contain sulfate and galactose but not sialic acid or phosphate. Fast atom bombardment-mass spectrometry revealed these sulfatides to be sulfated monohexyl ceramides. The dominant species has a molecular weight of 794 while a minor form has a molecular weight of 812 due to an extra hydroxyl group and loss of a double bond. These results indicate that the platelet autoantigen against which the human monoclonal anti-DNA antibody is directed represents a family of novel monogalactosyl sulfatides.  相似文献   

10.
Platelet glutathione peroxidase (GPx) is known to play a pivotal role in controlling the level of lipid hydroperoxides, especially those resulting from the 12-lipoxygenase activity. GPx was purified fromm the cell cytosol by more than 700-fold using an exchange chromatography, FPLP, gel filtration and covalent fixation. Isoelectric focusing revealed a peak activity at pH 5.1. The molecular mass of enzyme was found between 90 and 100 kDa by gel filtration, and was approximating at 23kDa by SDS-PAGE. A polyclonal antibody raised against commercial bovine erthrocyte GPx recognized the human platelet enzyme. It is concluded that human platelet GPx is likely a homotetramer of 92 kDa as described for most sources. We have also found that the decreased platelet GPx activity observed in platelets from elederly people is associated with a lower content of the immunoreactive enzyme.  相似文献   

11.
Human blood platelets possess specific binding sites for C1q   总被引:3,自引:0,他引:3  
Although platelet interactions with C1q are implied by the inhibitory effect of C1q on collagen-induced platelet aggregation, specific receptors have not as yet been identified. To address the question of platelet receptors for free C1q, direct radioligand binding studies were performed by using human blood platelets and purified, 125I-labeled C1q, and a monoclonal antibody (II1/D1) (IgM, lambda) directed against C1q receptors on peripheral blood leukocytes. Washed platelets bound both purified 125I-labeled C1q and II1/D1 in a specific and saturable manner under physiologic ionic strength conditions. At equilibrium, approximately 4000 molecules of C1q bound per platelet with an apparent dissociation constant of 3.5 X 10(-7) M. Maximum C1q binding was achieved in 5 min and correlated well with inhibition of collagen-induced platelet aggregation. Equilibrium binding of 125I-labeled II1/D1 to washed platelets required an incubation period of 15 to 30 min and II1/D1 concentrations approaching 50 micrograms/ml. Approximately 2000 molecules of II1/D1 bound per platelet, with an apparent dissociation constant of 2.8 X 10(-8) M. II1/D1 binding could be inhibited by the collagenous tail of C1q (c-C1q), suggesting that platelet receptors for these ligands are either the same or in close proximity. The data demonstrate that human blood platelets possess specific and saturable binding sites for free C1q that may function as collagen receptors, and may antigenically resemble C1q receptors on peripheral blood leukocytes.  相似文献   

12.
Reperfusion of ischemic tissues results in development of a proinflammatory, prothrombogenic phenotype, culminating in the recruitment of leukocytes and platelets within postcapillary venules. Recent studies have indicated an interdependence of platelet and leukocyte adhesion, suggesting that heterotypic blood cell interactions may account for postischemic platelet recruitment. The objectives of this study were to 1) determine whether ischemia-reperfusion (I/R)-induced platelet recruitment is leukocyte dependent and 2) quantify the contributions of leukocytes and endothelial cells in this platelet recruitment. Intravital microscopy was used to monitor the recruitment of fluorescently labeled platelets in postcapillary venules of the small intestine after 45-min ischemia and 4-h reperfusion. To assess the leukocyte dependence of platelet adhesion, platelets from wild-type mice were infused into mice deficient in neutrophils and/or lymphocytes and mice deficient in key leukocyte adhesion molecules (CD18 and ICAM-1). These antileukocyte strategies resulted in significantly reduced platelet recruitment. Simultaneous visualization of platelets and leukocytes enabled quantification of leukocyte-dependent and endothelium-dependent platelet adhesion. It was observed that in wild-type animals 74% of I/R-induced platelet adhesion was a result of platelet-leukocyte interactions. Although the majority of adherent platelets were associated with leukocytes, <50% of adherent leukocytes were platelet bearing, suggesting that not all adherent leukocytes support platelet adhesion. These results are consistent with leukocytes playing a major role in supporting I/R-induced platelet adhesion.  相似文献   

