首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hypercholesterolemia plays an important role in the lipid abnormalities in chronic renal failure (CRF). It is thought to contribute to both a progression of renal failure and atherosclerosis. Despite intensive research, the etiopathogenesis of hypercholesterolemia in CRF patients is still obscure. The present study was designed to evaluate the possible role of cholesterol overproduction in the development of hypercholesterolemia associated with experimental CRF. We found that plasma total cholesterol and cholesterol distributed in VLDL, LDL and HDL concentrations were significantly enhanced in CRF rats. Simultaneously, the rate of liver cholesterol biosynthesis in vivo (measured by determining the incorporation of tritium from tritiated water intraperitoneally injected into cholesterol ), liver microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity and liver HMG-CoA reductase mRNA presence were elevated. Significant increases in activity of liver malic enzyme, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, NADPH-producing enzyme (required for cholesterol synthesis) have also been observed in CRF rats. In conclusion, the increased rate of liver cholesterol biosynthesis due to increase of HMG-CoA reductase and NADPH-producing enzyme gene expression could be one of the possible causes of hypercholesterolemia in CRF animals.  相似文献   

2.
The liver plays a central role in regulating cholesterol homeostasis. High fat diets have been shown to induce obesity and hyperlipidemia. Despite considerable advances in our understanding of cholesterol metabolism, the regulation of liver cholesterol biosynthesis in response to high fat diet feeding has not been fully addressed. The aim of the present study was to investigate mechanisms by which a high fat diet caused activation of liver 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) leading to increased cholesterol biosynthesis. Mice were fed a high fat diet (60% kcal fat) for 5 weeks. High fat diet feeding induced weight gain and elevated lipid levels (total cholesterol and triglyceride) in both the liver and serum. Despite cholesterol accumulation in the liver, there was a significant increase in hepatic HMG-CoA reductase mRNA and protein expression as well as enzyme activity. The DNA binding activity of sterol regulatory element binding protein (SREBP)-2 and specific protein 1 (Sp1) were also increased in the liver of mice fed a high fat diet. To validate the in vivo findings, HepG2 cells were treated with palmitic acid. Such a treatment activated SREBP-2 as well as increased the mRNA and enzyme activity of HMG-CoA reductase leading to intracellular cholesterol accumulation. Inhibition of Sp1 by siRNA transfection abolished palmitic acid-induced SREBP-2 and HMG-CoA reductase mRNA expression. These results suggest that Sp1-mediated SREBP-2 activation contributes to high fat diet induced HMG-CoA reductase activation and increased cholesterol biosynthesis. This may play a role in liver cholesterol accumulation and hypercholesterolemia.  相似文献   

3.
Although statin therapy is a cornerstone of current low density lipoprotein (LDL)-lowering strategies, there is a need for additional therapies to incrementally lower plasma LDL cholesterol. In this study, we investigated the effect of several methylenedioxyphenol derivatives in regulating LDL cholesterol through induction of LDL receptor (LDLR). INV-403, a modified methylenedioxyphenol derivative, increased LDLR mRNA and protein expression in HepG2 cells in a dose- and time-dependent fashion. These effects were apparent even under conditions of HMG-CoA reductase inhibition. Electrophoresis migration shift assays demonstrated that INV-403 activates SREBP2 but not SREBP1c, with immunoblot analysis showing an increased expression of the mature form of SREBP2. Knockdown of SREBP2 reduced the effect of INV-403 on LDLR expression. The activation of SREBP2 by INV-403 is partly mediated by Akt/GSK3β pathways through inhibition of phosphorylation-dependent degradation by ubiquitin-proteosome pathway. Treatment of C57Bl/6j mice with INV-403 for two weeks increased hepatic SREBP2 levels (mature form) and upregulated LDLR with concomitant lowering of plasma LDL levels. Transient expression of a LDLR promoter-reporter construct, a SRE-mutant LDLR promoter construct, and a SRE-only construct in HepG2 cells revealed an effect predominantly through a SRE-dependent mechanism. INV-403 lowered plasma LDL cholesterol levels through LDLR upregulation. These results indicate a role for small molecule approaches other than statins for lowering LDL cholesterol.  相似文献   

