首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Molecular steps in endocytosis and degradation of the c-fms protein were analyzed by following the fate of mutated c-fms molecules after M-CSF binding. A mutant c-fms protein lacking tyrosine kinase activity was rapidly internalized after M-CSF binding but not degraded. Another mutant c-fms molecule that lacked most of the kinase insert region was similarly internalized after M-CSF binding and also not degraded. This indicates that the signal for internalization is separate from that directing degradation of the receptor. It has been shown previously that a c-fms mutant in which the kinase insert domain is deleted retains tyrosine kinase activity but lacks two major sites of autophosphorylation. The degradation step therefore requires both kinase activity and the kinase insert region whereas the internalization step is independent of these factors. The major sites of tyrosine autophosphorylation within the kinase insert region were next mutated to determine whether autophosphorylation in the kinase insert region of c-fms might be the signal that triggers degradation of internalized receptors. These mutant receptors were still rapidly degraded in response to M-CSF. Therefore, ligand-induced degradation of c-fms may require tyrosine phosphorylation of a protein other than the c-fms receptor itself and the kinase insert region may be necessary for recognition of this substrate.  相似文献   

2.
The normal proto-oncogene c-fms encodes the macrophage growth factor (M-CSF) receptor involved in growth, survival, and differentiation along the monocyte-macrophage lineage of hematopoietic cell development. A major portion of our research concerns unraveling the temporal, molecular, and structural features that determine and regulate these events. Previous results indicated that c-fms can transmit a growth signal as well as a signal for differentiation in the appropriate cells. To investigate the role of the Fms tyrosine autophosphorylation sites in proliferation vs. differentiation signaling, four of these sites were disrupted and the mutant receptors expressed in a clone derived from the myeloid FDC-P1 cell line. These analyses revealed that: (1) none of the four autophosphorylation sites studied (Y697, Y706, Y721, and Y807) are essential for M-CSF-dependent proliferation of the FDC-P1 clone; (2) Y697, Y706, and Y721 sites, located in the kinase insert region of Fms, are not necessary for differentiation but their presence augments this process; and (3) the Y807 site is essential for the Fms differentiation signal: its mutation totally abrogates the differentiation of the FDC-P1 clone and conversely increases the rate of M-CSF-dependent proliferation. This suggests that the Y807 site may control a switch between growth and differentiation. The assignment of Y807 as a critical site for the reciprocal regulation of growth and differentiation may provide a paradigm for Fms involvement in leukemogenesis, and we are currently investigating the downstream signals transmitted by the tyrosine-phosphorylated 807 site. In Fms-expressing FDC-P1 cells, M-CSF stimulation results in the rapid (30 sec) tyrosine phosphorylation of Fms on the five cytoplasmic tyrosine autophosphorylation sites, and subsequent tyrosine phosphorylation of several host cell proteins occurs within 1–2 min. Complexes are formed between Fms and other signal transduction proteins such as Grb2, Shc, Sos1, and p85. In addition, a new signal transduction protein of 150 kDa is detectable in the FDC-P1 cells. The p150 is phosphorylated on tyrosine, and forms a complex with Shc and Grb2. The interaction with Shc occurs via a protein tyrosine binding (PTB) domain at the N-terminus of Shc. The p150 is not detectable in Fms signaling within fibroblasts, yet the PDGF receptor induces the tyrosine phosphorylation of a similarly sized protein. In hematopoietic cells, this protein is involved in signaling by receptors for GM-CSF, IL-3, KL, MPO, and EPO. We have now cloned a cDNA for this protein and found at least one related family member. The related family member is a Fanconia Anemia gene product, and this suggests potential ways the p150 protein may function in Fms signaling. Mol Reprod Dev 46:96–103, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
The phosphorylation and activation of tyrosine hydroxylase was examined in PC12 cells following depolarization with KCl or treatment with nerve growth factor. Both treatments activate tyrosine hydroxylase (TH) and increase enzyme phosphorylation. Site-specific analysis of the tryptic phosphopeptides of TH isolated from [32P]phosphate-labeled PC12 cells demonstrated that the major phosphorylated peptide (termed "H25") did not contain any of the previously reported phosphorylation sites. Phosphoamino acid analysis of this peptide demonstrated that the phosphorylated residue was a serine. Synthetic tryptic peptides containing putative phosphorylation sites were prepared, and subjected to high performance liquid chromatography analysis and isoelectric focusing. The tryptic phosphopeptide containing serine 31 comigrated with the H25 peptide during both of these analytical techniques. The tryptic phosphopeptide produced by the phosphorylation of tyrosine hydroxylase by the recently discovered proline-directed protein kinase and the phosphorylated synthetic phosphopeptide TH2-12 are clearly separated from H25 by this analysis. We conclude that serine 31 is phosphorylated during KCl depolarization and nerve growth factor treatment of PC12 cells and that this phosphorylation is responsible for the activation of tyrosine hydroxylase. Since this site is not located in a sequence selective for any of the "classical" protein kinases, we suggest that a novel protein kinase may be responsible for the phosphorylation of this site. Since serine 31 has a proline residue on the carboxyl-terminal side, the possibility that this kinase may be related to the recently reported proline-directed protein kinase is discussed. Other sites that are also phosphorylated on TH during KCl depolarization include serine 19, which is known to be phosphorylated by calmodulin-dependent protein kinase II. A schematic model for the regulation of tyrosine hydroxylase activity by phosphorylation of the NH2-terminal regulatory domain is presented.  相似文献   