13.
A calmodulin-dependent protein phosphatase has been identified in human platelets by its cross-reactivity with an antibody developed against a bovine brain calmodulin-dependent protein phosphatase and by its calmodulin-stimulated dephosphorylation of 32P-labeled substrates. The platelet enzyme was partially purified to separate it from calmodulin and calmodulin-independent phosphatases. The partially purified enzyme was stimulated by calmodulin, requiring 15 nM calmodulin for half-maximal activation. Calmodulin increased the Vmax of the phosphatase, with no significant effect on its Km. The enzyme was stimulated irreversibly and made calmodulin-independent by limited proteolysis. The optimal pH for the phosphatase was 7.5. After partial purification, phosphatase activity was significantly increased in the presence of Mn2+ and Ca2+ over that observed in the presence of Ca2+ alone. The enzyme effectively dephosphorylated casein, histone, protamine, and platelet actin. The holophosphatase was estimated to have a molecular weight of 76,900 as determined by sedimentation on sucrose gradients. Immunoblotting techniques using an antibody against the brain phosphatase suggests that the enzyme consists of 2 subunits of 60,000 and 16,500 daltons; the 60,000-dalton subunit co-migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a 60,000-dalton calmodulin-binding protein in the platelet suggesting that it is the calmodulin-binding subunit of the enzyme. The identification of a calmodulin-dependent protein phosphatase in human platelets suggests a role for Ca2+-dependent dephosphorylation in platelet activation.  相似文献   

14.
Using immunoblots and an affinity-purified antibody prepared against human erythrocyte protein 4.9, we have demonstrated and quantified the presence of an immunoreactive form of this protein in avian and bovine brain and lens tissues, avian heart, as well as in human platelets and mammalian, avian, piscine, and amphibian erythrocytes. Both the 48 kDa and the 52 kDa variants were observed in human erythrocytes, whereas 50 kDa and 54 kDa immunoreactive forms were observed in human platelets. As reported for erythroid protein 4.9, platelet protein 4.9 was phosphorylated in response to treatment with phorbol ester. Bovine brain showed five cross-reactive polypeptides in the 47 to 52 kDa range while avian brain and avian and bovine lens exhibited predominantly a 49-kDa band. Cross-reactivity was not observed in a number of cell lines and tissues including leukocytes, liver, kidney, pancreas, and skeletal muscle. Immunofluorescence indicated that protein 4.9 was present in cortical fiber cells of avian lens and in neurons of avian cerebrum.  相似文献   

15.
In the present investigation, 12-L-hydroxyeicosa-5,8,14-tetraenoic acid (12-HPETE) peroxidase in the platelet 12-lipoxygenase pathway was characterized by using a monoclonal antibody to erythrocyte glutathione peroxidase. Pure glutathione peroxidase was used for the immunization of mice. Monoclonal antibody directed against the erythrocyte glutathione peroxidase was obtained from hybridomas, following fusion of mouse NS-1 myeloma cells with spleen cells from a mouse immunized with the enzyme. The subclass of monoclonal antibody was immunoglobulin M with kappa-light chain. Enzyme activity assays using cumene hydroperoxide and [1-14C]12-HPETE as substrates were employed. The monoclonal antibody reacted with glutathione peroxidase in the cumene hydroperoxide assay. In order to see whether platelet 12-HPETE peroxidase reacts with the monoclonal antibody, platelet cytosol and glutathione peroxidase were incubated with the monoclonal antibody and the antibody was precipitated by goat anti-mouse immunoglobulin M. The activities of platelet 12-HPETE peroxidase and glutathione peroxidase remaining were then assayed by using [1-14C]12-HPETE as substrate. The ability of glutathione peroxidase to transform 12-HPETE to 12-HETE was removed by the monoclonal antibody; however, the activity of platelet cytosol was not removed by the antibody. The results indicated that the antigenic specificity of 12-HPETE peroxidase in the platelet 12-lipoxygenase pathway is different from that of erythrocyte glutathione peroxidase.  相似文献   

16.
Glycogen synthase from human and bovine polymorphonuclear leukocytes was purified to homogeneity. Rabbit antisera were raised against the two glycogen synthases and used for immunochemical analysis. Western blotting analysis showed that the subunit of glycogen synthase in crude homogenates of human and bovine leukocytes in both cases has an Mr of 85 000. The existence of a cross-reactivity between the two enzymes and the corresponding antisera demonstrates immunological similarities between bovine and human leukocyte glycogen synthase. In addition, both antisera recognize glycogen synthase in crude cellular extracts from rabbit and rat liver and from skeletal muscle. Leukocyte glycogen synthase, therefore, cannot be classified as either muscle (M-type) or liver (L-type) glycogen synthase and our results do not support the proposed immunochemical distinction between M- and L-type glycogen synthase.  相似文献   