4.
5.
M Rudling  B Angelin 《FASEB journal》2001,15(8):1350-1356
Growth hormone (GH) has pleiotropic effects on cholesterol and lipoprotein metabolism. Pituitary GH is important for the normal regulation of hepatic LDL receptors (LDLR), for the enzymatic activity of bile acid regulatory cholesterol 7alpha-hydroxylase (C7alphaOH), and for the maintenance of resistance to dietary cholesterol. The present study aimed to determine whether GH has beneficial effects on plasma lipids and hepatic cholesterol metabolism in mice devoid of LDLR. Compared with wild-type controls, LDLR-deficient mice had approximately 250% elevated plasma total cholesterol and approximately 50% increased hepatic cholesterol levels; hepatic HMG CoA reductase activity was reduced by 70%, whereas C7alphaOH activity was increased by 40%. In LDLR mice, GH infusion reduced plasma cholesterol and triglycerides up to 40%, whereas HMG CoA reductase and C7alphaOH activities were stimulated by approximately 50% and 110% respectively. GH also stimulated HMG CoA reductase and C7alphaOH activities in control mice, whereas hepatic LDLR and plasma lipoproteins were unchanged. The effects of cholestyramine and atorvastatin on C7alphaOH in LDLR-deficient mice were potentiated by GH, and this was associated with a further reduction in plasma cholesterol. GH treatment reduces plasma cholesterol and triglycerides and stimulates C7alphaOH activity in mice devoid of LDLR, particularly in combination with resin or statin treatment. The potential of GH therapy in patients with homozygous familial hypercholesterolemia should be evaluated.  相似文献   

6.
7.
Recently it has been reported that macrophages express a nuclear receptor, peroxisome proliferator-activated receptor γ (PPARγ). Using a ligand of PPARγ, troglitazone or pioglitazone, we have shown that the expression of two genes involved in cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase and HMG-CoA reductase, were increased by activation of PPARγ through a PPAR response element (PPRE) in THP-1 macrophages. In addition, treatment with troglitazone significantly increased the activity of HMG-CoA reductase and the amount of intracellular cholesterol. Thus, we conclude that PPARγ and its agonists increase the cholesterol content of macrophages by the increased expression of genes involved in cholesterol biosynthesis. These findings suggest that PPARγ may play a role in cholesterol metabolism in macrophages.  相似文献   

8.
To characterize the metabolic regulatory response to interruption of the enterohepatic circulation of bile acids, we examined the effects of cholestyramine treatment on the rate-limiting steps in cholesterol biosynthesis (HMG-CoA reductase) and bile acid production (cholesterol 7 alpha-hydroxylase) as well as on the heparin-sensitive binding of low density lipoproteins (LDL) (reflecting LDL receptor expression) in human liver. Altogether, 18 normolipidemic patients with uncomplicated cholesterol gallstone disease were treated with cholestyramine (8 g b.i.d.) for 2-3 weeks prior to cholecystectomy, and another 34 cholesterol gallstone patients served as untreated controls. Cholestyramine treatment stimulated cholesterol 7 alpha-hydroxylase more than sixfold, and increased both HMG-CoA reductase activity (552 +/- 60 pmol/min per mg protein vs 103 +/- 9 pmol/min per mg protein) and LDL receptor expression (6.1 +/- 0.8 ng/mg protein; n = 6 vs 2.2 +/- 0.3 ng/mg protein; n = 7). Moreover, there was a good correlation between HMG-CoA reductase activity and LDL receptor binding (rs = +0.71; n = 13), suggesting a simultaneous stimulatory effect to compensate for the increased hepatic cholesterol catabolism due to bile acid depletion caused by cholestyramine. Further evidence for this assumption was the finding of a significant relationship between cholesterol 7 alpha-hydroxylase activity and both LDL receptor expression (rs = +0.77; n = 13) and HMG-CoA reductase activity (rs = +0.76; n = 46). We conclude that in human liver a parallel stimulation of cholesterol synthesis and LDL receptor expression occurs in response to stimulation of bile acid synthesis.  相似文献   