4.
Binding of macrophage colony stimulating factor (M-CSF) to its receptor (Fms) induces dimerization and activation of the tyrosine kinase domain of the receptor, resulting in autophosphorylation of cytoplasmic tyrosine residues used as docking sites for SH2-containing signaling proteins that relay growth and development signals. To determine whether a distinct signaling pathway is responsible for the Fms differentiation signal versus the growth signal, we sought new molecules involved in Fms signaling by performing a two-hybrid screen in yeast using the autophosphorylated cytoplasmic domain of the wild-type Fms receptor as bait. Clones containing SH2 domains of phospholipase C-gamma2 (PLC-gamma2) were frequently isolated and shown to interact with phosphorylated Tyr721 of the Fms receptor, which is also the binding site of the p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase). At variance with previous reports, M-CSF induced rapid and transient tyrosine phosphorylation of PLC-gamma2 in myeloid FDC-P1 cells and this activation required the activity of the PI3-kinase pathway. The Fms Y721F mutation strongly decreased this activation. Moreover, the Fms Y807F mutation decreased both binding and phosphorylation of PLC-gamma2 but not that of p85. Since the Fms Y807F mutation abrogates the differentiation signal when expressed in FDC-P1 cells and since this phenotype could be reproduced by a specific inhibitor of PLC-gamma, we propose that a balance between the activities of PLC-gamma2 and PI3-kinase in response to M-CSF is required for cell differentiation.  相似文献   

5.
Four tyrosine residues have been identified as phosphorylation sites in the tyrosine kinase isoform of the heparin-binding fibroblast growth factor receptor flg (FGF-R1). Baculoviral-insect cell-derived recombinant FGF-R1 was phosphorylated and fragmented with trypsin while immobilized on heparin-agarose beads. Phosphotyrosine peptides were purified by chromatography on immobilized anti-phosphotyrosine antibody and analyzed by Edman degradation and electrospray tandem mass spectrometry. Tyrosine residue 653, which is in a homologous spatial position to major autophosphorylation sites in the catalytic domain of the src and insulin receptor kinases, is the major intracellular FGF-R1 phosphorylation site. Residue 766 in the COOH-terminus outside the kinase domain is a secondary site. Tyrosine residues 154 and 307, which are in the extracellular domain of transmembrane receptor isoforms and are in an unusual sequence context for tyrosine phosphorylation, were also phosphorylated.  相似文献   

