首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Testicular peritubular myoid cells secrete a paracrine factor that is a potent modulator of Sertoli cell functions involved in the maintenance of spermatogenesis. These cells also play an integral role in maintaining the structural integrity of the seminiferous tubule. To better understand this important testicular cell type, studies were initiated to characterize cultured peritubular cells using biochemical and histochemical techniques. The electrophoretic pattern of radiolabeled secreted proteins was similar for primary and subcultured peritubular cells and was unique from that of Sertoli cells. Morphologic differences between Sertoli cells and peritubular cells were noted and extended with histochemical staining techniques. Desmin cytoskeletal filaments were demonstrated immunocytochemically in peritubular cells, both in culture and in tissue sections, but were not detected in Sertoli cells. Desmin is proposed to be a marker for peritubular cell differentiation as well as a marker for peritubular cell contamination in Sertoli cell cultures. Peritubular cells and Sertoli cells were also stained histochemically for the presence of alkaline phosphatase. Staining for the alkaline phosphatase enzyme was associated with peritubular cells but not with Sertoli cells. Alkaline phosphatase is therefore an additional histochemical marker for peritubular cells. Biochemical characterization of peritubular cells relied on cell-specific enzymatic activities. Creatine phosphokinase activity, a marker for contractile cells, was found to be associated with peritubular cells, while negligible activity was associated with Sertoli cells. Alkaline phosphatase activity assayed spectrophotometrically was found to be a useful biochemical marker for peritubular cell function and was utilized to determine the responsiveness of primary and subcultured cells to regulatory agents. Testosterone stimulated alkaline phosphatase activity associated with primary cultures of peritubular cells, thus supporting the observation that peritubular cells provide a site of androgen action in the testis. Retinol increased alkaline phosphatase activity in subcultured peritubular cells. Alkaline phosphatase activity increased in response to dibutyryl cyclic adenosine monophosphate (AMP) in both primary and subcultured peritubular cell cultures. Observations indicate that the ability of androgens and retinoids to regulate testicular function may be mediated, in part, through their effects on peritubular cells. This provides additional support for the proposal that the mesenchymal-epithelial cell interactions between peritubular cells and Sertoli cells are important for the maintenance and control of testicular function. Results imply that the endocrine regulation of tissue function may be mediated in part through alterations in mesenchymal-epithelial cell interactions.  相似文献   

2.
The incorporation of 3H-proline into protein was regarded as a measure of total protein synthesis and the incorporation into hydroxyproline as indicative of collagen synthesis. Relative collagen synthesis (expressed as percent of total protein synthesized) by Sertoli and peritubular myoid cells cultured from 20-22 day old rat testis was estimated. In both secreted and cellular pools, relative collagen synthesis by Sertoli cells was significantly greater than by peritubular myoid cells. Coculture of Sertoli and myoid cells resulted in a significant increase in relative collagen synthesis when compared to monocultures of each cell type. Addition of serum to peritubular myoid cells resulted in a stronger stimulation of relative collagen production. Sertoli cell extracellular matrix inhibited relative collagen synthesis by peritubular myoid cells in the presence or absence of serum. Radioactivity into hydroxyproline as corrected per cellular DNA also showed similar results. Immunolocalization studies confirmed that both cell types synthesize type I and type IV collagens. These results indicate that stimulation of collagen synthesis observed in Sertoli-myoid cell cocultures is due to humoral interactions, rather than extracellular matrix, and Sertoli cell extracellular matrix regulates serum-induced increase in collagen synthesis by peritubular myoid cells.  相似文献   

3.
The present study documents that adrenomedullin (AM), a vasoactive peptide originally identified in pheochromocytoma tissue and present in the testis, in vitro affects the function of testicular peritubular myoid cells (TPMC), a contractile cell type located in the seminiferous tubule wall. AM stimulated cAMP production by cultured TPMC taken from 16-day-old rats, and this effect was completely inhibited by the AM antagonist AM-(22-52) and partially by the CGRP (calcitonin gene-related peptide) antagonist CGRP-(8-37). Studies on TPMC contractile activity documented that AM inhibits TPMC contraction induced by endothelin-1 (ET-1) and that its effect is antagonized by AM-(22-52). Neutralizing AM produced by TPMC with the addition of anti-AM antibody induced a significant increase of ET-1-induced contraction. When exposed to the protein kinase A inhibitor H-89, AM inhibitory activity on ET-1-induced TPMC contraction was suppressed, whereas the nitric oxide synthase inhibitor N:(G)-nitro-L-arginine methyl esther did not modify AM activity. In conclusion, our study indicates that AM stimulates cAMP production and inhibits the contraction induced by ET-1 in TPMC in vitro, and that AM produced by TPMC has an autocrine effect. We propose that AM may have a role in the control of seminiferous tubule contraction.  相似文献   