9.
The effects of feeding cholesterol, sitosterol, and lovastatin on cholesterol absorption, biosynthesis, esterification, and LDL receptor function were examined in the rat jejunal mucosa. Cholesterol absorption was measured by the dual-isotope plasma ratio method; the rate-limiting enzyme of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, was measured as total and expressed enzyme activities (in the absence and presence of a phosphatase inhibitor, NaF, respectively); mucosal total and esterified cholesterol concentrations were determined by gas-liquid chromatography; LDL receptor function was assayed as receptor-mediated binding of (125)I-labeled LDL to mucosal membranes. Feeding 2% sitosterol or 0.04% lovastatin for 1 week significantly (P < 0.01) decreased the amounts of cholesterol absorbed per day (-85% and -63%, respectively). In contrast, feeding 2% cholesterol for 1 week increased the amounts of absorbed cholesterol 27-fold, even though the percent absorption significantly decreased. With all three treatments, there was a coordinate regulation of total HMG-CoA reductase activity and receptor-mediated LDL binding. Cholesterol feeding downregulated both total jejunal HMG-CoA reductase activity (P < 0.05) and receptor-mediated LDL binding (P < 0.01), whereas lovastatin- and sitosterol-supplemented diets significantly upregulated both of these parameters. In the control, cholesterol-fed, and sitosterol-fed animals, about half of the total jejunal HMG-CoA reductase activity was expressed (in functional dephosphorylated form). However, in the lovastatin-treated rats with 4-fold stimulation of HMG-CoA reductase, only 23% of the total enzyme activity was expressed. Changes in total HMG-CoA reductase activity and receptor-mediated LDL binding in all tested groups occurred with no change in total concentrations of mucosal cholesterol, and only cholesterol-fed animals had increased mucosal esterified cholesterol concentrations. Thus, in response to various fluxes of dietary or newly formed cholesterol, HMG-CoA reductase and receptor-mediated LDL binding are coordinately regulated to maintain constant cellular cholesterol concentrations in the jejunum.  相似文献   

10.
Hyperhomocysteinemia, an elevation of blood homocysteine levels, is a metabolic disorder associated with dysfunction of multiple organs. We previously demonstrated that hyperhomocysteinemia stimulated hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase leading to hepatic lipid accumulation and liver injury. The liver plays an important role in cholesterol biosynthesis and overall homeostasis. HMG-CoA reductase catalyzes the rate-limiting step in cholesterol biosynthesis. Hepatic HMG-CoA reductase is a major target for lowering cholesterol levels in patients with hypercholesterolemia. The aim of the present study was to examine the effect of berberine, a plant-derived alkaloid, on hepatic cholesterol biosynthesis in hyperhomocysteinemic rats and to identify the underlying mechanism. Hyperhomocysteinemia was induced in Sprague-Dawley rats by feeding a high-methionine diet for 4 wk. HMG-CoA reductase activity was markedly elevated in the liver of hyperhomocysteinemic rats, which was accompanied by hepatic lipid accumulation. Activation of HMG-CoA reductase was caused by an increase in its gene expression and a reduction in its phosphorylation (an inactive form of the enzyme). Treatment of hyperhomocysteinemic rats with berberine for 5 days inhibited HMG-CoA reductase activity and reduced hepatic cholesterol content. Such an inhibitory effect was mediated by increased phosphorylation of HMG-CoA reductase. Berberine treatment also improved liver function. These results suggest that berberine regulates hepatic cholesterol biosynthesis via increased phosphorylation of HMG-CoA reductase. Berberine may be therapeutically useful for the management of cholesterol homeostasis.  相似文献   

11.
We have demonstrated that SC-435, an apical sodium codependent bile acid transporter (ASBT) inhibitor, lowers plasma low-density lipoprotein cholesterol (LDL-C) concentrations in guinea pigs. The purpose of this study was to further examine the hypocholesterolemic effects of SC-435, by measuring the activity and RNA expression of regulatory enzymes of hepatic cholesterol and lipoprotein metabolism. In addition, the use of a combination (COMBO) therapy with simvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, was also tested. Male Hartley guinea pigs were randomly allocated to one of three diets (n=10 per group), for 12 weeks. The control diet contained no ASBT inhibitor or simvastatin. The monotherapy diet (ASBTi) contained 0.1% of SC-435. The COMBO therapy consisted of a lower dose of SC-435 (0.03%) and 0.05% simvastatin. Cholesterol ester transfer protein (CETP) and HMG-CoA reductase mRNA abundance were determined using RT-PCR techniques. Hepatic HMG-CoA reductase and cholesterol 7-hydroxylase (CYP7) activities were measured by radioisotopic methods. Compared to the control group, CETP activity was 34% and 56% lower with ASBTi and COMBO, respectively. Similarly, CETP mRNA expression was reduced by 36% and 73% in ASBTi and COMBO groups, respectively. Cholesterol 7-hydroxylase and HMG-CoA reductase activities were increased 2-fold with ASBTi and COMBO treatments, respectively. Likewise, HMG-CoA reductase mRNA expression was increased 33% with ASBTi treatment. These results suggest that both SC-435 monotherapy and combination therapy lower LDL cholesterol concentrations by altering both hepatic cholesterol homeostasis and the intravascular processing of lipoproteins in guinea pigs.  相似文献   