6.
Fms, the macrophage colony-stimulating factor (M-CSF) receptor, is normally expressed in myeloid cells and initiates signals for both growth and development along the monocyte/macrophage lineage. We have examined Fms signal transduction pathways in the murine myeloid progenitor cell line FDC-P1. M-CSF stimulation of FDC-P1 cells expressing exogenous Fms resulted in tyrosine phosphorylation of a variety of cellular proteins in addition to Fms. M-CSF stimulation also resulted in Fms association with two of these tyrosine-phosphorylated proteins, one of which was identified as the 55-kDa Shc, which is shown in other systems to be involved in growth stimulation, and the other was a previously uncharacterized 150-kDa protein (p150). Fms also formed complexes with Grb2 and Sos1, and neither contained phosphotyrosine. Whereas both Grb2 and Sos1 complexed with Fms only after M-CSF stimulation, the amount of Sos1 complexed with Grb2 was not M-CSF dependent. Shc coimmunoprecipitated Sos1, Grb2, and tyrosine-phosphorylated p150, while Grb2 immunoprecipitates contained mainly phosphorylated p150, Fms, Shc, and Sos1. Shc interacted with tyrosine-phosphorylated p150 via its SH2 domain, and the Grb2 SH2 domain likewise bound tyrosine-phosphorylated Fms and p150. Analysis of Fms mutated at each of four tyrosine autophosphorylation sites indicated that none of these sites dramatically affected p150 phosphorylation or its association with Shc and Grb2. M-CSF stimulation of fibroblast cell lines expressing exogenous murine Fms did not phosphorylate p150, and this protein was not detected either in cell lysates or in Grb2 or Shc immunoprecipitates. The p150 protein is not related to known signal transduction molecules and may be myeloid cell specific. These results suggest that M-CSF stimulation of myeloid cells could activate Ras through the nucleotide exchange factor Sos1 by Grb2 binding to either Fms, Shc, or p150 and that Fms signal transduction in myeloid cells differs from that in fibroblasts.  相似文献   

7.
The receptor for colony-stimulating factor 1 (CSF-1) is a ligand-activated protein-tyrosine kinase. It has been shown previously that the CSF-1 receptor is phosphorylated on serine in vivo and that phosphorylation on tyrosine can be induced by stimulation with CSF-1. We studied the phosphorylation of the CSF-1 receptor by using the BAC1.2F5 murine macrophage cell line, which naturally expresses CSF-1 receptors. Two-dimensional tryptic phosphopeptide mapping showed that the CSF-1 receptor is phosphorylated on several different serine residues in vivo. Stimulation with CSF-1 at 37 degrees C resulted in rapid phosphorylation on tyrosine at one major site and one or two minor sites. We identified the major site as Tyr-706. The identity of Tyr-706 was confirmed by mutagenesis. This residue is located within the kinase insert domain. There was no evidence that Tyr-973 (equivalent to Tyr-969 in the human CSF-1 receptor) was phosphorylated following CSF-1 stimulation. When cells were stimulated with CSF-1 at 4 degrees C, additional phosphotyrosine-containing phosphopeptides were detected and the level of phosphorylation of the individual phosphotyrosine-containing phosphopeptides was substantially increased. In addition, we show that CSF-1 receptors are capable of autophosphorylation at six to eight major sites in vitro.  相似文献   

8.
Using the FDC-P1 cell line expressing the exogenous macrophage colony-stimulating factor (M-CSF) receptor, Fms, we have analyzed the role of a new mammalian DOS/Gab-related signaling protein, called Gab3, in macrophage cell development of the mouse. Gab3 contains an amino-terminal pleckstrin homology domain, multiple potential sites for tyrosine phosphorylation and SH2 domain binding, and two major polyproline motifs potentially interacting with SH3 domains. Among the growing family of Gab proteins, Gab3 exhibits a unique and overlapping pattern of expression in tissues of the mouse compared with Gab1 and Gab2. Gab3 is more restricted to the hematopoietic tissues such as spleen and thymus but is detectable at progressively lower levels within heart, kidney, uterus, and brain. Like Gab2, Gab3 is tyrosine phosphorylated after M-CSF receptor stimulation and associates transiently with the SH2 domain-containing proteins p85 and SHP2. Overexpression of exogenous Gab3 in FD-Fms cells dramatically accelerates macrophage differentiation upon M-CSF stimulation. Unlike Gab2, which shows a constant mRNA expression level after M-CSF stimulation, Gab3 expression is initially absent or low in abundance in FD cells expressing the wild-type Fms, but Gab3 mRNA levels are increased upon M-CSF stimulation. Moreover, M-CSF stimulation of FD-FmsY807F cells (which grow but do not differentiate) fails to increase Gab3 expression. These results suggest that Gab3 is important for macrophage differentiation and that differentiation requires the early phosphorylation of Gab2 followed by induction and subsequent phosphorylation of Gab3.  相似文献   