4.
BackgroundPeritubular myoid cells are emerging as key regulators of testicular function in adulthood. However, little is known about the role of testicular peritubular myoid cells (TPMCs) in the development of the male gonad. We found that, compared to testes of young adult hamsters, gonads of 21 day-old animals show increased melatonin concentration, seminiferous tubular wall thickening and a heterogeneous packaging of its collagen fibers thus raising the question whether melatonin may be involved in the regulation of TPMCs.MethodsWe established primary cultures of TPMCs from immature hamsters (ihaTPMCs), which we found express melatonergic receptors.ResultsExogeneous melatonin decreased the levels of inflammatory markers (NLRP3 inflammasome, IL1β) but increased the expression of cyclooxygenase 2 (COX2, key enzyme mediating prostaglandin synthesis) and of the glial cell line-derived neurotrophic factor (GDNF) in ihaTPMCs. Melatonin also stimulated ihaTPMCs proliferation and the expression of extracellular matrix proteins such as collagen type I and IV. Furthermore, collagen gel contraction assays revealed an enhanced ability of ihaTPMCs to contract in the presence of melatonin.ConclusionMelatonin regulates immune and inflammatory functions as well as contractile phenotype of the peritubular wall in the hamster testis.General significanceIf transferable to the in vivo situation, melatonin-dependent induction of ihaTPMCs to produce factors known to exert paracrine effects in other somatic cell populations of the gonad suggests that the influence of melatonin may go beyond the peritubular wall and indicates its contribution to testicular development and the establishment of a normal and sustainable spermatogenesis.  相似文献   

5.
In frozen sections of testes from 20-day-old rats, alpha-smooth muscle (SM) isoactin was prominently immunostained in the peritubular tissue and in vascular walls, but not in areas populated by germinal cells, interstitial cells, or Sertoli cells. Peritubular myoid cell (PMC)-enriched preparations were isolated by two different procedures involving our previously published sequential enzymatic treatment ("conventional peritubular cell [PC]-enriched preparation") and by density-gradient purification of PMC from these preparations. The properties of different populations of PMC in culture were compared with respect to plating efficiency, rates of proliferation, and presence of cytoskeletal proteins. PMC, maintained in culture under defined conditions, contained proteins immunoreactive with monoclonal antibodies against alpha-SM isoactin. This was detected by immunostaining and by Western blots of cell extracts subjected to gel electrophoresis. Neither Sertoli cells, skin fibroblasts, bovine endothelial cells, nor glial cells contained alpha-SM isoactin detectable by the above techniques. We report the ontogeny of alpha-SM isoactin in the peritubular tissue of testes at different stages of gonadal development, and show that it is detectable within 8 days after birth. In addition, we describe immunocytochemical changes that occur during culture in various media of PMC prepared from testes of 20-day-old rats. We compare the use of alpha-SM isoactin as a differentiation marker for PMC with the use of desmin in facilitating the identification of PMC, and in following alterations in phenotype during culture in various culture media. Data presented demonstrate that about 81% of cells in the "conventional PC-enriched preparation," and about 94% of cells in the more purified populations of PMC were positive for alpha-SM isoactin in cells maintained in culture for 18 h after plating. These same PMC also were shown to express vimentin and plasminogen activator inhibitor, type 1. We conclude that alpha-SM isoactin is an excellent specific marker for PMC in seminiferous tubules and in culture.  相似文献   