12.
The ability of mitogenic stimulation of human T lymphocytes to alter the expression of genes involved in sterol metabolism was examined. Messenger RNA levels for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, HMG-CoA synthase, and low density lipoprotein (LDL) receptor were quantified in resting and mitogen-stimulated T lymphocytes by nuclease protection assay. Mitogenic stimulation increased HMG-CoA synthase mRNA levels by 5-fold and LDL receptor by 4-fold when cells were cultured in lipoprotein-depleted medium whereas HMG-CoA reductase gene expression was not significantly increased. When cultures were supplemented with concentrations of low density lipoprotein sufficient to saturate LDL receptors, expression of all three genes was inhibited in resting lymphocytes, as effectively as was noted with fibroblasts. Similarly, LDL down-regulated gene expression in mitogen-activated lymphocytes so that mitogenic stimulation did not increase either HMG-CoA reductase or synthase mRNA levels, although LDL receptor gene expression was enhanced. These results indicate that expression of three of the genes involved in sterol metabolism is differentially regulated by LDL and mitogenic stimulation. Moreover, the increase in rates of endogenous sterol synthesis and the activity of HMG-CoA reductase in mitogen-stimulated T lymphocytes cannot be accounted for by increases in HMG-CoA reductase mRNA levels.  相似文献   

13.
Enterocyte cholesterol homeostasis reflects aggregated rates of sterol synthesis, efflux, and uptake from plasma and gut lumen. Cholesterol synthesis and LDL uptake are coordinately regulated by sterol regulatory element-binding proteins (SREBP), whereas sterol efflux is regulated by liver X receptors (LXR). How these processes are coordinately regulated in enterocytes, the site of cholesterol absorption, is not well understood. Here, we treat mice with ezetimibe to investigate the effect of blocking cholesterol absorption on intestinal SREBPs, LXRs, and their effectors. Ezetimibe increased nuclear SREBP-2 8-fold. HMG-CoA reductase (HMGR) and LDL receptor (LDLR) mRNA levels increased less than 3-fold, whereas their protein levels increased 30- and 10-fold, respectively. Expression of inducible degrader of LDLR (IDOL), an LXR-regulated gene that degrades LDLRs, was reduced 50% by ezetimibe. Coadministration of ezetimibe with the LXR agonist T0901317 abolished the reduction in IDOL and prevented the increase in LDLR protein. Ezetimibe-stimulated LDLR expression was independent of proprotein convertase subtilisin/kexin type 9 (PSCK9), a protein that degrades LDLRs. To maintain cholesterol homeostasis in the face of ezetimibe, enterocytes boost LDL uptake by increasing LDLR number, and they boost sterol synthesis by increasing HMGR and other cholesterologenic genes. These studies reveal a hitherto undescribed homeostatic network in enterocytes triggered by blockade of cholesterol absorption.  相似文献   

14.
Various studies demonstrated a significant association between the trace element selenium (Se), hypercholesterolemia and the risk of cardiovascular disorders. Present study was aimed to reveal the role of Se supplementation in modulation of hypercholesterolemia-induced changes in apolipoprotein B (apoB) and 3-hydroxy 3-methylglutaryl co-enzyme A (HMG-CoA) reductase expression during experimental hypercholesterolemia in Sprague-Dawley male rats. Animals were fed 0.2 and 1 ppm Se-supplemented control diet as well as 2% cholesterol-supplemented diet for 3 months. Apolipoprotein B levels were measured by ELISA and Western blot. HMG-CoA reductase mRNA expression was studied by RT-PCR. ApoB levels increased significantly on 2% cholesterol-supplemented diet feeding. On 1 ppm Se supplementation apoB levels decreased significantly. HMG-CoA reductase mRNA expression decreased significantly on cholesterol-supplemented diet feeding and on 1 ppm Se supplementation the mRNA expression further decreased. So the present results demonstrate that 1 ppm Se supplementation is responsible for down regulation of apoB and HMG-CoA reductase expression during hypercholesterolemia. These findings highlight the therapeutic potential of selenium supplementation in lipid metabolism.  相似文献   

15.
16.
17.
Elevated plasma low-density lipoprotein (LDL) cholesterol is considered as a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) uptakes plasma lipoproteins and lowers plasma LDL cholesterol, the activation of LDLR is a promising drug target for atherosclerosis. In the present study, we identified the naturally occurring alkaloid piperine, as an inducer of LDLR gene expression by screening the effectors of human LDLR promoter. The treatment of HepG2 cells with piperine increased LDLR expression at mRNA and protein levels and stimulated LDL uptake. Subsequent luciferase reporter gene assays revealed that the mutation of sterol regulatory element-binding protein (SREBP)-binding element abolished the piperine-mediated induction of LDLR promoter activity. Further, piperine treatments increased mRNA levels of several SREBP targets and mature forms of SREBPs. However, the piperine-mediated induction of the mature forms of SREBPs was not observed in SRD–15 cells, which lack insulin-induced gene–1 (Insig–1) and Insig–2. Finally, the knockdown of SREBPs completely abolished the piperine-meditated induction of LDLR gene expression in HepG2 cells, indicating that piperine stimulates the proteolytic activation of SREBP and subsequent induction of LDLR expression and activity.  相似文献   