9.
A number of oncogenic viruses encode transforming proteins with protein kinase activities apparently specific for tyrosine residues. Recent evidence has raised questions as to the substrate specificity of these kinases in general and the physiological relevance of tyrosine phosphorylation in particular. The P130gag-fps transforming protein of Fujinami sarcoma virus (FSV) is strongly phosphorylated at 2 tyrosine residues in FSV-transformed cells of which 1 (Tyr-1073) is also the major site of P130gag-fps intermolecular autophosphorylation in vitro. We have investigated the specificity of the protein kinase activity intrinsic to FSV P130gag-fps by using site-directed mutagenesis to change the codon for Tyr-1073 to those for the other commonly phosphorylated hydroxyamino acids, serine and threonine. This approach has some advantages over the use of synthetic peptides to define protein kinase recognition sites in that the protein containing the altered target site can be expressed in intact cells. In addition it allows higher order as well as primary structure of the enzyme recognition site to be considered. Neither serine nor threonine were phosphorylated when substituted for tyrosine at position 1073 of P130gag-fps indicating a stringent specificity for tyrosine as a substrate of the P130gag-fps protein kinase autophosphorylating activity. Consistent with the suggestion that tyrosine phosphorylation is of functional significance we find that these and other FSV Tyr-1073 mutants have depressed enzymatic and oncogenic capacities.  相似文献   

10.
The phosphorylation sites of the P140gag-fps gene product of Fujinami avian sarcoma virus have been identified and localized to different regions of this transforming protein. FSV P140gag-fps isolated from transformed cells is phosphorylated on at least three distinct tyrosine residues and one serine residue, in addition to minor phosphorylation sites shared with Pr76gag. Partial proteolysis with virion protease p15 or with Staphylococcus aureus V8 protease has been used to generate defined peptide fragments of P140gag-fps and thus to map its phosphorylation sites. The amino-terminal gag-encoded region of P140gag-fps contains a phosphotyrosine residue in addition to normal gag phosphorylation sites. The two major phosphotyrosine residues and the major phosphorserine residue are located in the carboxy-terminal portion of the fps-encoded region of P140gag-fps. P140gag-fps radiolabeled in vitro in an immune complex kinase reaction is phosphorylated at only one of the two C-terminal tyrosine residues phosphorylated in vivo and weakly phosphorylated at the gag-encoded tyrosine and at a tyrosine site not detectably phosphorylated in vivo. Thus, the in vitro tyrosine phosphorylation of P140gag-fps is distinct from that seen in the transformed cell. A comparative tryptic phosphopeptide analysis of the gag-fps proteins of three Fujinami avian sarcoma virus variants showed that the phosphotyrosine-containing peptides are invariant, and this high degree of sequence conservation suggests that these sites are functionally important or lie within important regions. The P105gag-fps transforming protein of PRCII avian sarcoma virus lacks one of the C-terminal phosphotyrosine sites found in Fujinami avian sarcoma virus P140gag-fps. Partial trypsin cleavage of FSV P140gag-fps immunoprecipitated with anti-gag serum releases C-terminal fragments of 45K and 29K from the immune complex that retain an associated tyrosine-specific protein kinase activity. This observation, and the localization of the major P140gag-fps phosphorylation sites to the C-terminal fps region, indicate that the kinase domain of P140gag-fps is located at its C terminus. The phosphorylation of P140gag-fps itself is complex, suggesting that it may itself interact with several protein kinases in the transformed cell.  相似文献   

11.
Synthetic beta-turn peptides as substrates for a tyrosine protein kinase   总被引:2,自引:0,他引:2  
An attempt has been made at defining the secondary structural requirement for phosphorylation of substrates of a protein tyrosine kinase from the leukemia virus-transformed LSTRA cell line. An examination of the sites of phosphorylation of substrates of protein tyrosine kinases indicated a relatively high probability of the beta-turn as the secondary structural feature at these sites. We have, therefore, synthesized three tyrosine peptides: Ala-Pro-Tyr-Gly-NHCH3, Leu-Pro-Tyr-Ala-NHCH3, and Pro-Gly-Ala-Tyr-NH2, of which the first two peptides, but not the third, would be expected to contain the tyrosine residue in a beta-turn. Circular dichroism and infrared spectral data on the peptides confirmed this expectation. Phosphorylation data on the peptides by the tyrosine kinase showed that the two beta-turn peptides were phosphorylated with Vmax and Km values comparable to those of the 13-residue-long arginine-containing synthetic peptide substrate having a sequence homologous to the autophosphorylation site of the LSTRA kinase. The peptides used here contain the shortest sequence length among the reported synthetic peptide substrates for protein tyrosine kinases. Their preference for the beta-turn indicated that this conformation may serve as the recognition site for tyrosine phosphorylation.  相似文献   