17.
In this study we present evidence for the existence of an intrinsic 12-lipoxygenase in the bovine polymorphonuclear leukocyte which differs from the well-known platelet 12-lipoxygenase. Intact bovine polymorphonuclear leukocytes synthesize predominantly 5-lipoxygenase products. However, this 5-lipoxygenase activity disappears completely upon sonication of the cells, whereas a 12-lipoxygenase activity then becomes apparent. This 12-lipoxygenase resembles the platelet 12-lipoxygenase in metabolizing arachidonic acid into 12(S)-hydroxyeicosatetraenoic acid and in being independent of Ca2+ as well as of ATP. The most striking difference between the two 12-lipoxygenases is their behaviour towards linoleic acid. While the platelet 12-lipoxygenase does not convert linoleic acid, the 12-lipoxygenase from bovine polymorphonuclear leukocytes, apparent only in the cell-free system, converts linoleic acid into 13-hydroxyoctadecadienoic acid as efficiently as it converts arachidonic acid into 12-hydroxyeicosatetraenoic acid. This provides a convenient method to distinguish both 12-lipoxygenase activities. The fact that this new 12-lipoxygenase is able to metabolize linoleic acid into 13-hydroxyoctadecadienoic acid suggests that this enzyme, in contrast to platelet 12-lipoxygenase, resembles 5-lipoxygenases in showing a preference for hydrogen abstraction at a position which is determined by the distance to the carboxylic end of the fatty acid.  相似文献   

18.

Background

Pro-coagulant membrane microvesicles (MV) derived from platelets and leukocytes are shed into the circulation following receptor-mediated activation, cell-cell interaction, and apoptosis. Platelets are sentinel markers of toll-like receptor 4 (TLR4) activation. Experiments were designed to evaluate the time course and mechanism of direct interactions between platelets and leukocytes following acute activation of TLR4 by bacterial lipopolysaccharide (LPS).

Methodology/Principal Findings

Blood from age-matched male and female wild type (WT) and TLR4 gene deleted (dTLR4) mice was incubated with ultra-pure E. coli LPS (500 ng/ml) for up to one hour. At designated periods, leukocyte antigen positive platelets, platelet antigen positive leukocytes and cell-derived MV were quantified by flow cytometry. Numbers of platelet- or leukocyte-derived MV did not increase within one hour following in vitro exposure of blood to LPS. However, with LPS stimulation numbers of platelets staining positive for both platelet- and leukocyte-specific antigens increased in blood derived from WT but not dTLR4 mice. This effect was blocked by inhibition of TLR4 signaling mediated by My88 and TRIF. Seven days after a single intravenous injection of LPS (500 ng/mouse or 20 ng/gm body wt) to WT mice, none of the platelets stained for leukocyte antigen. However, granulocytes, monocytes and apoptotic bodies stained positive for platelet antigens.

Conclusions/Significance

Within one hour of exposure to LPS, leukocytes exchange surface antigens with platelets through TLR4 activation. In vivo, leukocyte expression of platelet antigen is retained after a single exposure to LPS following turn over of the platelet pool. Acute expression of leukocyte antigen on platelets within one hour of exposure to LPS and the sustained expression of platelet antigen on leukocytes following a single acute exposure to LPS in vivo explains, in part, associations of platelets and leukocytes in response to bacterial infection and changes in thrombotic propensity of the blood.  相似文献   

19.
Eighteen acetylenic fatty acids were tested as inhibitors of human platelet arachidonic acid 12-lipoxygenase. 4,7,10,13-Eicosatetraynoic (4,7,10,13-ETYA) acid emerged as the most potent compound. Additional experiments have shown that 4,7,10,13-ETYA selectively blocked the 12-lipoxygenase in washed human platelets with lesser activity against the cyclooxygenase. The ID50 value for lipoxygenase was 7.8 microM in comparison with an ID50 of 100 microM for the cyclooxygenase. The commonly used inhibitor 5,8,11,14-eicosatetraynoic acid inhibited both enzymes with equal potency. It appears that 4,7,10,13-ETYA may be a valuable lead for selective modulation of the 12-lipoxygenase pathway in platelet or other target tissues.  相似文献   

20.
Platelet transfusion refractoriness (PTR) can be defined as the less increment of platelet count than expected after platelets transfusion, which is a challenging and expensive problem often observed in platelet-transfusion-dependent patients. Although PTR occurs most frequently due to non-immune causes, a significant minority is still caused by immune factors. The most important factor in immune dependent PTR is alloimmunization against Class I human leukocyte antigens (HLAs) or human platelet antigens (HPAs). The compatible platelets can be provided to immune-mediated patients using platelet crossmatching, HLA matching, and antibody specificity testing. These measures-aimed to eliminate donor-specific HLA antibodies will lead to the improved clinical management of PTR patients, caused by severe alloimmunization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号