6.
Confluent testicular peritubular cells derived from immature rats were used to study membrane associated proteoglycans (PG) Peripheral material (heparin releasable), membrane and intracellular material (Triton X-100 releasable) were collected, purified by anion exchange chromatography then characterized by gel filtration and by hydrophobic interaction chromatography, followed by enzymatic digestion and chemical treatment. The peripheral material was constituted of two populations of PG (Kav=0 and 0.10 on Superose 6 column), each containing both heparan sulfate proteoglycans (HSPG) and chondroitin proteoglycans (CSPG) and perhaps a hybrid PG (HSCSPG). These PG being not retained on an octyl Sepharose column they were devoided of hydrophobic properties. The integral membrane proteoglycans isolated on the basis of their hydrophobic properties represented 20% of the Triton X-100 releasable material, and were exclusively constituted of proteoheparan sulfate. There were no relationships between this membrane HSPG and the peripheral HSPG as evidenced by pulse chase experiments. The mode of intercalation of the hydrophobic HSPG in the cell membrane was studied. The majority of these macromolecules (80%) were sensitive to trypsin and only a minor proportion (20%) were sensitive to phosphatidylinositol specific phospholipase C. Thus, about 80% of the hydrophobic HSPG were intercalated in the cell membrane by a hydrophobic segment of the core protein whereas about 20% were associated with the cell membrane via a phosphatidylinositol residue covalently bound to the core protein of the PG.Abbreviations PG Proteoglycans - CSPG Chondroitin Sulfate Proteoglycans - HSPG Heparan Sulfate Proteoglycans - HSCSPG Heparan and Chondroitin Sulfate Proteoglycans - DNAse I Deoxyribonuclease I - DMEM Dulbeccos modified Eagle's medium - H/D HAM F12/DMEM - ECM Extracellular Matrix - PBS Phosphate Buffered Saline - PI Phosphatidylinositol - GPI Glycosyl Phosphatidylinositol - PI-PLC Phosphatidylinositol Specific Phospholipase C - TBS Tris Buffered Saline - STI Soybean Trypsin Inhibitor - GAG Glycosaminoglycans - HA Hyaluronic Acid  相似文献   

7.
Peritubular cells, prepared from seminiferous tubules from testes of 20-day-old-rats, were seeded onto different substrata and cultured under varying conditions. When plated onto polystyrene or glass surfaces, peritubular cells assumed a typical fibroblast-like cell shape and cell association pattern, together with a fibroblast-like migration behavior. They maintained high rates of proliferation even after achieving confluency. In contrast, when peritubular cells were plated onto a seminiferous tubule biomatrix (ST-biomatrix) surface, they spread to form a continuous cell layer having a myoepithelioid histotype similar to that of peritubular myoid cells in the intact seminiferous tubule. The characteristics of the myoepithelioid histotype described include a squamous, polyhedral cell shape; a cobblestone-like cell association pattern, with closely apposing or slightly overlapping cell borders, and a very low mitotic index. When peritubular cells were plated onto laminin, collagen, fibronectin, heparin, or a liver biomatrix, a fibroblast-like pattern resulted, indicating that ECM components listed and liver biomatrix are unable to substitute for ST-biomatrix in maintaining normal myoepithelioid characteristics in vitro. In cocultures of Sertoli cells plated on top of peritubular cells, the peritubular cells directly in contact with Sertoli cell aggregates developed a myoepithelioid histotype, whereas peritubular cells in regions not in direct contact had a fibroblast-like histotype. The data are discussed in relation to the possible role of cell-cell interactions, and cell-substratum interactions, in the acquisition and stabilization of the histotype of peritubular cells in the seminiferous tubule during development.  相似文献   