12.
Baek MC  Krosky PM  Coen DM 《Journal of virology》2002,76(23):11943-11952
Human cytomegalovirus encodes an unusual protein kinase, UL97, which is a member of the HvU(L) family of protein kinases encoded by diverse herpesviruses. UL97 is able to autophosphorylate and to phosphorylate certain exogenous substrates, including nucleoside analogs such as ganciclovir. It has previously been concluded that phosphorylation of UL97 is essential for its phosphorylation of ganciclovir. We examined the relationship between autophosphorylation of UL97 and its activity on exogenous substrates. Glutathione S-transferase-UL97 fusion protein purified from insect cells was found to be already partially phosphorylated, but neither extensive autophosphorylation nor phosphatase treatment meaningfully altered the time course of its phosphorylation of the exogenous substrate, histone H2B. Sequencing and mass spectrometric analyses of (32)P-labeled tryptic peptides of the UL97 fusion protein identified nine sites of autophosphorylation, all within the first 200 residues of the protein, outside of conserved protein kinase subdomains. A peptide corresponding to the N-terminal UL97 segment that was most extensively autophosphorylated was readily phosphorylated by UL97, confirming that fusion protein sequences are not required for phosphorylation at this site. Deletion mutants lacking at least the first 239 residues exhibited drastically reduced autophosphorylation (<5%) but retained near-wild-type H2B phosphorylation activity. Baculoviruses expressing these mutants efficiently directed the phosphorylation of ganciclovir in insect cells. Taken together, these results identify the autophosphorylation sites of a herpesvirus protein kinase and show that autophosphorylation of UL97 is not required for phosphorylation of exogenous substrates.  相似文献   

13.
Fujinami sarcoma virus (FSV) and PRCII are avian sarcoma viruses which share cellularly derived v-fps transforming sequences. The FSV P140gag-fps gene product is phosphorylated on three distinct tyrosine residues in transformed cells or in an in vitro kinase reaction. Three variants of FSV, and the related virus PRCII which lacks about half of the v-fps sequence found in FSV, encode gene products which are all phosphorylated at tyrosine residues contained within identical tryptic peptides. This indicates a stringent conservation of amino acid sequence at the tyrosine phosphorylation sites which presumably reflects the importance of these sites for the biologic activity of the transforming proteins. Under suitable conditions the proteolytic enzymes p15 and V8 protease each introduce one cut into FSV P140, p15 in the N-terminal gag-encoded region and V8 protease in the middle of the fps-encoded region. Using these enzymes we have mapped the major site of tyrosine phosphorylation to the C-terminal end of the fps region of FSV P140gag-fps. A second tyrosine phosphorylation site is found in the fps region of FSV P140 isolated from transformed cells, and a minor tyrosine phosphorylation site is found in the N-terminal gag-encoded region. Our results suggest that the C-terminal fps-encoded region is required for expression of the tyrosine-specific protein kinase activity.  相似文献   

14.
HER2 or c-erbB-2 is a putative growth factor receptor with sequence homology to the epidermal growth factor receptor. It is the human homologue of the rat protooncogene neu and may have an important role in human malignancies such as breast and ovarian cancers. Like other growth factor receptors, HER2 has intrinsic protein tyrosine kinase activity and undergoes autophosphorylation. Recently, we have demonstrated that, similar to the epidermal growth factor receptor, all autophosphorylation sites of HER2 are localized in the carboxyl terminus of this protein. In the present study, immunopurified HER2 was allowed to autophosphorylate, and tryptic phosphopeptides were generated. After purification of these phosphopeptides by high performance liquid chromatography, microsequencing was performed. Utilizing this approach, two autophosphorylation sites were unequivocally identified at Y1023 and Y1248. The sequences of two other tyrosine phosphorylated tryptic peptides were determined, but the exact site of autophosphorylation could not be determined because multiple tyrosines were located on each peptide. However, each of these peptides contains tyrosines that correspond to major autophosphorylation sites of the epidermal growth factor receptor, suggesting that, in addition to Y1023 and Y1248, Y1139 and Y1222 also serve as autophosphorylation sites of HER2.  相似文献   