18.
The microsomal enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase and the low density lipoprotein (LDL) receptor pathway carry out a key role on cholesterol homeostasis in eucaryotic cells. The HMG-CoA reductase is sensitive to oxidative inactivation and to phosphorylation by many kinases that are able to inactivate the protein and increase its susceptibility to proteolysis. We previously demonstrated that a calf thymus Cu,Zn SOD affects cholesterol metabolism. This protein binds with rat hepatocyte cell membrane by a specific surface membrane receptor. The involvement of Cu,Zn SOD in cholesterol metabolism is confirmed further by the presence of this antioxidant enzyme in circulating serum lipoproteins. We studied the effect of native human Cu,Zn SOD, metal-free SOD (apo SOD), and SOD-inactivated with hydrogen peroxide on cholesterol metabolism in human hepatocarcinoma HepG2 cells. Results showed that all forms of SODs used, at the concentration of 150 ng/ml, are able to affect cholesterol metabolism decreasing both HMG-CoA reductase activity and its protein levels; this inhibitory effect is accompanied by reduced cholesterol synthesis measured as [14C]acetate incorporation into [14C]cholesterol and by an increased [125I]LDL binding to HepG2 cells. Furthermore, the inhibitory effect of Cu,Zn SOD on cholesterol synthesis was completely abolished when the cells were incubated with Cu,Zn SOD in the presence of bisindoilmaleimide (BDM), an inhibitor of protein kinase C (PKC); moreover, we demonstrated that Cu,Zn SOD as well as apo SOD was able to increase PKC activity. Overall, data demonstrate that Cu,Zn SOD affects cholesterol metabolism independently from its dismutase activity and its metal content and that the inhibitory action on cholesterol synthesis is mediated by an activation of protein kinase C.  相似文献   

19.
1. This paper concerns the study of the effect of L-carnitine on cholesterol metabolism in rat hepatocyte cells BRL-3A. In this research the binding of [125I]human low density lipoprotein (LDL) to BRL-3A cells and 3-hydroxy 3-methylglutaryl CoA reductase activity (HMG-CoA reductase activity) after L-carnitine incubation were studied. 2. It was found that L-carnitine is able to increase either the [125I]LDL binding or inhibit the HMG-CoA reductase activity in BRL-3A cells. 3. These results indicate that L-carnitine affects the cholesterol metabolism through an inhibition of HMG-CoA reductase activity that could be responsible for the increased [125I]LDL binding in rat hepatocytes.  相似文献   

20.
The regulation of hepatic cholesterol and lipoprotein metabolism was studied in the ethinyl estradiol-treated rat in which low density lipoprotein (LDL) receptors are increased many fold. Cholesterol synthesis was reduced at both its diurnal peak and trough by ethinyl estradiol. The diurnal variation in 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was abolished, whereas that for acyl coenzyme A: cholesterol acyltransferase (ACAT) was retained. LDL receptor number did not vary diurnally. Feeding these animals a cholesterol-rich diet for 48 h suppressed cholesterol synthesis and reductase activities to levels similar to those found in cholesterol-fed control animals, but ACAT activity was unaffected. LDL receptors were reduced about 50%. Intravenously administered cholesterol-rich lipoproteins suppressed HMG-CoA reductase and LDL receptors in 2 h but had a variable effect on ACAT activity. Intragastric administration of mevalonolactone reduced reductase and increased acyltransferase activity but had little effect on LDL receptors when given 2 or 4 h before death. Although animals fed a cholesterol-rich diet before and during ethinyl estradiol treatment became hypocholesterolemic, free and esterified cholesterol concentrations in liver were high as was ACAT activity. HMG-CoA reductase was inhibited to levels found in control animals fed the cholesterol-rich diet. LDL receptors were increased to a level about 50% of that reached in animals receiving a control diet and ethinyl estradiol. These data demonstrate that key enzymes of hepatic cholesterol metabolism and hepatic LDL receptors respond rapidly to cholesterol in the ethinyl estradiol-treated rat. Furthermore, estradiol increases LDL receptor activity several fold in cholesterol-loaded livers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号