8.
The structural characteristics of proteoglycans produced by seminiferous peritubular cells and by Sertoli cells are defined. Peritubular cells secrete two proteoglycans designated PC I and PC II. PC I is a high molecular mass protein containing chondroitin glycosaminoglycan (GAG) chains (maximum 70 kDa). PC II has a protein core of 45 kDa and also contains chondroitin GAG chains (maximum 70 kDa). Preliminary results imply that PC II may be a degraded or processed form of PC I. A cellular proteoglycan associated with the peritubular cells is described which has properties similar to those of PC I. Sertoli cells secrete two different proteoglycans, designated SC I and SC II. SC I is a large protein containing both chondroitin (maximum 62 kDa) and heparin (maximum 15 kDa) GAG chains. Results obtained suggest that this novel proteoglycan contains both chondroitin and heparin GAG chains bound to the same core protein. SC II has a 50-kDa protein core and contains chondroitin (maximum 25 kDa) GAG chains. A proteoglycan obtained from extracts of Sertoli cells is described which contains heparin (maximum 48 kDa) GAG chains. In addition, Sertoli cells secrete a sulfoprotein, SC III, which is not a proteoglycan. SC III has properties similar to those of a major Sertoli cell-secreted protein previously defined as a dimeric acidic glycoprotein. The stimulation by follicle-stimulating hormone of the incorporation of [35S]SO2(-4) into moieties secreted by Sertoli cells is shown to represent an increased production or sulfation of SC III (i.e. dimeric acidic glycoprotein), and not an increased production or sulfation of proteoglycans. Results are discussed in relation to the possible functions of proteoglycans in the seminiferous tubule.  相似文献   

9.
We have studied the distribution of histochemically detectable alkaline phosphatase in cultures of seminiferous tubule fragments and of peritubular cells from prepubertal rats. The same material also was immunohistochemically evaluated for the presence of desmin-containing intermediate filaments. The comparative analysis of alkaline phosphatase and desmin positivity shows that alkaline phosphatase histochemistry selectively detects desmin-containing contractile cells in tubular and peritubular cell cultures. We propose alkaline phosphatase as a novel marker for myoid cells that can be of help in screening, defining, and eventually standardizing the exact composition of peritubular cell cultures, a model that is of increasing interest in the study of cellular interactions in the testis.  相似文献   

10.
11.
Macrophage migration inhibitory factor (MIF), originally described as a T-cell product, has recently been identified in several endocrine organs. In the rat testis, MIF is secreted by the Leydig cells into testicular interstitial fluid that directly contacts Sertoli and peritubular cells. To investigate whether MIF is involved in calcium-dependent signal transduction, we have isolated rat Sertoli and peritubular cells. Despite progress in understanding functional properties of MIF, the molecular mechanism of MIF action in target cells is almost completely unknown. Here we find that recombinant MIF evokes a transient increase in calcium levels in peritubular cells but not in Sertoli cells from dissociated rat testis. Concentrations in the range between 12.5 ng/ml and 120 ng/ml of recombinant MIF were found to be effective, with 50 ng/ml yielding the largest increase in intracellular calcium. Preincubation of MIF with a neutralizing monoclonal antibody specifically blocked the response. Incubation of the peritubular cells in calcium-free buffer clearly decreased the evoked response in intracellular calcium concentration. However, the calcium response was greatly decreased by thapsigargin, an inhibitor of the Ca(2+) ATPase of the endoplasmic reticulum. The results strongly indicate that calcium is mobilized from reticulum stores during MIF-mediated signal transduction in the testis. In conclusion, our results provide the first characterization of MIF signal transduction in the testis and suggest that signaling from Leydig cells to peritubular cells through MIF is mediated by receptors coupled to release of intracellular calcium.  相似文献   

12.
We have previously reported metabolic cooperation between Sertoli and peritubular myoid cells in terms of synthesis of one of the main testicular extracellular matrix (ECM) constituents, glycosaminoglycans (GAG). This study concerns Sertoli cell ECM-peritubular myoid cell interactions in terms of GAG synthesis. We have examined the responses of hormones and other regulatory agents such as a combination of follicle-stimulating hormone (FSH), insulin, retinol, and testosterone (FIRT) on peritubular myoid cells, and tested if Sertoli cell ECM or serum factor substitute for the stimulation by FIRT. Testicular peritubular myoid cells cultured on Sertoli cell ECM showed significant increases in the levels of cell- and ECM-associated GAG over that when cultured on uncoated plastic. This indicates a specific cell-substratum interaction between Sertoli cell ECM and peritubular myoid cells in the testis in terms of GAG synthesis. Moreover, in terms of cell-associated GAG synthesis, peritubular myoid cells cultured on Sertoli cell ECM or on plastic in the presence of serum substituted for the stimulatory response of FIRT on peritubular myoid cells cultured on uncoated plastic. The data are discussed in relation to the possible role of cell-substratum interaction in maintaining peritubular myoid cell functions. © 1993 Wiley-Liss, Inc.  相似文献   