15.
pp60v-src is a nonreceptor protein tyrosine kinase that can transform both chicken and rodent fibroblasts. The src homology 2 (SH2) domain of this protein serves a critical role in the regulation of protein tyrosine kinase activity. The host range proteins pp60v-src-L, which contains a deletion of a highly conserved residue (Phe-172) in the SH2 domain, and pp60v-src-PPP, which contains a change from a Leu to a Phe at amino acid 186 in the SH2 domain, transform chicken but not rat cells and have slightly reduced kinase activity measured in vitro. The data presented here show that these altered proteins require autophosphorylation on Tyr-416 for high kinase activity and transforming ability. In the absence of autophosphorylation, there is a further decrease of at least threefold in in vitro kinase activity relative to the phosphorylated host range parental protein, no morphological transformation, a reduction in anchorage independent growth, and no disruption of the actin cytoskeleton. In addition, these SH2 mutations abolish the ability of the SH2 domain to bind a phosphorylated peptide that corresponds to the autophosphorylation site of pp60src. Thus, like mutant alleles of c-src encoding transformation competent proteins, and unlike v-src, transformation by pp60v-src-F172 delta and pp60v-src-L186F is dependent on phosphorylation of Y-416 for high kinase activity and transformation ability. The dependence of transformation on phosphotyrosine is not a reflection of an intramolecular interaction between the autophosphorylation site and the SH2 domains since purified SH2 domains are incapable of binding phosphorylated autophosphorylation site peptides in vitro.  相似文献   

16.
The epidermal growth factor (EGF) receptor is regulated by EGF-stimulated autophosphorylation and by phorbol ester-stimulated, protein kinase C (Ca2+/phospholipid-dependent enzyme) mediated phosphorylation at identified sites. The EGF receptor contains additional phosphorylation sites including a prominent phosphothreonine and several phosphoserines which account for the majority of phosphate covalently bound to the receptor in vivo. We have identified three of these sites in EGF receptor purified from 32P-labeled A431 cells. The major phosphothreonine was identified as threonine 669 in the EGF receptor sequence. Phosphoserine residues were identified as serines 671 and 1046/1047 of the EGF receptor. Two other phosphoserine residues were localized to tryptic peptides containing multiple serine residues located carboxyl-terminal to the conserved protein kinase domain. The amino acid sequences surrounding the three identified phosphorylation sites are highly conserved in the EGF receptor and the protein products of the v-erb B and neu oncogenes. Analysis of predicted secondary structure of the EGF receptor reveals that all of the phosphorylation sites are located near beta turns. In A431 cells phosphorylation of the serine residues was dependent upon serum. In mouse B82 L cells transfected with a wild type human EGF receptor. EGF increased the 32P content in all tryptic phosphopeptides. A mutant EGF receptor lacking protein tyrosine kinase activity was phosphorylated only at threonine 669. Regulated phosphorylation of the EGF receptor at these threonine and serine residues may influence aspects of receptor function.  相似文献   

17.
The MET proto-oncogene encodes a transmembrane tyrosine kinase receptor for HGF (p190MET). In this work, p190MET was immunoprecipitated, allowed to phosphorylate in the presence of [gamma-32P]ATP, and digested with trypsin. A major phosphopeptide was purified by reverse phase chromatography. The phosphorylated tyrosine was identified as residue 1235 (Tyr1235) by Edman covalent radiosequencing. A synthetic peptide derived from the corresponding MET sequence was phosphorylated by p190MET in an in vitro assay and coeluted in reverse phase chromatography. Tyr1235 lies within the tyrosine kinase domain of p190MET, within a canonical tyrosine autophosphorylation site that shares homology with the corresponding region of the insulin, CSF-1 and platelet-derived growth factor receptors, and of p60src and p130gag-fps. The p190MET kinase is constitutively phosphorylated on tryosine in a gastric carcinoma cell line (GTL16), due to the amplification and overexpression of the MET gene. Metabolic labeling of GTL-16 cells with [32P]orthophosphate followed by immunoprecipitation and tryptic phosphopeptide mapping of p190MET showed that Tyr1235 is a major site of tyrosine phosphorylation in vivo as well. Since phosphorylation activates p190MET kinase, we propose a regulatory role for Tyr1235.  相似文献   