13.
14.
15.
16.
17.
A peculiar adherent cell clone (R613BM) was established under muscle tissue free conditions from bone marrow of a Wistar rat. The cloned cell line was able to form myofibrils and expressed nicotinic acetylcholine receptors specific for skeletal muscles. The muscle specific characteristics have been maintained consistently for more than five years. These results suggest that bone marrow contains a precursor cell which has the potency to differentiate into muscle cells.  相似文献   

18.
Postnatal differentiation of the peritubular myoid cells in mouse testis is hormone dependent. In order to analyse the differentiation of the peritubular tissue, an attempt was made to develop an experimental model system utilizing an in vitro method. Fragments obtained from adult, 7- or 10-day-old mice, were cultured in McCoy's modified 5a medium for 9–19 days. The fragments and monolayers that grew from them were examined with the electron microscope at the end of the culture period. Monolayers originating from either mature or immature testicular expiants were comparable in appearance. They were composed of spindle-shaped cells that contained abundant profiles of granular endoplasmic reticulum and free ribosomes, as well as arrays of 40–60 Å thick filaments and associated dense bodies. In these respects they resembled smooth muscle cells in culture, in developmental, and in pathological conditions. Examination of the peritubular tissue in the testicular explants indicated that the monolayer of myoid cells originated from the fibroblasts rather than the peritubular myoid cells. Peritubular cells in explants from mature rats retained their myoid features at the end of the culture period but myoid cell differentiation failed to progress in expiants obtained from immature animals. Additional work is necessary in order to establish the suitability of these preliminary culture attempts to support normal development before conclusions may be drawn concerning the role of hormones in myoid cell differentiation. The role of microfilaments as a contractile organelle of cells is discussed.  相似文献   

19.
Sertoli cells synthesize and secrete a transferrin-like protein (testicular transferrin) [Skinner & Griswold (1980) J. Biol. Chem. 255, 1923-1925]. The purpose of the present study was to purify and characterize testicular transferrin and to compare it with serum transferrin. Testicular transferrin was obtained from the medium of cultured rat Sertoli cells, whereas serum transferrin was obtained from rat serum. Both proteins were purified with the use of phenyl-Sepharose hydrophobic chromatography and transferrin immunoaffinity chromatography. The purified proteins were shown to have similar molecular masses (75 000 Da) and amino acid compositions. The pattern of tryptic peptides from testicular and serum transferrin were found to be essentially the same when analysed by reverse-phase high-pressure liquid chromatography. The carbohydrate composition of both transferrins was determined by several colorimetric assays and g.l.c. Testicular transferrin, isolated from cell culture medium, had increased amounts of glucose, galactose and glucosamine. Serum transferrin that was incubated with cell culture medium also had a large amount of associated glucose. The results show that testicular transferrin and serum transferrin are structurally very similar and are possibly products of the same gene expressed in two different tissues, the testis and liver. However, the amount of carbohydrate associated with these two proteins is different.  相似文献   

20.
Purified myoid cells, isolated from prepubertal rat testes, cultured in a chemically defined medium for up to 1 week do not change their metabolic activities, evaluated as protein synthesis and secretion, during the culture time. We report that fibronectin, collagen IV, and laminin are synthesized and secreted by myoid cells as demonstrated by immunocytochemical and biochemical methods. The deposition of all three proteins was spotty, with different regional localizations. The effect of vitamin A on the synthesis and the secretion of the basement membrane components was also evaluated. Retinol supplementation induces a higher synthesis of fibronectin and laminin, whereas it does not change collagen IV synthesis and secretion. The secretion of the other two molecules is differentially regulated by retinol; in fact fibronectin secretion is increased, whereas laminin secretion is reduced. Similar results were obtained utilizing retinoic acid. The data we report in this paper show, for the first time, that purified testicular myoid cells synthesize and secrete fibronectin, collagen IV, and laminin and that synthesis and secretion of these components of the basement membrane are regulated by retinol. These findings reveal a new effect of vitamin A in the regulation of mammalian spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号