18.
To investigate the functions of key domains of the epidermal growth factor receptor (EGFR), various EGFR-derived peptide sequences were expressed in Escherichia coli as glutathione S-transferase (GST) fusion proteins. The purified fusion proteins (GST-TK0-8) were tested as substrates for the tyrosine kinase activities of the EGFR and c-src. Both the GST-TK4 fusion protein, which contains the major C-terminal tyrosine autophosphorylation sites of the EGFR, and GST-TK7, which contains the connecting sequence between the EGFR kinase domain and the C-terminal autophosphorylation domain, were strongly phosphorylated by the EGFR and c-src. Hence the candidate tyrosine phosphorylation sites present in the connecting sequences of the EGFR, as well as the known autophosphorylation sites of the EGFR, can be phosphorylated by the two tyrosine kinases. The protein GST-TK7 was phosphorylated by c-src with a KM of 5-10 microM, which indicated a potential interaction between the connecting segment of the EGFR and the c-src kinase. The GST fusion proteins were also used to map the sites recognized by two anti-EGFR monoclonal antibodies and a polyclonal serum raised against an EGFR tyrosine kinase domain fragment. The recognition site of one monoclonal antibody was determined to be in a short sequence surrounding tyr1068, a primary site of autophosphorylation in the C-terminal domain of the receptor. The anti-peptide polyclonal serum recognized only sequences in the GST-TK7 fusion protein, and hence binds to the connecting sequence between the kinase core and the C-terminal domain. These antibodies will therefore be useful reagents for studying the function of two key structural elements of the EGFR tyrosine kinase. The GST-TK fusion proteins should have many other applications in the study of EGFR catalysis and mitogenic signalling.  相似文献   

19.
We provide direct evidence that serine 17 is the major site of serine phosphorylation in p60v-src, the transforming protein of Rous sarcoma virus, and in its cellular homolog, p60c-src. The amino acid composition of the tryptic peptide containing the major site of serine phosphorylation in p60v-src was deduced by peptide map analysis of the protein labeled biosynthetically with a variety of radioactive amino acids. Manual Edman degradation revealed that the phosphorylated serine in this peptide was the amino terminal residue. These data are consistent only with the phosphorylation of serine 17. The major site of serine phosphorylation in chicken p60c-src, the cellular homolog of p60v-src, is contained in a tryptic peptide identical to that containing serine 17 in p60v-src of Schmidt Ruppin Rous sarcoma virus of subgroup A. Serine 17 is therefore also phosphorylated in p60c-src. The p60v-src protein encoded by Prague Rous sarcoma virus was found to contain two sites of tyrosine phosphorylation. The previously unrecognized site of tyrosine phosphorylation may be tyrosine 205 or possibly tyrosine 208. Treatment of Prague Rous sarcoma virus-infected cells with vanadyl ions stimulated the protein kinase activity of p60v-src and increased the phosphorylation of tyrosine 416 but not the phosphorylation of the additional site of tyrosine phosphorylation.  相似文献   

20.
A soluble derivative of the human insulin receptor cytoplasmic domain, as expressed in insect cells via a Baculovirus vector, is an active protein-tyrosine kinase. In the present study, we find that three forms of the enzyme (48, 43, and 38 kDa) can be partially purified by MonoQ fast protein liquid chromatography. Two-dimensional thin layer phosphopeptide mapping reveals that the 48-kDa enzyme undergoes a rapid autophosphorylation on the same tyrosines (residues 1158, 1162, 1163, 1328, and 1334) that have previously been shown to be major autophosphorylation sites on the native insulin receptor beta-subunit in intact cells. Furthermore, the 48- and 43-kDa proteins are phosphorylated on serine residues by a serine kinase(s) that copurifies through MonoQ fast protein liquid chromatography. Tyrosine autophosphorylation sites 1328 and 1334 and virtually all serine phosphorylation sites are absent in the 38-kDa kinase. Partial tryptic proteolysis of the 48-kDa kinase generates a core 38-kDa enzyme that undergoes autophosphorylation almost exclusively on tyrosines 1158, 1162, and 1163. Phosphorylation of these tyrosine residues occurs in a cascade manner analogous to that found in the intact insulin receptor beta-subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号